Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T18:25:49.137Z Has data issue: false hasContentIssue false

Chapter 24 - Perfusion MR imaging in adult neoplasia

from Section 3 - Adult neoplasia

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

Perfusion MR imaging is able to characterize brain tumor biology and other central nervous system (CNS) disorders through the underlying pathological and physiological changes that occur with tumor vasculature. Although the biology underlying brain tumor angiogenesis and vascular recruitment, along with the feedback loop with tumor hypoxia and necrosis, is extremely complex, there are some aspects of tumor physiology that can be quantified using perfusion MR imaging. In particular, some perfusion metrics can be used as surrogate markers of tumor angiogenesis and vascular permeability. Previous chapters describe the various techniques available for acquiring perfusion MRI data. The two most common techniques currently used in both clinical and research settings are T1-weighted steady-state dynamic contrast-enhanced MRI (DCE-MRI) and T2*-weighted dynamic susceptibility-weighted contrast-enhanced MRI (DSC-MRI). The advantages and disadvantages of each technique for characterizing tumor biology will be discussed; however-DSC-MRI is in more widespread use.

The effects of vascular endothelial growth factor (VEGF)/vascular permeability factor and other growth factors on vascular permeability have been under investigation since Folkman first described the association between tumoral growth and angiogenesis.[1] Recent evidence suggests that vascular permeability and the presence of VEGF are important mediators of tumor growth in addition to angiogenesis.[2–5] Perfusion MRI can now measure parameters such as cerebral blood volume (CBV) and vascular permeability, which can be directly correlated with these histopathological changes as well as molecular markers such as VEGF.[6–9]

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 341 - 368
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Folkman, J.Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.Google ScholarPubMed
Vajkoczy, P, Menger, MD.Vascular microenvironment in gliomas. J Neurooncol 2000; 50: 99–108.CrossRefGoogle ScholarPubMed
Vajkoczy, P, Menger, MD.Vascular microenvironment in gliomas. Cancer Treat Res 2004; 117: 249–262.CrossRefGoogle ScholarPubMed
Dvorak, HF, Brown, LF, Detmar, M, Dvorak, AM.Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–1039.Google ScholarPubMed
Dvorak, HF, Nagy, JA, Feng, D, Brown, LF, Dvorak, AM.Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 1999; 237: 97–132.Google ScholarPubMed
Provenzale, JM, Wang, GR, Brenner, T, Petrella, JR, Sorensen, AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol 2002; 178: 711–716.CrossRefGoogle ScholarPubMed
Roberts, HC, Roberts, TPL, Brasch, RC, Dillon, WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891–899.Google ScholarPubMed
Roberts, HC, Roberts, TP, Ley, S, Dillon, WP, Brasch, RC. Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol 2002; 9 (Suppl 1): S151–S1515.CrossRefGoogle ScholarPubMed
Maia, ACM, Malheiros, SMF, da Rocha, AJ, et al. MR Cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 2005; 26: 777–783.Google ScholarPubMed
Sorensen, AG, Reimer, P.Cerbral MR Perfusion Imaging: Principles and Current Applications. New York: Thieme, 2000.Google Scholar
Aronen, HJ, Gazit, IE, Louis, DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41–51.CrossRefGoogle ScholarPubMed
Aronen, HJ, Perkio, J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 2002; 12: 501–523.CrossRefGoogle ScholarPubMed
Bruening, R, Kwong, KK, Vevea, MJ, et al. Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. AJNR Am J Neuroradiol 1996; 17: 831–840.Google ScholarPubMed
Cha, S, Knopp, EA, Johnson, G, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility- weighted echo-planar perfusion MR imaging. Radiology 2002; 223: 11–29.CrossRefGoogle ScholarPubMed
Cha, S.Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 2003; 11: 403–413.CrossRefGoogle ScholarPubMed
Cha, S, Johnson, G, Wadghiri, YZ, et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: Correlation with histopathology. Magn Reson Med 2003; 49: 848–855.CrossRefGoogle ScholarPubMed
Law, M, Yang, S, Wang, H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24: 1989–1998.Google ScholarPubMed
Lev, MH, Rosen, BR. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 1999; 9: 309–331.Google ScholarPubMed
Petrella, JR, Provenzale, JM. MR Perfusion imaging of the brain: techniques and applications. Am J Roentgenol 2000; 175: 207–219.CrossRefGoogle ScholarPubMed
Shin, JH, Lee, HK, Kwun, BD, et al. Using Relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. Am J Roentgenol 2002; 179: 783–789.CrossRefGoogle ScholarPubMed
Sugahara, T, Korogi, Y, Kochi, M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 1998; 171: 1479–1486.CrossRefGoogle ScholarPubMed
Sugahara, T, Korogi, Y, Shigematsu, Y, et al. Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 1999; 10: 114–124.CrossRefGoogle ScholarPubMed
Wong, ET, Jackson, EF, Hess, KR, et al. Correlation between dynamic MRI and outcome in patients with malignant gliomas. Neurology 1998; 50: 777–781.CrossRefGoogle ScholarPubMed
Wong, JC, Provenzale, JM, Petrella, JR. Perfusion MR imaging of brain neoplasms. Am J Roentgenol 2000; 174: 1147–1157.CrossRefGoogle ScholarPubMed
Law, M, Young, R, Babb, J, et al. Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2006; 27: 1975–1982.Google ScholarPubMed
Zierler, KL. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. In Handbook of Physiology, ed. American Physiological Society. Baltimore, MD: Williams & Wilkins, 1962, pp. 585–615.
Johnson, G, Wetzel, SG, Cha, S, Babb, J, Tofts, PS.Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med 2004; 51: 961–968.CrossRefGoogle Scholar
Tofts, PS, Kermode, AG. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991; 17: 357–367.CrossRefGoogle ScholarPubMed
Tofts, PS, Brix, G, Buckley, DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223–232.3.0.CO;2-S>CrossRefGoogle Scholar
Rosen, BR, Belliveau, JW, Vevea, JM, Brady, TJ.Perfusion imaging with NMR contrast agents. Magn Res Med 1990; 14: 249–265.CrossRefGoogle ScholarPubMed
Law, M, Yang, S, Babb, JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004; 25: 746–755.Google ScholarPubMed
Yang, S, Law, M, Zagzag, D, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am J Neuroradiol 2003; 24: 1554–1559.Google ScholarPubMed
Weisskoff, R, Belliveau, J, Kwong, K, Rosen, B. Functional MR imaging of capillary hemodynamics. In Magnetic Resonance Angiography: Concepts and applications, ed. Potchen, E. St. Louis, MO: Mosby, 1993, pp. 473–484.Google Scholar
Young, IR, Cox, IJ, Coutts, GA, Bydder, GM.Some consideration concerning susceptibility, longitudinal relaxation time constants and motion artifact in vivo human spectroscopy. NMR Biomed 1989; 2: 329–339.CrossRefGoogle Scholar
Schmainda, KM, Rand, SD, Joseph, AM, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 2004; 25: 1524–1532.Google ScholarPubMed
Batchelor, TT, Sorensen, AG, di Tomaso, E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11: 83–95.CrossRefGoogle ScholarPubMed
Padhani, AR, Dzik-Jurasz, A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging 2004; 15: 41–57.CrossRefGoogle ScholarPubMed
Cha, S, Yang, L, Johnson, G, et al. Comparison of microvascular permeability measurements, Ktrans, determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006; 27: 409–417.Google Scholar
Parks, LD, Choma, MA, York, GE, Moya, M, Provenzale, JM. Correlation of DCE and rCBV values for patients with high grade glial neoplasms. In Proceedings of the Radiological Society of North AmericaChicago, 2005, p. 346.Google Scholar
Li, KL, Zhu, XP, Waterton, J, Jackson, A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000; 12: 347–357.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Li, KL, Zhu, XP, Checkley, DR, et al. Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br J Radiol 2003; 76: 39–51.CrossRefGoogle ScholarPubMed
Cha, S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 2006; 27: 475–487.Google ScholarPubMed
Boxerman, JL, Schmainda, KM, Weisskoff, RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859–867.Google ScholarPubMed
Bastin, ME, Carpenter, TK, Armitage, PA, et al. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol 2006; 27: 402–408.Google ScholarPubMed
Burger, PC. Classification, grading, and patterns of spread of malignant gliomas. In Neurosurgical Topics: Malignant Cerebral Glioma ed.Puzzo, A. Park Ridge, IL: America Association of Neurological Surgeons, 1990, pp. 3–17.Google Scholar
Daumas-Duport, C, Beuvon, F, Varlet, P, Fallet-Bianco, C.[Gliomas: WHO and Sainte-Anne Hospital classifications.]Ann Pathol 2000; 20: 413–428.Google Scholar
Kleihues, P, Soylemezoglu, F, Schauble, B, Scheithauer, BW, Burger, PC. Histopathology, classification, and grading of gliomas. Glia 1995; 15: 211–221.CrossRefGoogle ScholarPubMed
Kleihues, P, Ohgaki, H.Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1999; 1: 44–51.CrossRefGoogle ScholarPubMed
Kleihues, P, Cavanee, P. WHO Classification of Tumors: Pathology and Genetic of Tumours of the Nervous System. Lyon: IARC Press, 2000.Google Scholar
Ringertz, J. Grading of gliomas. Acta Pathol Microbiol Scand 1950; 27: 51–64.CrossRefGoogle ScholarPubMed
Coons, SW, Johnson, PC, Scheithauer, BW, Yates, AJ, Pearl, DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 1997; 79: 1381–1393.3.0.CO;2-W>CrossRefGoogle Scholar
Gilles, FH, Brown, WD, Leviton, A, et al. Limitations of the World Health Organization classification of childhood supratentorial astrocytic tumors. Children Brain Tumor Consortium. Cancer 2000; 88: 1477–1483.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Jackson, RJ, Fuller, GN, Abi-Said, D, et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncology 2001; 3: 193–200.CrossRefGoogle ScholarPubMed
Law, M, Young, RJ, Babb, JS, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008; 247: 490–498.CrossRefGoogle Scholar
Danchaivijitr, N, Waldman, AD, Tozer, DJ, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation?Radiology 2008; 247: 170–178.CrossRefGoogle ScholarPubMed
Law, M, Oh, S, Babb, JS, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging – prediction of patient clinical response. Radiology 2006; 238: 658–667.CrossRefGoogle ScholarPubMed
Knopp, EA, Cha, S, Johnson, G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211: 791–798.CrossRefGoogle ScholarPubMed
Yang, D, Korogi, Y, Sugahara, T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 2002; 44: 656–666.CrossRefGoogle ScholarPubMed
Lupo, JM, Cha, S, Chang, SM, Nelson, SJ. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005; 26: 1446–1454.Google ScholarPubMed
Jackson, A, Kassner, A, Annesley-Williams, D, et al. Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 2002; 23: 7–14.Google ScholarPubMed
Martin, AJ, Liu, H, Hall, WA, Truwit, CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol 2001; 22: 959–968.Google ScholarPubMed
Kelly, PJ, Daumas-Duport, C, Kispert, DB, et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987; 66: 865–874.CrossRefGoogle ScholarPubMed
Essig, M, Waschkies, M, Wenz, F, et al. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 2003; 228: 193–199.CrossRefGoogle Scholar
Ball, WS, Holland, SK. Perfusion imaging in the pediatric patient. Magn Reson Imaging Clin N Am 2001; 9: 207–230.Google ScholarPubMed
Aragao, MF, Pelaez, M, Devilliers, L, et al. Magnetic resonance imaging, spectroscopy, diffusion and perfusion in pilocytic astrocytoma: a low grade tumor which can sometimes simulate features of a malignant glioma. In Proceedings of the Annual Meeting of the American Society of Neuroradiology, New Oneans, 2008, p. 70.Google Scholar
Grand, SD, Kremer, S, Tropres, IM, et al. Perfusion-sensitive MRI of pilocytic astrocytomas: initial results. Neuroradiology 2007; 49: 545–550.CrossRefGoogle ScholarPubMed
Yang, S, Wetzel, S, Law, M, Zagzag, D, Cha, S. Dynamic contrast-enhanced T2*-weighted MR imaging of gliomatosis cerebri. AJNR Am J Neuroradiol 2002; 23: 350–355.Google ScholarPubMed
Fuss, M, Wenz, F, Scholdei, R, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol, Biol, Phys 2000; 48: 53–58.CrossRefGoogle ScholarPubMed
Wenz, F, Rempp, K, Hess, T, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. Am J Roentgenol 1996; 166: 187–193.CrossRefGoogle ScholarPubMed
Brandsma, D, Stalpers, L, Taal, W, Sminia, P, van den Bent, MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 2008; 9: 453–461.CrossRefGoogle ScholarPubMed
Chamberlain, MC. Pseudoprogression in glioblastoma. J Clin Oncol 2008; 26: 4359.CrossRefGoogle ScholarPubMed
Brandes, AA, Franceschi, E, Tosoni, A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008; 26: 2192–2197.CrossRefGoogle ScholarPubMed
Cha, S, Knopp, EA, Johnson, G, et al. Dynamic, contrast-enhanced T2*-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. Am J Neuroradiol 2000; 21: 881–890.Google ScholarPubMed
Law, M, Chheang, S, Babb, J, et al. Comparing cerebral blood volume measurements with tumor size measurements following anti-angiogenesis therapy with bevacizumab (Avastin) in recurrent human gliomas: a preliminary study. In Proceedings of the Annual Meeting of the American Society of Neuroradiology, New Orleans, 2008.Google Scholar
Cha, S, Tihan, T, Crawford, F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2005; 26: 266–273.Google ScholarPubMed
Lev, MH, Ozsunar, Y, Henson, JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. [Corrected]AJNR Am J Neuroradiol 2004; 25: 214–221.Google Scholar
Engelhard, HH, Stelea, A, Cochran, EJ.Oligodendroglioma: pathology and molecular biology. Surg Neurol 2002; 58: 111–117; discussion 117.CrossRefGoogle ScholarPubMed
Watanabe, T, Nakamura, M, Kros, JM, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol (Berl) 2002; 103: 267–275.CrossRefGoogle ScholarPubMed
Jager, HR, Waldman, AD, Benton, C, Fox, N, Rees, J. Differential chemosensitivity of tumor components in a malignant oligodendroglioma: assessment with diffusion-weighted, perfusion-weighted, and serial volumetric MR imaging. AJNR Am J Neuroradiol 2005; 26: 274–278.Google Scholar
Bauman, GS, Ino, Y, Ueki, K, et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 2000; 48: 825–830.CrossRefGoogle ScholarPubMed
Buckner, JC.Factors influencing survival in high-grade gliomas. Semin Oncol 2003; 30(Suppl 19): 10–14.CrossRefGoogle ScholarPubMed
Cairncross, J, Ueki, K, Zlatescu, M, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–1479.CrossRefGoogle ScholarPubMed
Law, M, Brodsky, JE, Babb, J, et al. High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: preliminary results of molecular studies in gliomas with elevated perfusion. J Magn Reson Imaging 2007; 25: 1113–1119.CrossRefGoogle Scholar
Jenkinson, MD, Smith, TS, Joyce, KA, et al. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 2006; 48: 703–713.CrossRefGoogle ScholarPubMed
Whitmore, RG, Krejza, J, Kapoor, GS, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg 2007; 107: 600–609.CrossRefGoogle ScholarPubMed
Law, M, Brodsky, J, Babb, J, et al. Correlating increased cerebral blood volume measurements in human gliomas with 1p and 19q molecular deletions. J Magn Reson Imaging 2006; 58: 1099–1107.Google Scholar
Law, M, Meltzer, DE, Wetzel, SG, et al. Conventional MR imaging with simultaneous measurements of cerebral blood volume and vascular permeability in ganglioglioma. Magn Reson Imaging 2004; 22: 599–606.CrossRefGoogle ScholarPubMed
Bowles, AP, Pantazis, CG, Allen, MB, Martinez, J, Allsbrook, WC. Ganglioglioma, a malignant tumor? Correlation with flow deoxyribonucleic acid cytometric analysis. Neurosurgery 1988; 23: 376–381.CrossRefGoogle ScholarPubMed
Hart, MN, Earle, KM. Primitive neuroectodermal tumors of the brain in children. Cancer 1973; 32: 890–897.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Law, M, Kazmi, K, Wetzel, S, et al. Dynamic susceptibility contrast-enhanced perfusion and conventional MR imaging findings for adult patients with cerebral primitive neuroectodermal tumors. AJNR Am J Neuroradiol 2004; 25: 997–1005.Google ScholarPubMed
Hartmann, M, Heiland, S, Harting, I, et al. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 2003; 338: 119–122.CrossRefGoogle ScholarPubMed
Law, M, Teicher, N, Zagzag, D, Knopp, EA.Dynamic contrast enhanced perfusion MRI in mycosis fungoides. J Mag Res 2003; 18: 364–367.CrossRefGoogle ScholarPubMed
Sugahara, T, Korogi, Y, Shigematsu, Y, et al. Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 1999; 23: 232–237.CrossRefGoogle ScholarPubMed
Berger, MS. Perfusion MR and the evaluation of meningiomas: is it important surgically?AJNR Am J Neuroradiol 2003; 24: 1499–1500.Google ScholarPubMed
Uematsu, H, Maeda, M, Sadato, N, et al. Vascular permeability: quantitative measurement with double-echo dynamic MR imaging: theory and clinical application. Radiology 2000; 214: 912–917.CrossRefGoogle ScholarPubMed
Kothary, N, Law, M, Cha, S, Zagzag, D. Conventional and perfusion MR imaging of parafalcine chondrosarcoma. AJNR Am J Neuroradiol 2003; 24: 245–248.Google ScholarPubMed
Burger, PC, Vogel, FS, Green, SB, Strike, TA.Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer 1985; 56: 1106–1111.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Bulakbasi, N, Kocaoglu, M, Farzaliyev, A, et al. Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 2005; 26: 2187–2199.Google ScholarPubMed
Law, M, Cha, S, Knopp, EA, et al. High-grade gliomas and solitary metastases: differentiation by using perfusion and Proton Spectroscopic MR Imaging. Radiology 2002; 222: 715–721.CrossRefGoogle ScholarPubMed
Cha, S, Pierce, S, Knopp, EA, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 2001; 22: 1109–1116.Google Scholar
Gupta, RK, Vatsal, DK, Husain, N, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR Am J Neuroradiol 2001; 22: 1503–1509.Google ScholarPubMed
Gupta, RK, Roy, R, Dev, R, et al. Finger printing of Mycobacterium tuberculosis in patients with intracranial tuberculomas by using in vivo, ex vivo, and in vitro magnetic resonance spectroscopy. Magn Res Med 1996; 36: 829–833.CrossRefGoogle ScholarPubMed
Haris, M, Gupta, RK, Singh, A, et al. Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 2008; 50: 531–540.CrossRefGoogle ScholarPubMed
Gupta, RK, Haris, M, Husain, N, et al. Relative cerebral blood volume is a measure of angiogenesis in brain tuberculoma and its therapeutic implications. In Proceedings of the 14th Annual Meeting of the International Society for Mag Reson MedSeattle, 2006, p. 181.Google Scholar
Law, M, Saindane, AM, Ge, Y, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 2004; 231: 645–652.CrossRefGoogle ScholarPubMed
Graham, ML, Herndon, JE, Casey, JR, II, et al. High-dose chemotherapy with autologous stem-cell rescue in patients with recurrent and high-risk pediatric brain tumors. J Clin Oncol 1997; 15: 1814–1823.CrossRefGoogle ScholarPubMed
Pivawer, G, Law, M, Zagzag, D.Perfusion MR imaging and proton MR spectroscopic imaging in differentiating necrotizing cerebritis from glioblastoma multiforme. Magn Reson Imaging 2007; 25: 238–243.CrossRefGoogle ScholarPubMed
Morgenstern, LB, Frankowski, RF.Brain tumor masquerading as stroke. J Neurooncol 1999; 44: 47–52.CrossRefGoogle ScholarPubMed
Jiang, Q, Ewing, JR, Ding, GL, et al. Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI. J Cereb Blood Flow Metab 2005; 25: 583–592.CrossRefGoogle ScholarPubMed
Holodny, AI, Ollenschlager, M.Diffusion imaging in brain tumors. Neuroimaging Clin N Am 2002; 12: 107–24.CrossRefGoogle ScholarPubMed
Sorensen, AG, Copen, WA, ostergaard, L, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blod volume, relalative cerebral blood flow, and mean transit time. Radiology 1999; 210: 519–527.CrossRefGoogle Scholar
Al-Okaili, RN, Krejza, J, Woo, JH, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy – initial experience. Radiology 2007; 243: 539–550.CrossRefGoogle ScholarPubMed
Law, M, Young, R, Babb, J, Pollack, E, Johnson, G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol 2007; 28: 761–766.Google ScholarPubMed
Dev, R, Gupta, RK, Poptani, H, et al. Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses. Neurosurgery 1998; 42: 37–43.CrossRefGoogle Scholar
Gaa, J, Warach, S, Wen, P, et al. Noninvasive perfusion imaging of human brain tumors with EPISTAR. Eur Radiol 1996; 6: 518–522.CrossRefGoogle ScholarPubMed
Silva, AC, Kim, SG, Garwood, M.Imaging blood flow in brain tumors using arterial spin labelling. Magn Res Med 2000; 44: 169–173.3.0.CO;2-U>CrossRefGoogle Scholar
Warmuth, C, Gunther, M, Zimmer, C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003; 228: 523–532.CrossRefGoogle ScholarPubMed
Wolf, RL, Wang, J, Wang, S, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging 2005; 22: 475–482.CrossRefGoogle ScholarPubMed
Akella, NS, Twieg, DB, Mikkelsen, T, et al. Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 2004; 20: 913–922.CrossRefGoogle ScholarPubMed
Wetzel, SG, Cha, S, Johnson, G, et al. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 2002; 224: 797–803.CrossRefGoogle ScholarPubMed
Caseiras, GB, Thornton, JS, Yousry, T, et al. Inclusion or exclusion of intratumoral vessels in relative cerebral blood volume characterization in low-grade gliomas: does it make a difference?AJNR Am J Neuroradiol 2008; 29: 1140–1141.CrossRefGoogle ScholarPubMed
de Gramont, A, van Cutsem, E. Investigating the potential of bevacizumab in other indications: metastatic renal cell, non-small cell lung, pancreatic and breast cancer. Oncology 2005; 69(Suppl 3): 46–56.CrossRefGoogle ScholarPubMed
Pope, WB, Lai, A, Nghiemphu, P, Mischel, P, Cloughesy, TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006; 66: 1258–1260.CrossRefGoogle ScholarPubMed
Lu, H, Law, M, Johnson, G, et al. Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 2005; 54: 1403–1411.CrossRefGoogle ScholarPubMed
Lu, H, Pollack, E, Young, R, et al. Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. AJNR Am J Neuroradiol 2008; 29: 373–378.CrossRefGoogle ScholarPubMed
Lu, H, Golay, X, Pekar, JJ, van Zijl, PC. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003; 50: 263–274.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×