Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T11:16:48.649Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2012

Davide Bigoni
Affiliation:
Università degli Studi di Trento, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Nonlinear Solid Mechanics
Bifurcation Theory and Material Instability
, pp. 507 - 526
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, G.G. (1995). Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. J. Appl. Mech. 62, 867–72.Google Scholar
Altenbach, H., and Tushtev, K. (2001). A new static failure criterion for isotropic polymers. Mech. Compos. Mater. 37, 475–82.Google Scholar
An, L., and Schaeffer, D. (1990). The flutter instability in granular flow. J. Mech. Phys. Solids 40, 683–98.Google Scholar
Anand, L., and Spitzig, W. A. (1980). Initiation of localized shear bands in plane strain. J. Mech. Phys. Solids 28, 113–28.Google Scholar
Anand, L., and Spitzig, W. A. (1982). Shear-band orientations in plane strain. Acta Metall. 30, 553–61.Google Scholar
Apostol, T. M. (1969). Calculus, Vols. I and II. Wiley, New York.
Argyris, J.H., Faust, G., Szimmat, J., Warnke, P., and Willam, K. (1974). Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl. Eng. Des. 28, 42–75.Google Scholar
Aron, M., and Wang, Y. (1995a). Remarks concerning the flexure of a compressible nonlinearly elastic rectangular block. J. Elasticity 40, 99–106.Google Scholar
Aron, M., and Wang, Y. (1995b). On deformations with constant modified stretches describing the bending of rectangular blocks. Q. J. Mech. Appl. Math. 48, 375–87.Google Scholar
Auricchio, F., Brezzi, F., and Lovadina, C. (2004). Mixed finite element methods. In Encyclopedia of Computational Mechanics, edited by E., Stein, R., de Borst, and T. J. R., Hughes, Vol. 1: Fundamentals. Wiley, New York.
Bai, Y. L., and Dodd, B. (1992). Adiabatic Shear Localisation: Occurrence, Theories and Applications. Pergamon, Oxford, UK.
Baker, A. L. (1890). Elliptic Function. Wiley, New York.
Ball, J. M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337–403.Google Scholar
Bardet, J. P. (1990). Lode dependences for isotropic pressure-sensitive elastoplastic materials. J. Appl. Mech. 57, 498–06.Google Scholar
Bardi, F. C., Yun, H. D., and Kyriakides, S. (2003). On the axisymmetric progressing crushing of circular tubes under axial compression. Int. J. Solids Structures 40, 3137–55.Google Scholar
Bassani, J. L., Durban, D., and Hutchinson, J.W. (1980). Bifurcation at a spherical hole in an infinite elastoplastic medium. Math. Proc. Camb. Phil. Soc. 87, 339–56.Google Scholar
Batdorf, S. B., and Budianski, B. (1949). A mathematical theory of plasticity based on concept of slip. NACA Tech Note TN 1871.
Bazant, Z. P., and Mazars, J. (1990). France–U.S. workshop on strain localization and size effect due to cracking and damage. J. Eng. Mech. ASCE 116, 1412–24.Google Scholar
Beatty, M. F. (1987). Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1734.Google Scholar
Beatty, M. F. (2001). Hyperelastic Bell materials: Retrospection, experiment, theory. In Non-linear Elasicity: Theory and Applications, edited by Y. B., Fu and R.W., Ogden. Cambridge University Press, Cambridge, UK.
Beck, M. (1952). Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes. Z. Angew. Math. Phys. 3, 225–8.Google Scholar
Bell, J.F. (1973). The experimental foundations of solid mechanics. In Encyclopedia of Physics, edited by C., Truesdell, Vol. VIa/1. Springer-Verlag, Berlin.
Beltrami, E. (1885). Sulle condizioni di resistenza dei corpi elastici. Rend. Ist. Lomb. XVIII, 704–14.Google Scholar
Benallal, A., and Bigoni, D. (2004). Effects of temperature and thermo-mechanical couplings on material instabilities and strain localization of inelastic materials. J. Mech. Phys. Solids 52, 725–53.Google Scholar
Benallal, A., Billardon, R., and Geymonat, G. (1988). Some mathematical aspects of the damage softening problem. In Cracking and Damage, edited by J., Mazar and Z. P., Bazant, Vol. 1, pp. 247–58.
Benallal, A., Billardon, R., and Geymonat, G. (1990). Phènoménes de localisation á la frontière d'un solide. C. R. Acad. Sci., Paris 310, 670–84.Google Scholar
Benallal, A., Billardon, R., and Geymonat, G. (1993). Bifurcation and localization in rate-independent materials: some general considerations. In CISM Lecture Notes No. 327, pp. 1–47. Springer, Berlin.
Bernstein, B. (1960). Hypo-elasticity and elasticity, Arch. Rat. Mech. Anal. 6, 89–104.Google Scholar
Bernstein, B., and Toupin, R.A. (1962). Some properties of the Hessian matrix of a strictly convex function. J. für reine und angewndte Mathematik 210, 65–72.Google Scholar
Bertoldi, K., Bigoni, D., and Drugan, W. J. (2007a). A discrete-fibers model for bridged cracks and reinforced elliptical voids. J. Mech. Phys. Solids 55, 1016–35.Google Scholar
Bertoldi, K., Bigoni, D., and Drugan, W. J. (2007b). Structural interfaces in linear elasticity. Part I. Nonlocality and gradient approximations. J. Mech. Phys. Solids 55, 1–34.Google Scholar
Bertoldi, K., Bigoni, D., and Drugan, W. J. (2007c). Structural interfaces in linear elasticity. Part II. Effective properties and neutrality. J. Mech. Phys. Solids 55, 35–63.Google Scholar
Bertoldi, K., Brun, M., and Bigoni, D. (2005). A new boundary element technique without domain integrals for elastoplastic solids. Int. J. Numer. Meth. Eng. 64, 877–906.Google Scholar
Bigoni, D. (1995). On flutter instability in elastoplastic constitutive models. Int. J. Solids Structures 32, 3167–89.Google Scholar
Bigoni, D. (1996). On smooth bifurcations in non-associative elastoplasticity. J. Mech. Phys. Solids 44, 1337–51.Google Scholar
Bigoni, D. (2000). Bifurcation and instability of non-associative elastoplastic solids. In Material Instabilities in Elastic and Plastic Solids, edited by H., Petryk, CISM Lecture Notes No. 414, pp. 1–52. Springer, Berlin.
Bigoni, D., and Capuani, D. (2002). Green's function for incremental nonlinear elasticity: Shear bands and boundary integral formulation. J. Mech. Phys. Solids 50, 471–500.Google Scholar
Bigoni, D., and Capuani, D. (2005). Time-harmonic Green's function and boundary integral formulation for incremental nonlinear elasticity: dynamics ofwave patterns and shear bands. J. Mech. Phys. Solids 53, 1163–87.Google Scholar
Bigoni, D., Capuani, D., Bonetti, P., and Colli, S. (2007). Anovel boundary element approach to time-harmonic dynamics of incremental non-linear elasticity: the role of pre-stress on structural vibrations and dynamic shear banding. Comput. Meth. Appl. Mech. Engrg. 196, 4222–49.Google Scholar
Bigoni, D., and Dal Corso, F. (2008). The unrestrainable growth of a shear band in a prestressed material. Proc. R. Soc. Lond.A 464, 2365–90.Google Scholar
Bigoni, D., Dal Corso, F., and Gei, M. (2008). The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II: Implications on shear band nucleation, growth and energy release rate. J. Mech. Phys. Solids 56, 839–57.Google Scholar
Bigoni, D., and Gei, M. (2001). Bifurcations of a coated, elastic cylinder. Int. J. Solids Structures 38, 5117–48.Google Scholar
Bigoni, D., Gei, M., and Movchan, A. B. (2008). Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structuralmodels derived from long-wave asymptotics. J. Mech. Phys. Solids 56, 2494–2520.Google Scholar
Bigoni, D., and Hueckel, T. (1990). A note on strain localization for a class of non-associative plasticity rules. Ingenieur-Archiv 60, 491–9.Google Scholar
Bigoni, D., and Hueckel, T. (1991a). Uniqueness and localization. I. Associative and non-associative elastoplasticity. Int. J. Solids Structures 28, 197–213.Google Scholar
Bigoni, D., and Hueckel, T. (1991b). Uniqueness and localization. II. Coupled elastoplasticity. Int. J. Solids Structures 28, 215–24.Google Scholar
Bigoni, D., and Laudiero, F. (1989). The quasi-static finite cavity expansion in a non-standard elastoplastic medium. Int. J. Mech. Sci. 31, 825–37.Google Scholar
Bigoni, D., and Loret, B. (1999). Effects of elastic anisotropy on strain localization and flutter instability in plastic solids. J. Mech. Phys. Solids 47, 1409–36.Google Scholar
Bigoni, D., Loret, B., and Radi, E. (2000). Localization of deformation in plane elastic-plastic solids with anisotropic elasticity. J. Mech. Phys. Solids 48, 1441–66.Google Scholar
Bigoni, D., Misseroni, D., Noselli, G., and Zaccaria, D. (2012). Effects of the constraint's curvature on structural instability: tensile buckling and multiple bifurcations. Proc. Roy. Soc.A doi: 10.1098/rspa.2011.0732.
Bigoni, D., and Movchan, A. B. (2002). Statics and dynamics of structural interfaces in elasticity. Int. J. Solids Structures 39, 4843–65.Google Scholar
Bigoni, D., and Noselli, G. (2010a). Localized stress percolation through dry masonry walls. Part I. Experiments. Eur. J. Mechanics-A/Solids 29, 291–8.Google Scholar
Bigoni, D., and Noselli, G. (2010b). Localized stress percolation through dry masonry walls. Part II. Modelling. Eur. J. Mechanics-A/Solids 29, 299–307.Google Scholar
Bigoni, D., and Noselli, G. (2011). The experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59, 2208–26.Google Scholar
Bigoni, D., Ortiz, M., and Needleman, A. (1997). Effect of interfacial compliance on bifurcation of a layer bonded to a substrate. Int. J. Solids Structures 34, 4305–26.Google Scholar
Bigoni, D., and Petryk, H. (2002). A note on divergence and flutter instabilities in elastic-plastic materials. Int. J. Solids Structures 39, 911–26.Google Scholar
Bigoni, D., and Piccolroaz, A. (2004). Yield criteria for quasi-brittle and frictional materials. Int. J. Solids Structures 41, 2855–78.Google Scholar
Bigoni, D., and Radi, E. (1993). Mode I crack propagation in elastic-plastic pressure-sensitive materials. Int. J. Solids Structures 30, 899–919.Google Scholar
Bigoni, D., Serkov, S. K., Movchan, A. B., and Valentini, M. (1998). Asymptotic models of dilute composites with imperfectly bonded inclusions. Int. J. Solids Structures 35, 3239–58.Google Scholar
Bigoni, D., and Willis, J. R. (1994). A dynamical interpretation of flutter instability. In Localisation and Bifurcation of Rocks and Soils, edited by R., Chambon, J., Desrues, and I., Vardoulakis, A.A. Balkema Scientific Publishers, Rotterdam.
Bigoni, D., and Zaccaria, D. (1992a). Strong ellipticity of comparison solids in elastoplasticity with volumetric non-associativity. Int. J. Solids Structures 29, 2123–36.Google Scholar
Bigoni, D., and Zaccaria, D. (1992b). Loss of strong ellipticity in non-associative elastoplasticity. J. Mech. Phys. Solids 40, 1313–31.Google Scholar
Bigoni, D., and Zaccaria, D. (1993). On strain localization analysis of elastoplastic materials at finite strain. Int. J. Plasticity 9, 21–33.Google Scholar
Bigoni, D., and Zaccaria, D. (1994a). On eigenvalues of the acoustic tensor in elastoplasticity. Eur. J. Mechanics-A]Solids 13, 621–38.Google Scholar
Bigoni, D., and Zaccaria, D. (1994b). Eigenvalues of the elastoplastic constitutive operator. ZAMM 74, 355–7.Google Scholar
Biot, M. A. (1937). Bending of an infinite beam on an elastic foundation. J. Appl. Mech. 59, A1–7.Google Scholar
Biot, M. A. (1965). Mechanics of Incremental Deformations. Wiley, New York.
Bishop, J. F. W., and Hill, R. (1951). A theory of the plastic distorsion of a polycrystalline aggregate under combined stresses, Phil. Mag. 42, 414–27.Google Scholar
Bodig, J., and Jayne, B. A. (1982). Mechanics of Wood and Wood Composites. Van Nostrand, New York.
Boehler, J. P. (1987). Introduction to the invariant formulation of anisotropic constitutive equations. In Applications of Tensor Functions in Solid Mechanics, CISM Course No. 292.
Boehler, J. P., and Willis, J. R. (1991). An analysis of localization in highly pre-deformed sheet steel. Unpublished.
Bonet, J., and Burton, A. J. (1998). A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Meth. Appl. Mech. Engrg. 162, 151–64.Google Scholar
Boyd, S., and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cambridge, UK.
Bowen, R. M., and Wang, C. C. (1976). Introduction to Vectors and Tensors. Plenum Press, New York.
Brannon, R.M., and Drugan, W. J. (1993). Influence of non-classical elastic-plastic constitutive features on shock wave existence and spectral solutions. J. Mech. Phys. Solids 41, 297–330.Google Scholar
Braun, O.M., and Kivshar, Y. S. (1998). Nonlinear dynamics of the Frenkel-Kontorovamodel. Physics Reports 306, 1–108.Google Scholar
Broberg, K. B. (1999). Cracks and Fracture. Academic Press, San Diego, CA.
Bruhns, O., and Raniecki, B. (1982). Ein Schrankenverfahren bei Verzweigungsproblemen inelastischer Formänderungen. ZAMM 62, T111–13.Google Scholar
Bruhns, O., Xiao, H., and Meyers, A. (2002). Finite bending of a rectangular block of an elastic Hencky material. J. Elasticity 66, 237–56.Google Scholar
Bruhns, O., Gupta, N. K., Meyers, A. T. M., and Xiao, H. (2003). Bending of an elastoplastic strip with isotropic and kinematic hardening. Arch. Appl. Mech. 72, 759–78.Google Scholar
Brun, M., Capuani, D., and Bigoni, D. (2003a). A boundary element technique for incremental, nonlinear elasticity. Part I. Formulation. Comput. Meth. Appl. Mech. Engrg. 192, 2461–79.Google Scholar
Brun, M., Bigoni, D., and Capuani, D. (2003 b). Aboundary element technique for incremental, nonlinear elasticity. Part II. Bifurcation and shear bands. Comput. Meth. Appl. Mech. Engrg. 192, 2481–99.Google Scholar
Byrd, P. F., and Friedman, M. D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists. Springer-Verlag, Berlin.
Capurso, M. (1972). On the extremal properties of the solution in dynamics of rigid-viscoplastic bodies allowing for large displacement effects. Meccanica 7, 236–47.Google Scholar
Capurso, M. (1979). Extremum theorems for the solution of the rate problemin elastic-plastic fracturing structures. J. Struct. Mech. 7, 411–34.Google Scholar
Cattaneo, C. (1946). Su un teorema fondamentale nella teoria delle onde di discontinuità. Atti Acad. Naz. Lincei (parts I and II). I, 67–72, 728–34.Google Scholar
Chadwick, P. (1976). Continuum Mechanics. Wiley, New York.
Chadwick, P., and Powdrill, B. (1965). Singular surfaces in linear thermoelasticity. Int. J. Engng. Sci. 3, 561–95.Google Scholar
Chau, K. T. (1992). Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under axisymmetric tension and compression. Int. J. Solids Structures 29, 801–24.Google Scholar
Chau, K. T. (1995). Buckling, barrelling, and surface instabilities of a finite, transversely isotropic circular cylinder. Q. Appl. Math. 53, 225–44.Google Scholar
Chau, K. T., and Choi, S. K. (1998). Bifurcations of thick-walled hollow cylinders of geomaterials under axisymmetric compression. Int. J. Numer. Anal. Meth. Geomech. 22, 903–19.Google Scholar
Chau, K. T., and Rudnicki, J. W. (1990). Bifurcations of compressible pressure-sensitive materials in plane strain tension and compression. J. Mech. Phys. Solids 38, 875–98.Google Scholar
Chen, P. (1973). Growth and decay of waves in solids. In Encyclopedia of Physics, edited by C., Truesdell, Vol. VIa/3. Springer-Verlag, Berlin.
Chen, W. F., and Saleeb, A. F. (1982). Constitutive Equations for Engineering Materials: Elasticity and Modelling. Wiley, New York.
Cheng, S. Y., Ariaratnam, S. T., and Dubey, R. N. (1971). Axisymmetric bifurcation in an elastic-plastic cylinder under axial load and lateral hydrostatic pressure. Q. Appl. Math. 29, 41–51.Google Scholar
Cheng, Y. S., and Lu, W. D. (1993). Uniqueness and bifurcation in elastic-plastic solids. Int. J. Solids Structures 30, 3073–84.Google Scholar
Christensen, R.M. (1997). Yield functions/failure criteria for isotropicmaterials. Proc. R. Soc. Lond. 453, 1473–91.
Christensen, R. M., Freeman, D. C., and DeTeresa, S. J. (2002). Failure criteria for isotropic materials, applications to low-density types. Int. J. Solids Structures 39, 973–82.Google Scholar
Christoffersen, J. (1991). Hyperelastic relations with isotropic rate forms appropriate for elastoplasticity. Eur. J. Mechanics-A/Solids 10, 91–9.Google Scholar
Christofferson, J., and Hutchinson, J.W. (1979). A class of phenomenological corner theories of plasticity. J. Mech. Phys. Solids 27, 465–87.Google Scholar
Ciarlet, P. G. (1988). Mathematical Elasticity. Vol. I Three-Dimensional Elasticity. North-Holland, Amsterdam.
Coffin, L. F., and Schenectady, N.Y. (1950). The flow and fracture of a brittle material. J. Appl. Mech. 17, 233–48.Google Scholar
Coker, E. G., and Filon, L. N. G. (1957). A Treatise on Photo-elasticity. Cambridge University Press, Cambridge, UK.
Coman, C. D., and Destrade, M. (2008). Asymptotic results for bifurcation in pure bending of rubber blocksQ. J. Mech. Appl. Math. 61, 395–414.Google Scholar
Courant, R., and Hilbert, D. (1962). Methods of Mathematical Physics, Vol. II. Wiley, New York.
Craciun, E. M., and Soós, E. (1998). Interaction of two unequal cracks in a prestressed fiber reinforced composite. Int. J. Fracture 94, 137–59.Google Scholar
Cristescu, N. D., Craciun, E. M., and Soós, E. (2004). Mechanics of Elastic Composites. Chapman & Hall/CRC, Boca Raton, FL.
Dafalias, Y. F. (1977). Il'iushin's postulate and resulting thermodynamic conditions on elastic-plastic coupling. Int. J. Solids Structures 13, 239–51.Google Scholar
Dal Corso, F., and Bigoni, D. (2009). The interactions between shear bands and rigid lamellar inclusions in a ductile metal matrix. Proc. R. Soc. Lond.A 465, 143–63.
Dal Corso, F., and Bigoni, D. (2010). Growth of slip surfaces and line inclusions along shear bands in a softening material. Int. J. Fracture 166, 225–37.Google Scholar
Dal Corso, F., Bigoni, D., and Gei, M. (2008). The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I. Full-field solution and asymptotics. J. Mech. Phys. Solids 56, 815–38.Google Scholar
Dally, J. W., and Riley, W. F. (1965). Experimental Stress Analysis. McGraw-Hill, New York.
Davies, P. J. (1991). Buckling and barrelling instabilities of nonlinearly elastic columns. Q. Appl. Math. 49, 407–26.Google Scholar
De Finetti, B. (1949). Sulle stratificazioni convesse. Ann. Mat. Pura Appl. 30, 173–83.Google Scholar
Den Hartog, J. P. (1952). Advanced Strength of Materials. McGraw-Hill, New York.
Deshpande, V. S., and Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–83.Google Scholar
Desrues, J., Chambon, R., Mokni, M., and Mazerolle, F. (1996). Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46, 529–46.Google Scholar
Desrues, J., and Hammad, W. (1989). Shear band dependency onmean stress level. In Numerical Methods for Localisation and Bifurcation of Granular Materials, edited by E., Dembicki, G., Gudheus, and Z., Sikora, pp. 57–67. Gdansk, Poland.
Desrues, J., Lanier, J., and Stutz, P. (1985). Localisation of the deformation in tests on sand sample. Eng. Fracture Mech. 21(4), 909–21.Google Scholar
Dieter, G. E. (1961). Mechanical Metallurgy. McGraw-Hill, New York.
Dougill, J. W. (1976). On stable progressively fracturing solids. Z. Angew. Math. Phys. 27, 423–37.Google Scholar
Dorris, J. F., and Nemat-Nasser, S. (1980). Instability of a layer on a half space. J. Appl. Mech. 47, 304–12.Google Scholar
Dowaikh, M. A., and Ogden, R. W. (1990). On surface waves and deformations in a pre-stressed incompressible elastic solids. IMA J. Appl. Math. 44, 261–84.Google Scholar
Dowaikh, M.A., and Ogden, R.W. (1991). Interfacial waves and deformations in pre-stressed elastic media. Proc. R. Soc. Lond.A 443, 313–28.Google Scholar
Drescher, A., Vardoulakis, I., and Han, C. (1990). A biaxial apparatus for testing soils. Geotech. Eng. J. ASTM 13, 226–34.Google Scholar
Drucker, D. C. (1953). Limit analysis of two and three dimensional soil mechanics problems. J. Mech. Phys. Solids 1, 217–26.Google Scholar
Drucker, D. C. (1956). On uniqueness in the theory of plasticity. Q. Appl. Math. XIV, 35–42.Google Scholar
Drucker, D. C. (1964). On the postulate of stability of material in the mechanics of continua. J. de Mécanique 3, 235–49.Google Scholar
Drucker, D. C. (1973). Plasticity theory, strength differential (SD) phenomenon and volume expansion in metals and plastics. Metall. Trans. 4, 667–73.Google Scholar
Drucker, D. C., and Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10, 157–65.Google Scholar
Drugan, W. J. (2007). Elastic composite materials having a negative stiffness phase can be stable. Phys. Rev. Lett. 98(055502), 1–4.Google Scholar
Dryburgh, G., and Ogden, R.W. (1999). Bifurcation of an elastic surface-coated incompressible isotropic elastic block subject to bending. Z. Angew. Math. Phys. 50, 822–38.Google Scholar
Eekelen, H.A.M. (1980). Isotropic yield surface in three dimensions for use in soilmechanics. Int. J. Numer. Anal. Meth. Geomech. 4, 89–101.Google Scholar
Ehelers, W. (1995). A single-surface yield function for geomaterials. Adv. Appl. Mech. 65, 246–59.Google Scholar
Ekeland, I., and Temam, R. (1976). Convex Analysis and Variational Problems. North-Holland, Amsterdam.
Elishakoff, I. (2005). Controversy associated with the so-called “follower force”: critical overview. Appl. Mech. Rev. 58, 117–42.Google Scholar
Engesser, F. (1889). Über die Knickfestigkeit gerader Stäbe. Z. Architek. Ing. 35, 455.Google Scholar
Ericksen, J. L. (1975). Equilibrium of bars. J. Elasticity 5, 191–201.Google Scholar
Everstine, G. C., and Pipkin, A. C. (1971). Stress channelling in transversely isotropic elastic composites. ZAMP 22, 825–34.Google Scholar
Faciu, C., and Suliciu, I. (1994). A Maxwellian model for pseudoelastic materials. Scripta Metall. et Mater. 31, 1399–404.Google Scholar
Feodosyev, V. I. (1977). Selected Problems and Questions in Strength of Materials. Mir Publisher, Moscow.
Finno, R. J., Harris, W. W., Mooney, M. A., and Viggiani, G. (1997). Shear bands in plane strain compression of loose sand. Géotechnique 47, 149–65.Google Scholar
Fosdick, R. L., and Shield, R. T. (1963). Small bending of a circular bar superposed on finite extension or compression. Arch. Rat. Mech. Anal. 12, 223–48.Google Scholar
Franceschini, G., Bigoni, D., Regitnig, P., and Holzapfel, G. A. (2006). Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54, 2592–2620.Google Scholar
Franchi, A., Genna, F., and Paterlini, F. (1990). Research note on quasi-convexity of the yield function and its relation to Drucker postulate. Int. J. Plasticity 6, 369–75.Google Scholar
Frocht, M. M. (1965). Photoelasticity. Wiley, London.
Fu, Y. B., and Zhang, Y. T. (2006). Continuum-mechanicalmodelling of kink-band formation in fibre-reinforced composites. Int. J. Solids Structures 43, 3306–23.Google Scholar
Gajo, A. (2003). Instability phenomena in sand samples. Ph.D. thesis, University of Bristol, Bristol, UK.Google Scholar
Gajo, A., and Bigoni, D. (2008). A model for stress and plastic strain induced nonlinear hyperelastic anisotropy in soils. Int. J. Numer. Anal. Meth. Geomech. 32, 833–61.Google Scholar
Gajo, A., Bigoni, D., and Muir Wood, D. (2004). Multiple shear band development and related instabilities in granular materials. J. Mech. Phys. Solids 52, 2683–2724.Google Scholar
Gajo, A., Muir Wood, D., and Bigoni, D. (2007). On certain critical material and testing characteristics affecting shear band development in sand. Géotechnique 57, 449–61.Google Scholar
Gei, M., Bigoni, D., and Guicciardi, S. (2004). Failure of silicon nitride under uniaxial compression at high temperature. Mech. Materials 36, 335–45.Google Scholar
Gel'fand, I. M., and Shilov, G. E. (1964). Generalized Functions, Vol. 1: Properties and Operations. Academic Press, New York.
Gent, A. N. (2005). Elastic instabilities in rubber. Int. J. Non-linear Mech. 40, 165–75.Google Scholar
Gent, A. N., and Cho, I. S., (1999). Surface instabilities in compressed or bent rubber blocksRubber Chem. Technol. 72, 253–62.Google Scholar
Gong, L., and Kyriakydes, S. (2005). Compressive response of open cell foams. Part II. Initiation and evolution of crushing. Int. J. Solids Structures 42, 1381–99.Google Scholar
Gough, G. S., Elam, C. F., and de Bruyne, N. A. (1940). The stabilisation of a thin sheet by a continuous supporting medium. J. R. Aero. Soc. 44, 12–13.Google Scholar
Goulbitsky, M., and Schaeffer, D. G. (1985). Singularities and Groups in Bifurcation Theory. Springer-Verlag, New York.
Green, A. E., and McInnis, B. C. (1967). Generalized hypoelasticity. Proc. Roy. Soc. Edinburgh A Math. Phys. Sci. 57, 220–30.Google Scholar
Green, A. E., and Zerna, W. (1968). Theoretical Elasticity, 2nd edn., Oxford University Press, Oxford, UK.
Gudehus, G. (1973). Elastoplastische Stoffgleichungen für trockenen Sand. Ingenieur-Archiv 42, 151–69.Google Scholar
Gudehus, G. (2004). A visco-hypoplastic constitutive relation for soft soils. Soils Found. 44, 11–25.Google Scholar
Gurtin, M.E. (1972). The linear theory of elasticity. In Flügge, S., ed., Encyclopedia of Physics, Vol. VIa/2, pp. 1–295. Berlin, Springer.
Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. Academic Press, New York.
Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media. Int. J. Engng. Mat. Tech. 99, 2–15.Google Scholar
Guz, A. N. (1999). Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies. Springer-Verlag, Berlin.
Hadamard, J. (1903). Lecons sur la Propagation des Ondes et les Équations de l'Hydrodynamique. Hermann, Paris.
Haigh, B. P. (1920). Elastic limit of a ductile metal. Engineering 109, 158–60.Google Scholar
Hallbäck, N., and Nilsson, F. (1994). Mixed-mode I/II fracture behaviour of an aluminium alloy. J. Mech. Phys. Solids 42, 1345–74.Google Scholar
Hall, E. O. (1970). Yield Point Phenomena in Metals and Alloys. Macmillan, London.
Harren, S., Lowe, T. C., Asaro, R. J., and Needleman, A. (1989). Analysis of large-strain shear in ratedependent face-centred cubic polycrystals: correlation of micro- and macromechanics. Phil. Trans. R. Soc.A 328, 443–500.Google Scholar
Haughton, D. M. (1999). Flexure and compression of incompressible elastic plates. Int. J. Engng. Sci. 37, 1693–708.Google Scholar
Haughton, D.M., and Ogden, R.W. (1979). Bifurcation of inflated circular cylinders of elastic material under axial loading. II. Exact theory for thick-walled tubes. J. Mech. Phys. Solids 27, 489–512.Google Scholar
Haughton, D. M., and Ogden, R. W. (1980). Bifurcation of finitely deformed rotating elastic cylinders. Q. J. Mech. Appl. Math. 33, 251–65.Google Scholar
Hayes, M. (1966). On the displacement boundary-value problem in linear elastostatics. Q. J. Mech. Appl. Math. 19, 151–5.Google Scholar
Hayes, M., and Rivlin, R. S. (1961a). Propagation of a plane wave in an isotropic elastic material subject to pure homogeneous deformation. Arch. Rat. Mech. Anal. 8, 15–22.Google Scholar
Hayes, M., and Rivlin, R. S. (1961b). Surface waves in deformed elastic materials. Arch. Rat. Mech. Anal. 8, 358–80.Google Scholar
Haythornthwaite, R. M. (1985). A family of smooth yield surfaces. Mec. Res. Commun. 12, 87–91.Google Scholar
Hencky, H. (1924). Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z. Angew. Math. Mechanik 4, 323–35.Google Scholar
Herrmann, G. (1971). Dynamics and stability of mechanical systems with follower forces. Techn. Rept. NASA CR-1782.
Herrmann, G., Nematnasser, S., and Prasad, S. N. (1966). Models demonstrating instability of nonconservative dynamical systems. Tech. Rept. No. 66-4, Str. Mech. Lab., Northwestern University.
Heyman, J. (1966). The stone skeleton. Int. J. Solids Structures 2, 249–79.Google Scholar
Hill, R. (1950a). The Mathematical Theory of Plasticity. Clarendon Press, Oxford.
Hill, R. (1950b). Inhomogeneous deformation of a plastic lamina in a compression test. Phil. Mag. 41, 733–44.Google Scholar
Hill, R. (1952). On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech. Phys. Solids 1, 19–30.Google Scholar
Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–49.Google Scholar
Hill, R. (1959). Some basic principles in themechanics of solidswithout a natural time. J. Mech. Phys. Solids 7, 209–25.Google Scholar
Hill, R. (1961). Discontinuity relations in mechanics of solids. In Progress in Solid Mechanics edited by I. N., Sneddon and R., Hill, Vol. II, pp. 247–76. Amsterdam, North-Holland.
Hill, R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16.Google Scholar
Hill, R. (1967a). Eigenmodal deformations in elastic/plastic continua. J. Mech. Phys. Solids 15, 371–86.Google Scholar
Hill, R. (1967b). On the classical constitutive laws for elastic/plastic solids. In Recent Progress in Applied Mechanics, The Folke Odkvist Volume, edited by B., Broberg, pp. 241–9. Almqvist & Wiksell, Stockholm.
Hill, R. (1967c). The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95.Google Scholar
Hill, R. (1968). On constitutive inequalities for simple materials. Part I. J. Mech. Phys. Solids 16, 229–42.Google Scholar
Hill, R. (1978). Aspects of invariance in solid mechanics. In Advances in Applied Mechanics, edited by C.-S., Yih, Vol. 18, pp. 1–75. Academic Press, New York.
Hill, R., and Hutchinson, J. W. (1975). Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids 23, 239–64.Google Scholar
Hill, R., and Rice, J. R. (1973). Elastic potentials and the structure of inelastic constitutive laws. SIAM J. Appl. Math. 25, 448–61.Google Scholar
Hill, R., and Sewell, M. J. (1960). A general theory of inelastic column failure. Part I. J. Mech. Phys. Solids 8, 105–11.Google Scholar
Hirth, J. P., and Lothe, J. (1968). Theory of Dislocations. Wiley, New York.
Hirth, J. P., and Cohen, M. (1970). On the strength-differential phenomenon in hardened steel. Metall. Materials Trans.B 1, 3–8.Google Scholar
Hoger, A. (1987). The stress conjugate to logarithmic strain. Int. J. Solids Structures 23, 1645–56.Google Scholar
Holzapfel, G.A. (2000). Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, Chichester, UK.
Hoek, E., and Brown, E. T. (1980). Underground Excavations in Rock. Institution of Mining and Metallurgy, London.
Hoque, E., and Tatsuoka, F. (2004). Effects of stress ratio on small-strain stiffness during triaxial shearing. Géotechnique 54, 429–39.Google Scholar
Horgan, C. O., and Polignone, D. A. (1995). Cavitation in nonlinearly elastic solids: a review. Appl. Mech. Rev. 48, 471–85.Google Scholar
van Hove, L. (1947). Sur l'extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Proc. Sect. Sci. K. Akad. van Wetenschappen 50, 18–23.Google Scholar
Huang, K., Hutchinson, J. W., and Tvergaard, V. (1991). Cavitation instabilities in elastic-plastic solids. J. Mech. Phys. Solids 39, 223–41.Google Scholar
Hudson, J. A., Brown, E. T., and Fairhurst, C. (1971). Shape of the complete stress-strain curve for rock. In Stability of Rock Slopes, Proceedings of the 13th Symposium on Rock Mechanics, edited by E. J., Cording, pp. 773–95. University of Illinois Press, Urbana.
Hueckel, T., (1975). On plastic flow of granular and rock-likematerials with variable elasticity moduli. Bull. Pol. Acad. Sci., Ser. Techn. 23, 405–14.Google Scholar
Hueckel, T. (1976). Coupling of elastic and plastic deformation of bulk solids. Meccanica 11, 227–35.Google Scholar
Hueckel, T., and Maier, G. (1977). Incremental boundary value problems in the presence of coupling of elastic and plastic deformations: a rock mechanics oriented theory. Int. J. Solids Structures 13, 1–15.Google Scholar
Hunt, G. W., Peletier, M. A., and Wadee, M. A. (2000). The Maxwell stability criterion in pseudo-energy models of kink banding. J. Struct. Geol. 22, 669–81.Google Scholar
Hutchinson, J.W. (1970). Elastic–plastic behaviour of polycrystalline metals and composites. Proc. R. Soc. Lond.A 319, 247–72.Google Scholar
Hutchinson, J.W. (1973). Post-bifurcation behavior in the plastic range. J. Mech. Phys. Solids 21, 163–90.Google Scholar
Hutchinson, J. W. (1974). Plastic buckling. Adv. Appl. Mech., 14, 67–144.Google Scholar
Hutchinson, J. W., and Koiter, W. T. (1970). Postbuckling theory. Appl. Mech. Rew. 23, 1353–66.Google Scholar
Hutchinson, J. W., and Miles, J. P. (1974). Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension. J. Mech. Phys. Solids 22, 61–71.Google Scholar
Hutchinson, J. W., and Neale, K. W. (1979). Finite strain J2-deformation theory. In Proceedings of the IUTAM Symposiumon Finite Elasticity, edited by D. E., Carlson and R. T., Shield, pp. 237–47. Martinus Nijhoff, The Hague.
Hutchinson, J.W., and Tvergaard, V. (1980). Surface instabilities on statically strained plastic solids. Int. J. Mech. Sci. 22, 339–54.Google Scholar
Hutchinson, J. W., and Tvergaard, V. (1981). Shear band formation in plane strain. Int. J. Solids Structures 17, 451–70.Google Scholar
Itskov, M., and Aksel, N. (2002). A closed-form representation for the derivative of non-symmetric tensor power series. Int. J. Solids Structures 39, 5963–78.Google Scholar
Johan, Z., Hughes, T.J.R., and Shakib, F. (1991). A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids. Comput. Meth. Appl. Mech. Engrg. 87, 281–304.Google Scholar
Jaumann, G. (1905). Grundlagen der Bewegungslehre. Springer, Berlin.
Kachanov, L.M. (1971). Foundations of the Theory of Plasticity. North-Holland, Amsterdam.
Kalish, D., and Rack, H. J. (1972). The strength differential in a maraging steel. Metall. Materials Trans.B 3, 2289–90.Google Scholar
Kardomateas, G. A. (1986). Fractographic observations in asymmetric and symmetric fully plastic crack growth. Scripta Metall. 20, 609–14.Google Scholar
Kardomateas, G.A. (2005). Wrinkling of wide sandwich panels/beams with orthotropic phases by an elasticity approach. J. Appl. Mech. 72, 818–25.Google Scholar
Kardomateas, G. A., and McClintock, F. A. (1989). Shear band characterization of mixed mode I and II fully plastic crack growth. Int. J. Fracture 40, 1–12.Google Scholar
Karam, G. N., and Gibson, L. J. (1995). Elastic buckling of cylindrical shells with elastic cores. Part 1. Analysis. Int. J. Solids Structures 32, 1259–83.Google Scholar
von Kármán, T. (1947). Discussion of ‘Inelastic column theory’. J. Areonaut. Sci. 14, 267–8.Google Scholar
Kearsley, E. A. (1986). Asymmetric stretching of a symmetrically loaded elastic sheet. Int. J. Solids Structures 22, 111–19.Google Scholar
Key, S. W., and Krieg, R. D. (1982). On the numerical implementation of inelastic time dependent and time independent finite strain constitutive equations in structural mechanics. Comput. Meth. Appl. Mech. Engrg. 33, 439–52.Google Scholar
Kellog, O. D. (1953). Foundations of potential theory. Dover, New York.
Kleiber, M. (1984). Numerical study on necking-type bifurcations in void-containing elastic-plastic material. Int. J. Solids Structures 20, 191–210.Google Scholar
Kleiber, M. (1986). On plastic localization and failure in plane strain and round void containing tensile bars. Int. J. Plasticity 2, 205–21.Google Scholar
Knops, R. J., and Wilkes, E.W. (1973). Theory of elastic stability. In Encyclopedia of Physics, edited by S., Flügge, Vol. IVa/3. Springer-Verlag, Berlin.
Koiter, W. T. (1960). General theorems of elastic-plastic solids. Prog. Solid Mech. 165, 221.Google Scholar
Koiter, W. T. (1996). Unrealistic follower forces. J. Sound Vibration 194, 636–8.Google Scholar
Kuznetsov, V. V., and Levyakov, S. V. (2002). Complete solution of the stability problem for elastica of Euler's column. Int. J. Non-Linear Mech. 37, 1003–9.Google Scholar
Kyriakides, S., and Corona, E. (2007). Mechanics of Offshore Pipelines. Vol. 1: Buckling and Collapse. Elsevier, Amsterdam.
Lade, P. V. (1997). Modelling the strengths of engineering materials in three dimensions. Mech. Cohes. Frict. Mat. 2, 339–56.Google Scholar
Ladyzhenskaya, O. A. (1963). The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York.
Lakes, R. S. (2001). Extreme damping in compliant compositeswith a negative-stiffness phase. Phil. Mag. Lett. 81, 95–100.Google Scholar
Lamb, H. (1928). Statics. Cambridge University Press, Cambridge, UK.
Laroussi, M., Sab, K., and Alaoui, A. (2002). Foammechanics: nonlinear response of an elastic 3D-periodic microstructure. Int. J. Solids Structures 39, 3599–623.Google Scholar
Lebedev, N. N. (1965). Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs, NJ.
Lee, E. H. (1969). Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6.Google Scholar
Lekhnitskii, S.G. (1981). Theory of Elasticity of an Anisotropic Body. Mir Publisher, Moscow.
Lemaitre, J., and Chaboche, J. L. (1985). Mechanics of Solid Materials. Cambridge University Press, Cambridge, UK.
Levyakov, S. V., and Kuznetsov, V. V. (2010). Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211, 73–87.Google Scholar
Lin, F.-B., and Bazant, Z. (1986). Convexity of smooth yield surface of frictional material. J. Eng. Math. 112, 1259–62.Google Scholar
Lode, W. (1926). Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel. Z. Physik. 36, 913–39.Google Scholar
Lorang, X., Foy-Margiocchi, F., Nguyen, Q. S., and Gautier, P. E. (2006). TGV disc brake squeal. J. Sound Vibr. 293, 735–46.Google Scholar
Loret, B. (1992). Does deviation from deviatoric associativity lead to the onset of flutter instability?J. Mech. Phys. Solids 40, 1363–75.Google Scholar
Loret, B., and Harireche, O. (1991). Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media. J. Mech. Phys. Solids 39, 569–606.Google Scholar
Loret, B., Martins, J. A. C., and Simões, F. M. F. (1995). Surface boundary conditions trigger flutter instability in non-associative elastic-plastic solids. Int. J. Solids Structures 32, 2155–90.Google Scholar
Loret, B., Prevost, J. H., and Harireche, O. (1990). Loss of hyperbolicity in elastic-plastic solids with deviatoric associativity. Eur. J. Mechanics-A/Solids 9, 225–31.Google Scholar
Loret, B., Simões, F. M. F., and Martins, J. A. C. (1997). Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porousmedia. Int. J. Solids Structures 34, 1583–1608.Google Scholar
Loret, B., Simões, F.M.F., and Martins, J.A.C. (2000). Flutter instability and ill-posedness in solids and fluid-saturated porousmedia. In Material Instabilities in Elastic and Plastic Solids, CISM Lecture Notes No. 414, edited H., Petryk, pp. 109–207. Springer-Verlag, New York.
Love, A. E. H. (1927). A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge, UK.
Lubliner, J. (1990). Plasticity Theory. Macmillan, London.
Lurie, A. I. (2005). Theory of Elasticity. Springer-Verlag, Amsterdam.
Macaulay, W. H. (1919). Note on the deflection of the beams. Messenger of Math. 48, 129–30.Google Scholar
Maddocks, J. H. (1984). Stability of nonlinear elastic rods. Arch. Rat. Mech. Anal. 85, 311–54.Google Scholar
Maier, G. (1967). On elastic-plastic structures with associated stress-strain relations allowing for work softening. Meccanica 2, 55–64.Google Scholar
Maier, G. (1970a). A minimum principle for incremental elastoplasticity with nonassociated flow-laws. J. Mech. Phys. Solids 18, 319–30.Google Scholar
Maier, G. (1970b). A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica 5, 54–66.Google Scholar
Maier, G., and Hueckel, T. (1979). Non associated and coupled flow-rules of elastoplasticity for rock-like materials. Int. J. Rock Mech. Min. Sci. 16, 77–92.Google Scholar
Mandel, J. (1962a). Ondes plastiques dans un milieu indéfini á trois dimensions. J. de Mécanique 1, 3–30.Google Scholar
Mandel, J. (1962b). Propagation des surfaces de discontinuite dans un milieu elastoplastique. In Stress Waves in Anelastic Solids. edited by H., Kolsky and W., Prager, pp. 331–40. Springer, Berlin.
Mandel, J. (1966a). Conditions de stabilité et postulat de Drucker. In Rheology and Soil Mechanics. edited by J., Kravtchenko and P. M., Sirieys, pp. 58–68. Springer, Berlin.
Mandel, J. (1966b). Contribution theorique a l'etude de l'ecrouissage et des lois de l'ecoulement plastique, In Proceedings of the 11th International Congress of Applied Mechanics (Munich 1964), pp. 502–509. Springer-Verlag, Berlin.
Mandel, J. (1969). Thermodynamique et ondes dans les milieux viscoplastiques. J. Mech. Phys. Solids 17, 125–40.Google Scholar
Marsden, J. E., and Hughes, T. J. R. (1983). Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, NJ.
Martins, J. A. C., Oden, J. T., and Simões, F. M. F. (1990). Recent advances in engineering science - a study of static and kinetic friction Int.J. Engng. Sci. 28, 29–92.Google Scholar
Matthies, H., and Strang, G. (1979). The solution of non-linear finite element equations. Int. J. Numer. Meth. Eng. 11, 1613–26.Google Scholar
McClintock, F. A. (1971). Plasticity aspects of fracture. In Fracture. An Andvanced Treatise, edited by H., Liebowitz, Vol. 3, pp. 47–225. Academic Press, New York.
Melan, E. (1938). Zur Plastizität des räumliche Kontinuums. Ingenieur-Archiv 9, 116–26.Google Scholar
Menétrey, Ph., and Willam, K. J. (1995). Triaxial failure criterion for concrete and its generalization. ACI Struct. J. 92, 311–18.Google Scholar
Michel, J. C., Lopez-Pamies, O., Castaneda, P. P., and Triantafyllidis, N. (2007). Microscopic and macroscopic instabilities in finitely strained porous elastomers. J. Mech. Phys. Solids 55, 900–38.Google Scholar
Miles, J. P. (1973). Fluid-pressure eigenstates and bifurcation in tension specimens under lateral pressure. J. Mech. Phys. Solids 21, 145–62.Google Scholar
Miles, J. P., and Nuwayhid, U. A. (1985). Bifurcation in compressible elastic/plastic cylinders under uniaxial tension. Appl. Sci. Res. 42, 33–54.Google Scholar
von Mises, R. (1913). Mechanik der Festen Korper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys. 1, 582–92.Google Scholar
Misra, S., and Mandal, N. (2007). Localization of plastic zones in rocks around rigid inclusions: Insights from experimental and theoretical models. J. Geophys. Res.-Solid Earth 112, B09206.Google Scholar
Mooney, M. (1940). A theory of large elastic deformations. J. Appl. Phys. 11, 582–92.Google Scholar
Moore, B., Jaglinski, T., Stone, D. S., and Lakes, R. S. (2006). Negative incremental bulk modulus in foams. Phil. Mag. Lett. 86, 651–59.
Morrey, C. B. Jr., (1952). Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2, 25–53.Google Scholar
Müz, Z. (1963). Non-associated flow laws in plasticityJ. de Mechanique 2, 21–42.Google Scholar
Móz, Z. (1966). On forms of constitutive laws for elastic-plastic solids. Arch. Mech. Stosowanej 18, 1–34.Google Scholar
Müller, I. (1996). Two instructive instabilities in non-linear elasticity: biaxially loaded membrane and rubber balloons. Meccanica 31, 387–95.Google Scholar
Müller, I., and Strehlow, P. (2004). Rubber and Rubber Balloons. Springer, Berlin.
Mullin, T., Deschanel, S., Bertoldi, K., and Boyce, M. C. (2007). Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301.Google Scholar
Muskhelishvili, N. I. (1953). Some Basic Problems of the Mathematical Theory of Elasticity. P. Nordhoff, Groningen.
Nadai, A. (1931). Plasticity. McGraw-Hill, New York.
Nadai, A. (1950). Theory of Flow and Fracture of Solids. McGraw-Hill, New York.
Neale, K. W. (1981). Phenomenological constitutive laws in finite plasticitySM Archives 6, 79–128.Google Scholar
Needleman, A. (1979). Non-normality and bifurcation in plane strain tension or compression. J. Mech. Phys. Solids 27, 231–54.Google Scholar
Needleman, A., and Ortiz, M. (1991). Effects of boundaries and interfaces on shear-band localization. Int. J. Solids Structures 28, 859–77.Google Scholar
Newman, K., and Newman, J. B. (1971). Failure theories and design criteria for plain concrete. In Structure, Solid Mechanics and Engineering Design, Proceedings of the 1969 Southampton Civil Engineering Conference, edited by M., Te'eni, pp. 963–995. Wiley Interscience, New York.
Nguyen, Q. S. (1995). Stabilité des structures élastiques. Springer-Verlag, Berlin.
Nguyen, Q. S. (2003). Instability and friction. C. R. Acad. Sci., Paris 331, 99–112.Google Scholar
Nguyen, Q. S., and Triantafyllidis, N. (1989). Plastic bifurcation and postbifurcation analysis for generalized standard continua. J. Mech. Phys. Solids 37, 545–66.Google Scholar
Noll, W. (1958). A mathematical theory of the mechanical behaviour of continuous media. Arch. Rat. Mech. Anal. 2, 197–226.Google Scholar
Noselli, G., Dal Corso, F., and Bigoni, D. (2011). The stress intensity near a stiffener disclosed by photoelasticity. Int. J. Fracture 166, 91–103.Google Scholar
Ogden, R. W. (1982). Elastic deformations of rubberlike solids. In Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, edited by H. G., Hopkins and M. J., Sewell, pp. 499–537. Pergamon Press, New York.
Ogden, R. W. (1984). Non-linear Elastic Deformations. Ellis Horwood, Chichester, UK.
Ogden, R. W. (1985). Local and global bifurcation phenomena in plane-strain finite elasticity. Int. J. Solids Structures 21, 121–32.Google Scholar
Ogden, R.W. (2001). Elements of the theory of finite elasticity. In Nonlinear Elasicity: Theory and Applications, edited by Y. B., Fu and R. W., Ogden. Cambridge University Press, Cambridge, UK.
Ogden, R. W., and Sotiropulos, D. A. (1995). On interfacial waves in pre-stressed layered incompressible elastic solid. Proc. R. Soc. Lond.A 450, 319–41.Google Scholar
Oldroyd, J. C. (1950). On the formulation of rheological equations of state. Proc. R. Soc. Lond.A 200, 523–41.Google Scholar
Ol'khovik, O. (1983). Apparatus for testing of strength of polymers in a three-dimensional stressed state. Mech. Compos. Mater. 19, 270–75.Google Scholar
Ottosen, N. S. (1977). A failure criterion for concrete. J. Eng. Mech. Div. ASCE 103, 527–35.Google Scholar
Ottosen, N. S., and Runesson, K. (1991). Acceleration waves in elastoplasticity. Int. J. Solids Structures 28, 135–59.Google Scholar
Palmer, A. C., and Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of overconsolidated clay. Proc. R. Soc. Lond.A 332, 527–48.Google Scholar
Pan, F., and Beatty, M. F. (1997a). Remarks on the instability of an incompressible and isotropic hyperelastic, thick-walled cylindrical tube. J. Elasticity 48, 217–39.Google Scholar
Pan, F., and Beatty, M. F. (1997 b). Instability of a Bell constrained cylindrical tube under end thrust. Part 1. Theoretical development. Math. Mech. Solids 2, 243–73.Google Scholar
Papamichos, E., Vardoulakis, I., and Mühlhaus, H.-B. (1990). Buckling of layered elastic media: a Cosserat-continuum approach and its validation. Int. J. Numer. Anal. Meth. Geomech. 14, 473–98.Google Scholar
Papka, S. D., and Kyriakides, S. (1999). Biaxial crushing of honeycomb. Part I. Experiments. Int. J. Solids Structures 36, 4367–96.Google Scholar
Paul, B. (1968). Macroscopic yield criteria for plastic flow and brittle fracture. In Fracture an Advanced Treatise, edited by H., Liebowitz, vol. I, pp. 313–496. Academic Press, New York.
Petryk, H. (1985a). On energy criteria of plastic instability. In Plastic Instability, Proceedings of the Considère Memorial, pp. 215–26. Ecole Nat. Ponts Chauss. Press, Paris.
Petryk, H. (1985b). On stability and symmetry conditions in time-independent plasticity. Arch. Mech. 37, 503–20.Google Scholar
Petryk, H. (1991). The energy criteria of instability in time-independent inelastic solids. Arch. Mech. 43, 519–45.Google Scholar
Petryk, H. (1992). Material instability and strain-rate discontinuities in incrementally nonlinear continua. J. Mech. Phys. Solids 40, 1227–50.Google Scholar
Petryk, H. (1993a). Theory of bifurcation and instability in time-independent plasticity. In CISM Lecture Notes No. 327, Udine 1991, edited by Q. S., Nguyen, pp. 95–152. Springer, Wien.
Petryk, H. (1993b). Stability and constitutive inequalities in plasticity. In CISM Lecture Notes No. 336, Udine 1992, edited by W., Muschik, pp. 255–329. Springer, Wien.
Petryk, H. (2000). General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation. J. Mech. Phys. Solids 48, 367–96.Google Scholar
Petryk, H., and Thermann, K. (1985). Second-order bifurcation in elastic-plastic solids. J. Mech. Phys. Solids 33, 577–93.Google Scholar
Petryk, H., and Thermann, K. (1996). Post-critical plastic deformation of biaxially stretched sheets. Int. J. Solids Structures 33, 689–705.Google Scholar
Petryk, H., and Thermann, K. (2002). Post-critical plastic deformation in incrementally nonlinear materials. J. Mech. Phys. Solids 50, 925–54.Google Scholar
Pflüger, A. (1955). Zur Stabilität des tangential gedrückten Stabes. Z. Angew. Math. Mechanik 35, 191–91.Google Scholar
Phillips, A. (1974). Experimental plasticity. Some thoughts on its present status and possible future trends. In Symposium on the Foundations of Plasticity (Warsaw, 1972), edited by A. A., Sawczuk, pp. 193–233. Nordhoff International Publishing, Leyden.
Piccolroaz, A., and Bigoni, D. (2009). Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners. Int. J. Solids Structures 46, 3587–96.Google Scholar
Piccolroaz, A., Bigoni, D., and Gajo, A. (2006a). An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part I. Small strain formulation. Eur. J. Mechanics-A/Solids 25, 334–57.Google Scholar
Piccolroaz, A., Bigoni, D., and Gajo, A. (2006b). An elastoplastic framework for granular materials becoming cohesive through mechanical densification. Part II. The formulation of elastoplastic coupling at large strain. Eur. J. Mechanics-A/Solids 25, 358–69.Google Scholar
Piccolroaz, A., Bigoni, D., and Willis, J. R. (2006). A dynamical interpretation of flutter instability in a continuous medium. J. Mech. Phys. Solids 54, 2391–2417.Google Scholar
Pietruszczak, S., and Mróz, Z. (1981). Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Meth. Eng. 17, 327–34.Google Scholar
Podio Guidugli, P. (2000). A primer in elasticity. J. Elasticity 58 1–104.Google Scholar
Podgórski, J. (1984). Limit state condition and the dissipation function for isotropic materials. Arch. Mech. Soc. 36, 323–42.Google Scholar
Podgórski, J. (1985). General failure criterion for isotropic media. J. Eng. Mech. ASCE 111, 188–99.Google Scholar
Poirier, C., Ammi, M., Bideau, D., and Troadec, J. P. (1992). Experimental study of the geometrical effects in the localization of deformation. Phys. Rev. Lett. 68, 216–19.Google Scholar
Poston, T., and Stewart, I. (1978). Catastrophe Theory and its Applications. Pitman, San Francisco.
Potier-Ferry, M. (1987). Foundations of elastic postbuckling theory. In Buckling and Post-Buckling, Lecture Notes in Physics 288, pp. 1–82. Springer-Verlag, Berlin.
Prager, W. (1949). Recent developments in the mathematical theory of plasticity. J. Appl. Phys. 20, 235–41.Google Scholar
Prager, W. (1954). Discontinuous fields of plastic stress and flow. In 2nd Nat. Congr. Appl. Mech., Ann Arbor, Michigan, pp. 21–32.
Price, N. J., and Cosgrove, J. W. (1990). Analysis of Geological Structures. Cambridge University Press, Cambridge, UK.
Puglisi, G. (2006). Hysteresis in multi-stable lattices with non-local interactions. J. Mech. Phys. Solids 54, 2060–88.Google Scholar
Puglisi, G., and Truskinowsky, L. (2000). Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27.Google Scholar
Puglisi, G., and Truskinowsky, L. (2002). Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids 50, 165–87.Google Scholar
Puzrin, A. M., and Germanovich, L. N. (2005). The growth of shear bands in the catastrophic failure of soils. Proc. R. Soc. Lond.A 461, 1199–1228.Google Scholar
Radi, E., Bigoni, D., and Capuani, D. (2002). Effects of pre-stress on crack-tip fields in elastic, incompressible solids. Int. J. Solids Structures 39, 3971–96.Google Scholar
Radi, E., Bigoni, D., and Tralli, A. (1999). On uniqueness for frictional contact rate problems. J. Mech. Phys. Solids 47, 275–96.Google Scholar
Raniecki, B. (1976). Ordinary waves in inviscid plastic media. In Mechanical Waves in Solids, edited by J., Mandel and L., Brun, CISM Courses and Lectures No. 222. Springer-Verlag, Wien.
Raniecki, B. (1979). Uniqueness criteria in solids with non-associated plastic flow laws at finite deformations, Bull. Acad. Polon. Sci. Ser. Sci. Tech. 27, 391–99.Google Scholar
Raniecki, B., and Bruhns, O. T. (1981). Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite strain. J. Mech. Phys. Solids 29, 153–71.Google Scholar
Raniecki, B., and Mróz, Z. (2008). Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech. 195, 81–102.Google Scholar
Read, H. E., and Hegemier, G. A. (1984). Strain softening of rock, soil and concrete - A review article. Mech. Materials 3, 271–94.Google Scholar
Reiner, M. (1945). A mathematical theory of dilatancy, Am. J. Math. 67, 350–62.Google Scholar
Reiss, E. L. (1969). Column buckling: an elementary example of bifurcation. In Bifurcation Theory and Nonlinear Eigenvalue Problems. edited by J. B., Keller and S., Antman, pp. 1–16. W.A. Benjamin, New York.
Renardy, M., and Rogers, R. C. (1993). An Introduction to Partial Differential Equations. Springer-Verlag, New York.
Rice, J. R. (1968). Mathematical analysis in the mechanics of fracture. In Fracture, edited by H., Liebowitz, Vol. II, pp. 191–311. Academic Press, New York.
Rice, J. R. (1973). The initiation and growth of shear bands. In Plasticity and Soil Mechanics edited by A. C., Palmer, pp. 263–75. Cambridge University Engineering Department, Cambridge, UK.
Rice, J. R. (1977). The localization of plastic deformation. In Theoretical and Applied Mechanics, edited by W. T., Koiter, pp. 207–10. North-Holland, Amsterdam.
Rice, J. R., and Rudnicki, J. W. (1980). A note on some features of the theory of localization of deformation. Int. J. Solids Structures 16, 597–605.Google Scholar
Rittel, D. (1990). The influence of microstructure on the macroscopic patterns of surface instabilities in metals. Scripta Metall. Mater. 24, 1759–64.Google Scholar
Rittel, D., Aharonov, R., Feigin, G., and Roman, I. (1991). Experimental investigation of surface instabilities in cylindrical tensile metallic specimens. Acta Metall. Mater. 39, 719–24.Google Scholar
Rivlin, R. S. (1948a). Large elastic deformations of isotropic materials. I. Fundamental concepts. Phil. Trans. R. Soc. Lond.A 240, 459–90.Google Scholar
Rivlin, R. S. (1948b). The hydrodynamics of non-Newtonian fluids, Proc. R. Soc. Lond. 193, 260–81.Google Scholar
Rivlin, R. S. (1949). Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond.A 195, 463–73.Google Scholar
Rittel, D., and Roman, I. (1989). Tensile deformation of coarse-grained cast austenitic manganese steels. Mat. Sci. Engng.A 110, 77–87.Google Scholar
Roberts, A. W., and Varberg, D. E. (1973). Convex functions. Academic Press, New York.
Roccabianca, S., Gei, M., and Bigoni, D. (2010). Plane strain bifurcations of elastic layered structures subject to finite bending: theory versus experiments. IMA J. Appl. Math. 75, 525–48.Google Scholar
Roccabianca, S., Bigoni, D., and Gei, M. (2011). Long wavelength bifurcations and multiple neutral axes of elastic layered structures subject to finite bending. J. Mech. Materials Structures, 6, 511–27.Google Scholar
Rogers, T. G. (1989). Squeezing flow of fibre-reinforced viscous fluid. J. Eng. Math. 23, 81–9.Google Scholar
Roscoe, K. H., and Burland, J. B. (1968). On the generalized stress-strain behaviour of 'wet' clay. In Engineering Plasticity, edited by J., Heyman and F. A., Leckie, Cambridge University Press, Cambridge, UK.
Roscoe, K. H., and Schofield, A. N. (1963). Mechanical behaviour of an idealised 'wet' clay. In Proc. European Conf. on Soil Mechanics and Foundation Engineering, Wiesbaden, Vol. 1, pp. 47–54. Deutsche Gesellshaft für Erd- und Grundbau e. V., Essen.
Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond., A 269, 500–27.Google Scholar
Royer-Carfagni, G. F. (2000). Slip bands and stress oscillations in bars. J. Elasticity 59, 131–43.Google Scholar
Rudnicki, J. W., and Rice, J. R. (1975). Conditions for the localization of deformations in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–94.Google Scholar
Runesson, K., and Mróz, Z. (1989). A note on non-associated plastic flow rules. Int. J. Plasticity 5, 639–58.Google Scholar
Ryzhak, E. I. (1987). Necessity of Hadamard conditions for stability of elastic-plastic solids. Izv. AN SSSR MTT (Mechanics of Solids), 99–102.
Ryzhak, E. I. (1993). On stable deformation of “unstable” materials in a rigid triaxial testing machine. J. Mech. Phys. Solids 41, 1345–56.Google Scholar
Ryzhak, E. I. (1994). On stability of homogeneous elastic bodies under boundary conditions weaker than displacement conditions. Q. J. Mech. Appl. Math. 47, 663–72.Google Scholar
Sachkov, Y. L., and Levyakov, S. V. (2010). Stability of inflectional elasticae centered at vertices or inflection points. Proc. Stelkov Inst. Math. 271, 177–92.Google Scholar
Sagan, H. (1961). Boundary and Eigenvalue Problems in Mathematical Physics. Wiley, Chichester, UK.
Salencon, J. (1974). Applications of the Theory of Plasticity in Soil Mechanics. Wiley, Chichester, UK.
Sansour, C. (2001). On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues. Int. J. Solids Structures 38, 9221–32.Google Scholar
Savin, G. N. (1961). Stress Concentration Around Holes. Pergamon Press, London.
Scheidler, M. J. (1984). Acceleration waves, Ph.D. thesis, Rice University, Houston, TX.Google Scholar
Schofield, A. N., and Wroth, C. P. (1968). Critical State Soil Mechanics. McGraw-Hill, London.
Schneebeli, G. (1956). Une analogie mécanique pour les terres sans cohésion. C. R. Acad. Sci., Paris 243, 125–6.Google Scholar
Sfer, D., Carol, I., Gettu, R., and Etse, G. (2002). Study of the behaviour of concrete under triaxial compression. J. Eng. Math. 128, 156–63.Google Scholar
Shanley, F. R. (1947). Inelastic column theory. J. Areonautic. Sci. 14, 261–67.Google Scholar
Shaw, J. A., and Kyriakides, S. (1997). Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plasticity 13, 837–71.Google Scholar
Shaw, M. C., and Sata, T. (1966). The plastic behaviour of cellular materials. Int. J. Mech. Sci. 8, 469–78.Google Scholar
Shearer, M., and Schaeffer, D. G. (1994). Unloading near a shear band in granular material. Q. Appl. Math. 52, 579–600.Google Scholar
Shield, R. T. (1955). On Coulomb's law of failure in soils. J. Mech. Phys. Solids 4, 10–16.Google Scholar
Shield, T. W., Kim, K. S., and Shield, R. T. (1994). The buckling of an elastic layer bonded to an elastic substrate in plane strain. J. Appl. Mech. 61, 231–5.Google Scholar
Sih, G. C., and Liebowitz, H. (1968). Mathematical theories of brittle fracture. In Fracture. An Andvanced Treatise, edited by H., Liebowitz, Vol. II, pp. 67–190. Academic Press, New York.
Simo, J. C. (1988). A framework for finite strain elastoplasticity based on maximum dissipation and the multiplicative decomposition. Part I. Continuum formulation. Comput. Meth. Appl. Mech. Engrg. 66, 199–219.Google Scholar
Simo, J. C., and Pister, K. S. (1984). Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Meth. Appl. Mech. Engrg. 46, 201–15.Google Scholar
Simões, F. M. F. (1997). Instabilities in non-associated problems of solid mechanics. Ph.D. Thesis, Technical University of Lisbon, in Portuguese.Google Scholar
Simões, F. M. F., and Martins, J. A. C. (1998). Instability and ill-posedness in some friction problems. Int. J. Engng. Sci. 36, 1265–93.Google Scholar
Simões, F. M. F., and Martins, J. A. C. (2005). Flutter instability in a non-associative elasticplastic layer: analytical versus finite element results Int.J. Engng. Sci. 43, 189–208.Google Scholar
Simões, F. M. F., Martins, J. A. C., and Loret, B. (1999). Instabilities in elastic-plastic fluidsaturated porous media: harmonic wave versus acceleration wave analyses Int.J. Solids Structures 36, 1277–95.Google Scholar
Simo, J. C., and Hughes, T. J. R. (1987). General return mapping algorithms for rate-independent plasticity. In Constitutive Laws for Engineering Materials: Theory and Applications, edited by C. S., Desai et al., pp. 221–231. Elsevier Science, New York.
Simpson, H. C., and Spector, S. J. (1984). On barrelling instabilities in finite elasticity. J. Elasticity 14, 103–25.Google Scholar
Soós, E. (1996a). Resonance and stress concentration in a prestressed elastic solid containing a crack. An apparent paradox. Int. J. Engng. Sci. 34, 363–74.Google Scholar
Soós, E. (1996b). Stability, resonance and stress concentration in prestressed piezoelectric crystals containing a crack. Int. J. Engng. Sci. 34, 1647–73.Google Scholar
Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Continuum Theory of the Mechanics of Fibre-Reinforced Composites, edited by A. J. M., Spencer, CISM Course No. 282. Springer-Verlag, New York.
Spencer, A. J. M. (1997). Fibre-streamline flows of fibre-reinforced viscous fluids. Eur. J. Appl. Math. 8, 209–15.Google Scholar
Spencer, A. J. M. (2004). Some results in the theory of non-Newtonian transversely isotropic fluids. J. Non-Newtonian Fluid Mech. 119, 83–90.Google Scholar
Spitzig, W. A., Sober, R. J., and Richmond, O. (1976). The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory. Metall. Trans. 7A, 1703–10.Google Scholar
Sridhar, I., and Fleck, N. A. (2000). Yield behaviour of cold compacted composite powders. Acta Mater. 48, 3341–52.Google Scholar
Steif, P. S. (1986a). Bimaterial interface instabilities in plastic solids. Int. J. Solids Structures 22, 195–207.Google Scholar
Steif, P. S. (1986b). Periodic necking instabilities in layered plastic solids. Int. J. Solids Structures 22, 1571–78.Google Scholar
Steif, P. S. (1987). An exact two-dimensional approach to fiber micro-buckling. Int. J. Solids Structures 23, 1235–46.Google Scholar
Steif, P. F. (1990). Interfacial instabilities in an unbounded layered solid. Int. J. Solids Structures 26, 915–25.Google Scholar
Steigmann, D. J., and Ogden, R. W. (1997). Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond.A 453, 853–77.Google Scholar
Stoneley, R. (1924). Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond.A 106, 416–28.Google Scholar
Stronge, W. J., and Shim, V. P.-W. (1988). Microdynamics of crushing in cellular solids. J. Eng. Mat. Tech. 110, 185–90.Google Scholar
Stören, S., and Rice, J. R. (1975). Localized necking in thin sheets. J. Mech. Phys. Solids 23, 421–41.Google Scholar
Sugiyama, Y., Katayama, K., and Kinoi, S. (1995). Flutter of a cantilevered column under rocket thrust. J. Aerospace Eng. 8, 9–15.Google Scholar
Sugiyama, Y., Katayama, K., Kiriyama, K., and Ryu, B.-J. (2000). Experimental verification of dynamic stability of vertical cantilevered columns subjected to a sub-tangential force. J. Sound Vibration 236, 193–207.Google Scholar
Sulem, J., and Ouffroukh, H. (2006). Hydromechanical behaviour of Fontainebleau sandstone. Rock Mech. Rock Eng. 39, 185–213.Google Scholar
Suo, Z., Ortiz, M., and Needleman, A. (1992). Stability of solids with interfaces. J. Mech. Phys. Solids 40, 613–40.Google Scholar
Szabó, L. (1994). Shear band formulation in finite elastoplasticity. Int. J. Solids Structures 31, 1291–1308.Google Scholar
Tarnai, T. (1980). Destabilizing effect of additional restraint on elastic bar structures. Int. J. Mech. Sci. 22, 379–90.Google Scholar
Tasuji, M. E., Slate, F. O., and Nilson, A. H. (1978). Stress-strain response and fracture of concrete in biaxial loading. ACI J. 75, 306–12.Google Scholar
Temme, N. M. (1996). Special Functions. Wiley, New York.
Thomas, T. Y. (1953). The effect of compressibility on the inclination of plastic slip bands in flat bars. Proc. Nat. Acad. Sci. USA 39, 266–73.Google Scholar
Thomas, T. Y. (1954). A discussion on load drop and related matters associated with the formation of a Lüders band. Proc. Nat. Acad. Sci. USA 40, 572–6.Google Scholar
Thomas, T. Y. (1961). Plastic Flows and Fracture of Solids. Academic Press, New York.
Timoshenko, S.P., and Gere, J.M. (1961). Theory of Elastic Stability. McGraw-Hill, New York.
Todhunter, I., and Pearson, K. (1960). A history of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, Vol. I. Dover, New York.
Tomita, Y., Shindo, A., and Fatnassi, A. (1988). Bounding approach to bifurcation point of annular plates with nonassociated flow law subjected to uniform tension at their outer edges. Int. J. Plasticity 4, 251–63.Google Scholar
Torrenti, J. M., Desrues, J., Benaija, E. H. e Boulay, C. (1991). Stereophotogrammetry and localization in concrete under compression. J. Eng. Mech. ASCE 117, 1455–65.Google Scholar
Tresca, H. (1878). On further application of the flow of solids. Proc. Inst. Mech. Eng. 30, 301–45.Google Scholar
Triantafyllidis, N. (1980). Bifurcation phenomena in pure bending. J. Mech. Phys. Solids 28, 221–45.Google Scholar
Triantafyllidis, N., and Lehner, F. K. (1993). Interfacial instability of density-stratified 2-layer systems under initial stress. J. Mech. Phys. Solids 41, 117–42.Google Scholar
Triantafyllidis, N., and Leroy, Y. M. (1994). Stability of a frictional material layer resting on a viscous half-space. J. Mech. Phys. Solids 42 51–110.Google Scholar
Triantafyllidis, N., and Maker, B. N. (1985). On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J. Appl. Mech. 52, 794–800.Google Scholar
Truesdell, C. (1955). Hypo-elasticity. J. Rat. Mech. Anal. 4, 83–133 and 1019–20.Google Scholar
Truesdell, C. (1961). General and exact theory of waves in finite elastic strain. Arch. Rat. Mech. Anal. 8, 263–96.Google Scholar
Truesdell, C. (1966). The Elements of Continuum Mechanics. Springer-Verlag, Berlin.
Truesdell, C., and Noll, W. (1965). The non-linear field theories of mechanics. In Encyclopedia of Physics, edited by S., Flügge, Vol. III/3. Berlin, Springer-Verlag.
Truesdell, C., and Toupin, R. A. (1960). The classical Field theories. In Flügge, S., ed., Encyclopedia of Physics, III/1. Berlin, Springer-Verlag.
Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fracture 17, 389–407.Google Scholar
Tvergaard, V. (1982a). Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 30, 399–425.Google Scholar
Tvergaard, V., and Needleman, A. (1980). On the localization of buckling patterns. J. Appl. Mech. 47, 613–19.Google Scholar
Vainchtein, A. (2002). Dynamics of non-isothermal martensitic phase transition and hysteresis. Int. J. Solids Structures 39, 3387–408.Google Scholar
Vainchtein, A., and Rosakis, P. (1999). Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Non-linear Sci. 9, 697–719.Google Scholar
Valanis, K. C. (1990). A theory of damage in brittle materials, Eng.Fracture Mech. 36, 403–16.Google Scholar
Vardoulakis, I. (1980). Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Meth. Geomech. 4, 103–19Google Scholar
Vardoulakis, I. (1981). Bifurcation analysis of the plane rectilinear deformation on dry sand samples. Int. J. Solids Structures 11, 1085–1101.Google Scholar
Vardoulakis, I. (1983). Rigid granular plasticity model and bifurcation in the triaxial test. Acta Mech. 49, 57–79.Google Scholar
Vardoulakis, I., and Sulem, J. (1995). Bifurcation Analysis in Geomechanics. Blackie Academic & Professional, London.
Vogel, S. M., and Rizzo, F. J. (1973). An integral equation formulation of three dimensional anisotropic elastic boundary value problems. J. Elasticity 3, 203–16.Google Scholar
Wadee, M. A., Hunt, G. W., and Peletier, M. A. (2004). Kink band instability in layered structures. J. Mech. Phys. Solids 52, 1071–91.Google Scholar
Walley, S. M. (2007). Shear localization: an historical overview. Metall. Mater. Trans.A 38A, 2629–53.Google Scholar
Wang, C. C. (1970). A new representation theorem for isotropic functions, Parts I and II. Arch. Rat. Mech. Anal. 36, 166–223.Google Scholar
Weissenberg, K. (1935). La mécanique des corps déformables. Arch. Sci. phys. Nat. Genéve, 5, 44–106, 130–71.Google Scholar
Weissenberg, K. (1949). Abnormal substances and abnormal phenomena of flow. In Proc. Int. Congr. Rheology (1948), Vol. I, pp. 29–46.Google Scholar
Westergaard, H. M. (1920). On the resistance of ductile materials to combined stresses. J. Franklin Inst. 189, 627–40.Google Scholar
Wilder, E. A., Guo, S., Lin-Gibson, S., Fasolka, M. J., and Stafford, C. M. (2006). Measuring the modulus of soft polymer networks via a buckling-based metrology. Macromolecules 39, 4138–43.Google Scholar
Wilkes, E. W. (1955). On the stability of a circular tube under end thrust. Q. J. Mech. Appl. Math. 8, 88–100.Google Scholar
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, UK.
Willam, K. J., and Warnke, E. P. (1975). Constitutive model for the triaxial behaviour of concrete. Presented at the seminar on concrete structures subjected to triaxial stresses, ISMES, Bergamo, 1–30.
Willis, J. R. (1965). The elastic interaction energy of dislocation loops in anisotropic media. Q. J. Mech. Appl. Math. 18, 419–33.Google Scholar
Willis, J. R. (1969). Some constitutive equations applicable to problems of large dynamic plastic deformation. J. Mech. Phys. Solids 23, 405–19.Google Scholar
Willis, J. R. (1971). Interfacial stresses induced by arbitrary loading of dissimilar elastic halfspaces joined over a circular region. J. Inst. Maths. Applics. 7, 179–97.Google Scholar
Willis, J. R. (1972). The penny-shaped crack on an interface. Q. J. Mech. Appl. Math. 25, 367–85.Google Scholar
Willis, J. R. (1973). Self-similar problems in elastodynamics. Philoso. Trans. R. Soc. Lond., A 274, 435–91.Google Scholar
Willis, J. R. (1991). Inclusions and cracks in constrained anisotropic media. In Modern Theory of Anisotropic Elasticity and Applications, edited by J. J., Wu, T. C. T., Ting, and D. M., Barnett, pp. 87–102. SIAM, Philadelphia.
Wood, D. M. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge, UK.
Xue, Q., and Gray, G. T. (2006). Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior. Metall. Mater. Trans.A 37A, 2435–46.Google Scholar
Yang, W. H. (1980). A useful theorem for constructing convex yield functions. J. Appl. Mech. 47, 301–3.Google Scholar
Yasufuku, N., Murata, H., and Hyodo, M. (1991). Yield characteristics of anisotropically consolidated sand under low and high stress. Soils and Foundations 31, 95–109.Google Scholar
Young, N. J. B. (1976). Bifurcation phenomena in the plane compression test. J. Mech. Phys. Solids 24, 77–91.Google Scholar
Zaccaria, D., Bigoni, D., Misseroni, D., and Noselli, G. (2011). Structures buckling under tensile dead load. Proc. R. Soc. Lond.A 467, 1686–1700.Google Scholar
Zaremba, C. (1903). Remarques sur les travaux de M. Natanson relatifs á la thèorie de la viscositè. Bull. Int. Acad. Sci. Cracovie, 85–93.
Zhang, Z., and Clifton, R. J. (2007). Shear band propagation from a crack tip subjected to Mode II shear wave loading. Int. J. Solids Structures 44, 1900–26.Google Scholar
Zheng, Q. S. (1994). Theory of representations of tensor functions: a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47, 545–87.Google Scholar
Ziegler, H. (1977). Principles of Structural Stability. Birkhäuser Verlag, Basel.
Zysset, P. K., and Curnier, A. (1995). An alternative model for anisotropic elasticity based on fabric tensors. Mech. Materials 21, 243–50.Google Scholar
Zytynski, M., Randolph, M. F., Nova, R., and Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. Int. J. Numer. Anal. Meth. Geomech. 2, 87–93.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Davide Bigoni, Università degli Studi di Trento, Italy
  • Book: Nonlinear Solid Mechanics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139178938.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Davide Bigoni, Università degli Studi di Trento, Italy
  • Book: Nonlinear Solid Mechanics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139178938.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Davide Bigoni, Università degli Studi di Trento, Italy
  • Book: Nonlinear Solid Mechanics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139178938.019
Available formats
×