Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-lntk7 Total loading time: 0 Render date: 2024-04-30T09:40:19.541Z Has data issue: false hasContentIssue false

14 - Wave propagation, stability and bifurcation

Published online by Cambridge University Press:  05 August 2012

Davide Bigoni
Affiliation:
Università degli Studi di Trento, Italy
Get access

Summary

With reference to plane strain, incompressible elasticity, it is shown that bifurcation of elastic materials deformed incrementally can be interpreted as the occurrence of waves propagating at null speed. After the plane wave propagation is solved for an infinite medium as a perturbation superimposed on a finitely and homogeneously strained elastic material, a wave propagation analysis in elastoplasticity elucidates the meaning of divergence instability (occurrence of negative eigenvalues of the acoustic tensor) and the difficulties (related to the fact that the constitutive tangent operator is piece-wise linear) connected with the interpretation of flutter instability. Finally, the treatment of acceleration waves reveals that the condition of localisation of deformation in elastoplasticity can be understood as the condition of vanishing speed of acceleration waves.

Wave propagation in solids is a topic strictly connected with stability and bifurcation. It will be shown in this chapter that the condition for incremental bifurcation analysed in chapter 12 for elastic solids is equivalent to the condition of vanishing propagation speed for an incremental wave mode, whereas instability corresponds to a blow up of the wave mode amplitude during propagation.

The simple example of small-amplitude vibrations of a beam superimposed on a given axial stress (‘pre-stress’) is sufficient to clarify the above-mentioned issues. To this purpose, we reconsider the beam illustrated in Section 10.2.3, subjected to axial load F corresponding to a longitudinal Cauchy stress - σ parallel to the beam axis x1.

Type
Chapter
Information
Nonlinear Solid Mechanics
Bifurcation Theory and Material Instability
, pp. 403 - 426
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×