Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T00:11:35.765Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2012

Franck Laloë
Affiliation:
Ecole Normale Supérieure, Paris
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] N., Bohr, Atomic Physics and Human Knowledge, Wiley (1958), and Dover (2011), see in particular chapter “Discussions with Einstein on epistemological problems in atomic physics” – or, in French, with bibliography and glossary byGoogle Scholar
C., Chevalley: Physique atomique et connaissance humaine, folio essais, Gallimard (1991);Google Scholar
C., ChevalleyEssays 1933 to 1957 on Atomic Physics and Human Knowledge, Ox Bow Press (1987);Google Scholar
C., ChevalleyEssays 1958–62 on Atomic Physics and Human Knowledge, Wiley (1963) and Ox Bow Press (1987);Google Scholar
C., ChevalleyAtomic Physics and the Description of Nature, Cambridge University Press (1934 and 1961).Google Scholar
[2] Albert Einstein: Philosopher-Scientist, P.A., Schilpp editor, Open Court and Cambridge University Press (1949).
[3] G., Bacchiagaluppi and A., Valentini, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, Cambridge University Press (2009).Google Scholar
[4] J., von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin (1932);Google Scholar
Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955).
[5] J.S., Bell, “On the problem of hidden variables in quantum mechanics”, Rev. Mod. Phys. 38, 447–452 (1966);Google Scholar
reprinted in Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), 396–402 and in Chapter 1 of [6].
[6] J.S., Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1987); second augmented edition (2004), which contains the complete set of J. Bell's articles on quantum mechanics.Google Scholar
[7] D., Bohm and J., Bub, “A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory”, Rev. Mod. Phys. 38, 453–469 (1966).Google Scholar
[8] D., Bohm and J., Bub, “A refutation of the proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics”, Rev. Mod. Phys. 38, 470–475 (1966).Google Scholar
[9] N.D., Mermin, “Hidden variables and the two theorems of John Bell”, Rev. Mod. Phys. 65, 803–815 (1993); in particular see §III.Google Scholar
[10] A., Shimony, “Role of the observer in quantum theory”, Am. J. Phys. 31, 755–773 (1963).Google Scholar
[11] D., Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables”, Phys. Rev. 85, 166–179 and 180–193 (1952); by the same author, see also Quantum Theory, Constable (1954), although this book does not discuss theories with additional variables.Google Scholar
[12] N., Wiener and A., Siegel, “A new form for the statistical postulate of quantum mechanics”, Phys. Rev. 91, 1551–1560 (1953);Google Scholar
A., Siegel and N., Wiener, “Theory of measurement in differential space quantum theory”, Phys. Rev. 101, 429–432 (1956).Google Scholar
[13] P., Pearle, “Reduction of the state vector by a nonlinear Schrödinger equation”, Phys. Rev. D13, 857–868 (1976).Google Scholar
[14] P., Pearle, “Toward explaining why events occur”, Int. J. Theor. Phys. 18, 489–518 (1979).Google Scholar
[15] G.C., Ghirardi, A., Rimini, and T., Weber, “Unified dynamics for microscopic and macroscopic systems”, Phys. Rev. D 34, 470–491 (1986);Google Scholar
Disentanglement of quantum wave functions”, Phys. Rev. D 36, 3287–3289 (1987).
[16] B.S., DeWitt, “Quantum mechanics and reality”, Phys. Today 23, 30–35 (September 1970).Google Scholar
[17] R.B., Griffiths, “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys. 36, 219–272 (1984).Google Scholar
[18] S., Goldstein, “Quantum theory without observers”, Phys. Today 51, 42–46 (March 1998) and 38–41 (April 1998).Google Scholar
[19] “Quantum mechanics debate”, Phys. Today 24, 36–44 (April 1971);
Still more quantum mechanics”, Phys. Today 24, 11–15 (Oct. 1971).
[20] B.S., DeWitt and R.N., Graham, “Resource letter IQM-1 on the interpretation of quantum mechanics”, Am. J. Phys. 39, 724–738 (1971).Google Scholar
[21] M., Jammer, The Conceptual Development of Quantum Mechanics, McGraw Hill (1966), second edition (1989).Google Scholar
[22] J., Mehra and H., Rechenberg, The Historical Development of Quantum Theory, Springer (1982).Google Scholar
[23] O., Darrigol, From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory, University of California Press (1992).Google Scholar
[24] B., d'Espagnat, Conceptual Foundations of Quantum Mechanics, Benjamin, New York (1971).Google Scholar
[25] B., d'Espagnat, Veiled Reality: An Analysis of Present Day Quantum Mechanics Concepts, Addison Wesley (1995);Google Scholar
Le réel voilé, analyse des concepts quantiques, Fayard, Paris (1994);
Une incertaine réalité, la connaissance et la durée, Gauthier-Villars, Paris (1985);
A la recherche du réel, Gauthier Villars Bordas, Paris (1979).
[26] M., Planck, “Über eine Verbesserung der Wienerschen Spektralgleichung”, Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 202–204 (1900).Google Scholar
Physikalische Abhandlungen und Vorträge, vol. 1, 493–600, Friedrich Vieweg und Sohn (1958).
[27] G.N., Lewis, “The conservation of photons”, Nature 118, 874–875 (1926).Google Scholar
[28] A., Pais, “Einstein and the quantum theory”, Rev. Mod. Phys. 51, 863–914 (1979).Google Scholar
[29] E.H., Lieb and R., Seiringer, The Stability of Matter in Quantum Mechanics, Cambridge University Press (2010).Google Scholar
[30] L., de Broglie, “Recherches sur la théorie des quanta”, thesis Paris (1924).Google Scholar
[31] C.J., Davisson and L.H., Germer, “Reflection of electrons by a crystal of nickel”, Nature 119, 558–560 (1927).Google Scholar
[32] O., Darrigol, “Strangeness and soundness in Louis de Broglie's early works”, Physis 30, 303–372 (1993).Google Scholar
[33] E., Schrödinger, “Quantisierung als Eigenwert Problem”, Annalen der Physik, 1st communication: 79, 361–376 (1926);Google Scholar
[33] E., Schrödinger, “Quantisierung als Eigenwert Problem”, Annalen der Physik, 2nd communication: 79, 489–527 (1926);Google Scholar
[33] E., Schrödinger, “Quantisierung als Eigenwert Problem”, Annalen der Physik, 3rd communication: 80, 437–490 (1926);Google Scholar
[33] E., Schrödinger, “Quantisierung als Eigenwert Problem”, Annalen der Physik, 4th communication: 81, 109–139 (1926).Google Scholar
[34] M., Born, “Quantenmechanik der Stossvorgänge”, Zeitschrift für Physik 38, 803–827 (1926);Google Scholar
“Zur Wellenmechanik der Stossvorgänge”, Göttingen Nachrichten146–160 (1926).
[35] E.A., Cornell and C.E., Wieman, “The Bose–Einstein condensate”, Scientific American 278, 26–31 (March 1998).Google Scholar
[36] W., Heisenberg, The Physical Principles of the Quantum Theory, University of Chicago Press (1930).Google Scholar
[37] P., Jordan, “Bemerkungen zur Theorie der Atomstruktur”, Zeitschrift für Physik 33, 563–570 (1925);Google Scholar
Über eine neue Begründung der Quantenmechanik I und II”, Zeitschrift für Physik 40, 809–838 (1926) and 44, 1–25 (1927);
Austauschprobleme und zweite Quantelung”, Zeitschrift für Physik 91, 284–288 (1934).
[38] B., Schroer, “Pascual Jordan, his contibutions to quantum mechanics, and his legacy in contemporary local quantum physics”, arXiv: hep-th/0303241v2 (2003).Google Scholar
[39] P.A.M., Dirac, The Principles of Quantum Mechanics, Oxford University Press (1930, 1958).Google Scholar
[40] D., Howard, “Who invented the Copenhagen interpretation? A study in mythology”, Philos. Sci. 71, 669–682 (2004).Google Scholar
[41] N., Bohr, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 48, 696–702 (1935).Google Scholar
[42] H.P., Stapp, “S-matrix interpretation of quantum theory”, Phys. Rev. D 3, 1303–1320 (1971).Google Scholar
[43] H.P., Stapp, “The Copenhagen interpretation”, Am. J. Phys. 40, 1098–116 (1972).Google Scholar
[44] A., Peres, “What is a state vector?”, Am. J. Phys. 52, 644–650 (1984).Google Scholar
[45] J.B., Hartle, “Quantum mechanics of individual systems”, Am. J. Phys. 36, 704–712 (1968).Google Scholar
[46] N., Bohr, “On the notions of causality and complementarity”, Dialectica 2, 312–319 (1948).Google Scholar
[47] J.S., Bell, “Quantum mechanics for cosmologists”, in Quantum Gravity, C., Isham, R., Penrose, and D., Sciama editors, 2, 611–637, Clarendon Press (1981); pages 117–138 of [6].Google Scholar
[48] D., Mermin, “Is the moon there when nobody looks? Reality and the quantum theory”, Phys. Today 38, 38–47 (April 1985).Google Scholar
[49] F., London and E., Bauer, “La théorie de l'observation en mécanique quantique”, no. 775 of Actualités scientifiques et industrielles, exposés de physique générale; Hermann, Paris (1939);Google Scholar
translated into English as “The theory of observation in quantum mechanics” ' in Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press, pp. 217–259 (1983); see in particular §11, but also 13 and 14.
[50] M., Jammer, The Philosophy of Quantum Mechanics, Wiley (1974).Google Scholar
[51] E., Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935).Google Scholar
[52] J.D., Trimmer, “The present situation in quantum mechanics: a translation of Schrödinger's cat paradox paper”, Proc. Amer. Phil. Soc. 124, 323–338 (1980).Google Scholar
Also available in pp. 152–167, Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983).
[53] A., Einstein, letter to Schrödinger dated 8 August 1935; available for instance (translated into French) page 238 of [75].
[54] E.P., Wigner, “The problem of measurement”, Am. J. Phys. 31, 6–15 (1963);Google Scholar
reprinted in Symmetries and Reflections, Indiana University Press, pp. 153–170;
or again in Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 324–341.
[55] E.P., Wigner, “Remarks on the mind-body question” ' in The Scientist Speculates, I.J., Good editor, Heinemann, London (1961), pp. 284–302;Google Scholar
reprinted in E.P., Wigner, Symmetries and Reflections, Indiana University Press (1967), pp. 171–184.Google Scholar
[56] A.C., Elitzur and L., Vaidman, “Quantum mechanical interaction-free measurements”, Found. Phys. 23, 987–997 (1993).Google Scholar
[57] P., Kwiat, H., Weinfurter, T., Herzog, A., Zeilinger, and M.A., Kasevich, “Interaction-free measurement”, Phys. Rev. Lett. 74, 4763–4766 (1995).Google Scholar
[58] L., Hardy, “On the existence of empty waves in quantum theory”, Phys. Lett. A 167, 11–16 (1992).Google Scholar
[59] L., Hardy, “Quantum mechanics, local realistic theories, and Lorentz invariant realistic theories”, Phys. Rev. Lett. 68, 2981–2984 (1992).Google Scholar
[60] Tae-Gon, Noh, “Counterfactual quantum cryptography”, Phys. Rev. Lett. 103, 230501 (2009).Google Scholar
[61] A., Petersen, “The philosophy of Niels Bohr”, in Bulletin of the Atomic Scientists XIX, 8–14 (September 1963).Google Scholar
[62] C., Chevalley, “Niels Bohr's words and the Atlantis of Kantianism”, in Niels Bohr and Contemporary Philosophy, J., Faye and H., Folse editors, Dordrecht Kluwer (1994), pp. 33–57.Google Scholar
[63] N., Bohr, “The unity of human knowledge” (October 1960);Google Scholar
Atomic Physics and Human Knowledge, Wiley (1958 and 1963).
[64] C., Norris, “Quantum Theory and the Flight from Realism: Philosophical Responses to Quantum Mechanics”, Routledge (2000), p. 233.Google Scholar
[65] N., Bohr, “Quantum physics and philosophy: causality and complementarity”, in Philosophy in the Mid-Century: A Survey, R., Klibansky editor, La Nuova Italia Editrice, Firenze (1958).Google Scholar
See also “The quantum of action and the description of nature”, in Atomic Theory and the Description of Nature, Cambridge University Press (1934), pp. 92–101.
[66] P., Bokulich and A., Bokulich, “Niels Bohr's generalization of classical mechanics”, Found. Phys. 35, 347–371 (2005).Google Scholar
[67] N., Bohr, “Atomic theory and mechanics”, Nature 116, 845–852 (1925).Google Scholar
[68] N., Bohr, Collected Works, edited by F., Aaserud, Elsevier (2008); see also Collected Works, Complementarity beyond Physics (1928–1962).Google Scholar
[69] M., Born, “Physical aspects of quantum mechanics”, Nature 119, 354–357 (1927).Google Scholar
[70] W., Heisenberg, Physics and Philosophy, Harper & Brothers (1958); Harper Perennial Modern Classics (2007).Google Scholar
[71] J.S., Bell, “Bertlmann's socks and the nature of reality”, J. Physique colloques C2, 41–62 (1981). This article is reprinted in pages 139–158 of [6].Google Scholar
[72] L.D., Landau and E.M., Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Pergamon Press (1958), Butterworth-Heinemann Ltd (1996).Google Scholar
[73] E., Schrödinger, What is Life? Mind and Matter, Cambridge University Press (1944 and 1967), p. 137.Google Scholar
[74] A., Einstein, letter to Schrödinger dated 31 May 1928; available for instance (translated into French) page 213 of [75].
[75] F., Balibar, O., Darrigol, and B., Jech, Albert Einstein, oeuvres choisies I, quanta, Editions du Seuil et Editions du CNRS (1989).Google Scholar
[76] A., Einstein, “Physik und Realität”, Journal of the Franklin Institute 221, 313–347 (1936).Google Scholar
[77] L., de Broglie, “La physique quantique restera-t-elle indéterministe?”, Revue des sciences et de leurs applications 5, 289–311 (1952). French Academy of Sciences, 25 April 1953 session, http://www.sofrphilo.fr/telecharger.php?id=74Google Scholar
[78] J.S., Bell, “Against measurement”, in Sixty Two Years of Uncertainty: Historical, Philosophical and Physical Enquiries into the Foundations of Quantum Mechanics, Erice meeting in August 1989, A.I., Miller editor (Plenum Press); reprinted in pp. 213–231 of the 2004 edition of [6].Google Scholar
[79] L., Rosenfeld, “The measuring process in quantum mechanics”, Suppl. Prog. Theor. Phys., extra number 222 “Commemoration of the thirtieth anniversary of the meson theory by Dr. H. Yukawa” (1965).Google Scholar
[80] K., Gottfried, Quantum Mechanics, Benjamin (1966); second edition, K., Gottfried and Yan, Tun-Mow, Springer (2003).Google Scholar
[81] A.J., Leggett, “Testing the limits of quantum mechanics: motivation, state of play, prospects”, J. Phys. Condens. Matter 14, R415–R451 (2002).Google Scholar
[82] A.J., Leggett, “Macroscopic quantum systems and the quantum theory of measurement”, Supplement of the Progr. Theor. Phys. no 69, 80–100 (1980).Google Scholar
[83] A.J., Leggett, The Problems of Physics, Oxford University Press (1987).Google Scholar
[84] N.G., van Kampen, “Ten theorems about quantum mechanical measurements”, Physica A 153, 97–113 (1988).Google Scholar
[85] B.G., Englert, M.O., Scully, and H., Walther, “Quantum erasure in double-slit interferometers with which-way detectors”, Am. J. Phys. 67, 325–329 (1999); see the first few lines of §IV.Google Scholar
[86] C.A., Fuchs and A., Peres, “Quantum theory needs no ‘interpretation’”, Phys. Today 53, March 2000, 70–71; see also various reactions to this text in the letters of the September 2000 issue.Google Scholar
[87] C.F., von Weizsäcker, Voraussetzungen des naturwissenschaftlichen Denkens, Hanser Verlag (1971) and Herder (1972).Google Scholar
[88] A., Einstein, B., Podolsky, and N., Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777–780 (1935);Google Scholar
or in Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 138–141.
[89] M., Born editor, The Einstein–Born Letters (1916–1955), MacMillan, London (1971).
[90] A., Einstein, letter to Schrödinger dated 19 June 1935; available for instance (translated into French) page 234 of [75].
[91] A., Einstein, “Quantenmechanik und Wirklichkeit”, Dialectica 2, 320–324 (1948).Google Scholar
[92] A., Einstein, “Autobiographical notes” pages 5–94 (especially p. 85) and “Reply to criticism” pages 663–688 (especially pp. 681–3) in Albert Einstein: Philospher-Scientist, edited by P.A., Schilpp, Open Court and Cambridge University Press (1949).Google Scholar
[93] T., Sauer, “An Einstein manuscript on the EPR paradox for spin observables”, Studies in History and Philosophy of Modern Physics 38, 879–887 (2007).Google Scholar
[94] A., Peres, “Einstein, Podolsky, Rosen, and Shannon”, Found. Phys. 35, 511–514 (2005).Google Scholar
[95] D., Home and F., Selleri, “Bell's theorem and the EPR paradox”, Rivista del Nuov. Cim. 14, 1–95 (1991).Google Scholar
[96] D., Bohm, Quantum Theory, Prentice Hall (1951).Google Scholar
[97] N., Bohr, “Quantum mechanics and physical reality”, Nature 136, 65 (1935).Google Scholar
[98] P., Pearle, “Alternative to the orthodox interpretation of quantum theory”, Am. J. Phys. 35, 742–753 (1967).Google Scholar
[99] J.F., Clauser and A., Shimony, “Bell's theorem: experimental tests and implications”, Rep. Progr. Phys. 41, 1881–1927 (1978).Google Scholar
[100] F., Laloë, “The hidden phase of Fock states; quantum non-local effects”, Europ. Phys. J. 33, 87–97 (2005);Google Scholar
“Bose–Einstein condensates and quantum non-locality”, in Beyond the Quantum, T.M., Nieuwenhiuzen et al. editors, World Scientific (2007).
[101] P.W., Anderson, in The Lesson of Quantum Theory, editors J., de Boer, E., Dahl, and O., Ulfbeck, Elsevier, New York (1986).Google Scholar
[102] W.J., Mullin and F., Laloë, “Quantum non-local effects with Bose–Einstein condensates”, Phys. Rev. Lett. 99, 150401 (2007);Google Scholar
EPR argument and Bell inequalities for Bose–Einstein spin condensates”, Phys. Rev. A 77, 022108 (2008).
[103] J.S., Bell, “On the Einstein–Podolsky–Rosen paradox”, Physics I, 195–200 (1964); reprinted in Chapter 2 of [6].Google Scholar
[104] F., Laloë, “Les surprenantes prédictions de la mécanique quantique”, La Recherche no. 182, 1358–1367 (November 1986).Google Scholar
[105] F., Laloë, “Cadre général de la mécanique quantique, les objections de Einstein, Podolsky et Rosen”, J. Physique Colloques C-2, 1–40 (1981). See also the other articles following in this issue, especially that by J. Bell on Bertlmann socks, which is a classic!Google Scholar
[106] P., Eberhard, “Bell's theorem without hidden variables”, Nuov. Cim. 38 B, 75–79 (1977);
Bell's theorem and the different concepts of locality”, Nuov. Cim. 46 B, 392–419 (1978).
[107] J.F., Clauser, M.A., Horne, A., Shimony, and R.A., Holt, “Proposed experiment to test local hidden-variables theories”, Phys. Rev. Lett. 23, 880–884 (1969).Google Scholar
[108] A., Peres, “Unperformed experiments have no results”, Am. J. Phys. 46, 745–747 (1978).Google Scholar
[109] J.A., Wheeler, “Niels Bohr in today's words”' in Quantum Theory and Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 182–213.Google Scholar
[110] E.P., Wigner, “On hidden variables and quantum mechanical probabilities”, Am. J. Phys. 38, 1005–1009 (1970).Google Scholar
[111] K., Hess and W., Philipp, “The Bell theorem as a special case of a theorem of Bass”, Found. Phys. 35, 1749–1767 (2005).Google Scholar
[112] J., Bass, “Sur la compatibilité des fonctions de répartition”, C.R. Académie des Sciences 240, 839–841 (1955).Google Scholar
[113] C.A., Kocher and E.D., Commins, “Polarization correlation of photons emitted in an atomic cascade”, Phys. Rev. Lett. 18, 575–577 (1967).Google Scholar
[114] S.J., Freedman and J.F., Clauser, “Experimental test of local hidden variable theories”, Phys. Rev. Lett. 28, 938–941 (1972); S.J. Freedman, thesis, University of California, Berkeley.Google Scholar
[115] J.F., Clauser, “Experimental investigations of a polarization correlation anomaly”, Phys. Rev. Lett. 36, 1223 (1976).Google Scholar
[116] E.S., Fry and R.C., Thompson, “Experimental test of local hidden variable theories”, Phys. Rev. Lett. 37, 465–468 (1976).Google Scholar
[117] M., Lamehi-Rachti and W., Mittig, “Quantum mechanics and hidden variables: a test of Bell's inequality by the measurement of the spin correlation in low energy proton-proton scattering”, Phys. Rev. D 14, 2543–2555 (1976).Google Scholar
[118] A., Aspect, P., Grangier, and G., Roger, “Experimental tests of realistic local theories via Bell's theorem”, Phys. Rev. Lett. 47, 460–463 (1981).Google Scholar
[119] A., Aspect, P., Grangier and G., Roger, “Experimental realization of Einstein–Podolsky–Bohm Gedanken experiment: a new violation of Bell's inequalities”, Phys. Rev. Lett. 49, 91–94 (1982).Google Scholar
[120] A., Aspect, J., Dalibard, and G., Roger, “Experimental tests of Bell's inequalities using time varying analyzers”, Phys. Rev. Lett. 49, 1804–1807 (1982).Google Scholar
[121] W., Perrie, A.J., Duncan, H.J., Beyer, and H., Kleinpoppen, “Polarization correlations of the two photons emitted by metastable atomic deuterium: a test of Bell's inequality”, Phys. Rev. Lett. 54, 1790–1793 (1985).Google Scholar
[122] T.E., Kiess, Y.E., Shih, A.V., Sergienko, and C.O., Alley, “Einstein–Podolsky–Rosen–Bohm experiments using pairs of light quanta produced by type-II parametric down conversion”, Phys. Rev. Lett. 71, 3893–3897 (1993).Google Scholar
[123] W., Tittel, J., Brendel, H., Zbinden, and N., Gisin, “Violations of Bell inequalities by photons more than 10 km apart”, Phys. Rev. Lett. 81, 3563–3566 (1998).Google Scholar
[124] T., Scheidl, R., Ursin, J., Kofler, S., Ramelow, X.S., Ma, T., Herbst, L., Ratschbacher, A., Fedrizzi, N.K., Langford, T., Jennewein, and A., Zeilinger, “Violations of local realism with freedom of choice”, Proc. Nat. Acad. Sciences 107, 19708–19713 (November 16, 2010).Google Scholar
[125] J.C., Howell, A., Lamas-Linares, and D., Bouwmeester, “Experimental violation of a spin-1 Bell inequality using maximally entangled four photon states”, Phys. Rev. Lett. 88, 030401 (2002).Google Scholar
[126] N.D., Mermin, “Bringing home the atomic world: quantum mysteries for anybody”, Am. J. Phys. 49, 940–943 (1981).Google Scholar
[127] A., Fine, “Hidden variables, joint probability, and the Bell inequalities”, Phys. Rev. Lett. 48, 291–295 (1982).Google Scholar
[128] J.S., Bell, “Introduction to the hidden variable question”, contribution to Foundations of Quantum Mechanics, Proceedings of the International School of Physics Enrico Fermi, course II, Academic, New York (1971), p. 171; reprinted in pages 29–39 of [6].Google Scholar
[129] J.D., Franson, “Bell inequality for position and time”, Phys. Rev. Lett. 62, 2205–2208 (1989).Google Scholar
[130] J., Brendel, E., Mohler, and W., Martienssen, “Experimental test of Bell's inequality for energy and time”, Eur. Phys. Lett. 20, 575–580 (1992).Google Scholar
[131] V., Capasso, D., Fortunato, and F., Selleri, “Sensitive observables of quantum mechanics”, Int. J. Theor. Phys. 7, 319–326 (1973).Google Scholar
[132] N., Gisin, “Bell's inequality holds for all non-product states”, Phys. Lett. A154, 201–202 (1991).Google Scholar
[133] N., Gisin and A., Peres, “Maximal violation of Bell's inequality for arbitrarily large spin”, Phys. Lett. A 162, 15–17 (1992).Google Scholar
[134] S., Popescu and D., Rohrlich, “Generic quantum non-locality”, Phys. Lett. A166, 293–297 (1992).Google Scholar
[135] S.L., Braunstein, A., Mann, and M., Revzen, “Maximal violation of Bell inequalities for mixed states”, Phys. Rev. Lett. 68, 3259–3261 (1992).Google Scholar
[136] R.F., Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden variable model”, Phys. Rev. A 40, 4277–4281 (1989).Google Scholar
[137] S., Popescu, “Bell's inequalities and density matrices: revealing ‘hidden’ nonlocality”, Phys. Rev. Lett. 74, 2619–2622 (1995).Google Scholar
[138] A., Peres, “Collective tests for quantum nonlocality”, Phys. Rev. A 54, 2685–2689 (1996).Google Scholar
[139] B., Yurke and D., Stoler, “Bell's-inequality experiments using independent-particle sources”, Phys. Rev. A 46, 2229–2234 (1992).Google Scholar
[140] F., Laloë and W.J., Mullin, “Interferometry with independent Bose–Einstein condensates: parity as an EPR/Bell quantum variable”, Eur. Phys. J. B 70, 377–396 (2009).Google Scholar
[141] A.J., Leggett and A., Garg, “Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?”, Phys. Rev. Lett. 54, 857–860 (1985).Google Scholar
[142] S.M., Tan, D.F., Walls, and M.J., Collett, “Nonlocality of a single photon”, Phys. Rev. Lett. 66, 252–255 (1991).Google Scholar
[143] L., Hardy, “Nonlocality of a single photon revisited”, Phys. Rev. Lett. 73, 2279–2283 (1994).Google Scholar
[144] L., Heaney, A., Cabello, M.F., Santos, and V., Vedral, “Extreme non-locality with one photon”, arXiv: 0911.0770v3 [quant-ph] (2009); New J. Phys. 13, 053054 (2011).Google Scholar
[145] B.F., Toner and D., Bacon, “Communication cost of simulating Bell correlations”, Phys. Rev. Lett. 91, 187904 (2003).Google Scholar
[146] B.S., Cirel'son, “Quantum generalizations of Bell's inequality” ' Lett. Math. Phys. 4, 93–100 (1980).Google Scholar
[147] L.J., Landau, “On the violations of Bell's inequality in quantum theory”, Phys. Lett. A 120, 54–56 (1987).Google Scholar
[148] J.P., Jarrett, “On the physical significance of the locality conditions in the Bell arguments”, Noûs 18, 569–589 (1984).Google Scholar
[149] L.E., Ballentine and J.P., Jarrett, “Bell's theorem: does quantum mechanics contradict relativity?”, Am. J. Phys. 55, 696–701 (1987).Google Scholar
[150] A., Shimony, “Events and processes in the quantum world”, in Quantum Concepts in Space and Time, edited by R., Penrose and C.J., Isham, Oxford University Press (1986), pp. 182–203.Google Scholar
[151] S., Popescu and D., Rohrlich, “Quantum nonlocality as an axiom”, Found. Phys. 24, 379–385 (1994).Google Scholar
[152] J., Barrett, N., Linden, S., Massar, S., Pironio, S., Popescu, and D., Roberts, “Non-local correlations as an information-theoretic resource”, Phys. Rev. A71, 022101 (2005).Google Scholar
[153] N., Gisin, “Hidden quantum nonlocality revealed by local filters”, Phys. Lett. A 210, 151–156 (1996); see in particular §3.Google Scholar
[154] D.S., Tasca, S.P., Walborn, F., Toscano, and P.H., Souto Ribeiro, “Observation of tunable Popescu–Rohrlich correlations through postselection of a Gaussian state”, Phys. Rev. A80, 030101 (2009).Google Scholar
[155] I., Gerhardt, Q., Liu, A., Lamas-Linares, J., Skaar, V., Scarani, V., Makarov, and C., Kurtsiefer, “Experimentally faking the violation of Bell's inequalities”, Phys. Rev. Lett. 107, 170404 (2011).Google Scholar
[156] L., Masanes, A., Acin, and N., Gisin, “General properties of nonsignalling theories”, Phys. Rev. A 73, 012112 (2006).Google Scholar
[157] G., Brassard, H., Buhrman, N., Linden, A.A., Méthot, A., Tapp, and F., Unger, “Limit on nonlocality in any world in which communication complexity is not trivial”, Phys. Rev. Lett. 96, 250401 (2006).Google Scholar
[158] M., Pawlowski, T., Paterek, D., Kaszlikowski, V., Scarani, A., Winter, and D., Rohrlich, “Information causality as a physical principle”, Nature 461, 1101–1104 (2009).Google Scholar
[159] H., Barnum, S., Beigi, S., Boixo, M.B., Elliott, and S., Wehner, “Local quantum measurements and no-signaling imply quantum correlations”, Phys. Rev. Lett. 104, 140401 (2010).Google Scholar
[160] M.L., Almeida, J.-D., Bancal, N., Brunner, A., Acin, N., Gisin, and S., Pironio, “Guess your neighbor's input: a multipartite nonlocal game with no quantum advantage”, Phys. Rev. Lett. 104, 230404 (2010).Google Scholar
[161] P., Pearle, “Hidden-variable example based upon data rejection”, Phys. Rev. D 2, 1418–1425 (1970).Google Scholar
[162] J.F., Clauser and M.A., Horne, “Experimental consequences of objective local theories”, Phys. Rev. D 10, 526–535 (1974).Google Scholar
[163] J.S., Bell, Oral presentation to the EGAS conference in Paris, July 1979 (published in an abridged version in the next reference).
[164] J.S., Bell, “Atomic cascade photons and quantum mechanical non-locality”, Comments on Atomic and Molecular Physics 9, 121 (1980); CERN preprint TH.2053 and TH 2252; Chapter 13 of [6].Google Scholar
[165] P.H., Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment”, Phys. Rev. A 47, R747–R750 (1993).Google Scholar
[166] P.G., Kwiat, P.H., Eberhard, A.M., Steinberg, and R.Y., Chiao, “Proposal for a loophole-free Bell inequality experiment”, Phys. Rev. A 49, 3209–3220 (1994).Google Scholar
[167] E.S., Fry, T., Walther, and S., Li, “Proposal for a loophole-free test of the Bell inequalities”, Phys. Rev. A 52, 4381–4395 (1995).Google Scholar
[168] R., Garcia-Patron, J., Fiurasek, N.J., Cerf, J., Wenger, R., Tualle-Brouri, and P., Grangier, “Proposal for a loophole-free Bell test using homodyne detection”, Phys. Rev. Lett 93, 130409 (2004).Google Scholar
[169] J., Wenger, M., Hafezi, F., Grosshans, R., Tualle-Brouri, and P., Grangier, “Maximal violation of Bell inequalities using continuous-variable measurements”, Phys. Rev. A67, 012105 (2003).Google Scholar
[170] M.A., Rowe, D., Kielpinski, V., Meyer, C.A., Sackett, W.M., Itano, C., Monroe, and D.J., Wineland, “Experimental violation of a Bell's inequality with efficient detection”, Nature 409, 791–794 (2001).Google Scholar
[171] C., Simon and W.T.M., Irvine, “Robust long-distance entanglement and a loophole-free Bell test with ions and photons”, Phys. Rev. Lett. 91, 110405 (2003).Google Scholar
[172] D.N., Matsukevich, T., Chanelière, S.D., Jenkins, S.Y., Lan, T.A.B., Kennedy, and A., Kuzmich, “Entanglement of remote atomic qubits”, Phys. Rev. Lett. 96, 030405 (2006).Google Scholar
[173] D.N., Matsukevich, P., Maunz, D.L., Moehring, S., Olmschenk, and C., Monroe, “Bell inequality violation with two remote atomic qubits”, Phys. Rev. Lett. 100, 150404 (2008).Google Scholar
[174] M., Ansmann, H., Wang, R.C., Bialczak, M., Hofheinz, E., Lucero, M., Neeley, A.D., O'Connell, D., Sank, M., Weides, J., Wenner, A.N., Cleland, and J.M., Martinis, “Violation of Bell's inequality in Josephson phase qubits”, Nature 461, 504–506 (2009).Google Scholar
[175] G., Weihs, T., Jennewein, C., Simon, H., Weinfurter, and A., Zeilinger, “Violation of Bell's inequality under strict Einstein locality conditions”, Phys. Rev. Lett. 81, 5039–5043 (1998).Google Scholar
[176] C.H., Brans, “Bell's theorem does not eliminate fully causal hidden variables”, Int. J. Theor. Phys. 27, 219–226 (1988).
[177] J.S., Bell, “Free variables and local causality”, Chapter 12 of [6].
[178] M.J.W., Hall, “Local deterministic model of singlet state correlations based on relaxing measurement independence”, Phys. Rev. Lett. 105, 250404 (2010).Google Scholar
[179] J.S., Bell, “La nouvelle cuisine”, §24 of the second edition of [6].
[180] H.P., Stapp, “Whiteheadian approach to quantum theory and the generalized Bell's theorem”, Found. Phys. 9, 1–25 (1979);Google Scholar
Bell's theorem and the foundations of quantum physics”, Am. J. Phys. 53, 306–317 (1985).
[181] H.P., Stapp, “Nonlocal character of quantum theory”, Am. J. Phys. 65, 300–304 (1997).Google Scholar
[182] D., Mermin, “Nonlocal character of quantum theory?”, Am. J. Phys. 66, 920–924 (1998).Google Scholar
[183] M., Redhead, Incompleteness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics, Chapter 4, Clarendon Press (1988).Google Scholar
[184] H.P., Stapp, “Meaning of counterfactual statements in quantum physics”, Am. J. Phys. 66, 924–926 (1998).Google Scholar
[185] B., d'Espagnat, “Nonseparability and the tentative descriptions of reality”, Phys. Rep. 110, 201–264 (1984).Google Scholar
[186] B., d'Espagnat, Reality and the Physicist, Cambridge University Press (1989).Google Scholar
[187] R.B., Griffiths, “Consistent quantum counterfactuals”, Phys. Rev. A 60, R5–R8 (1999).Google Scholar
[188] D.M., Greenberger, M.A., Horne, and A., Zeilinger, in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, M., Kafatos editor, Kluwer (1989), pp. 69–72; this reference is not always easy to find, but one can also read the following article, published one year later.Google Scholar
[189] D.M., Greenberger, M.A., Horne, A., Shimony, and A., Zeilinger, “Bell's theorem without inequalities”, Am. J. Phys. 58, 1131–1143 (1990).Google Scholar
[190] N.D., Mermin, “Quantum mysteries revisited”, Am. J. Phys. 58, 731–733 (1990).Google Scholar
[191] D., Bouwmeester, J.W., Pan, M., Daniell, H., Weinfurter, and A., Zeilinger, “Observation of three-photon Greenberger–Horne–Zeilinger entanglement”, Phys. Rev. Lett. 82, 1345–1349 (1999).Google Scholar
[192] J.W., Pan, D., Bouwmeester, M., Daniell, H., Weinfurter, and A., Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement”, Nature 403, 515–519 (2000).Google Scholar
[193] Z., Zhao, T., Yang, Y.-A., Chen, A.-N., Zhang, M., Zukowski, and J.W., Pan, “Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement”, Phys. Rev. Lett. 91, 180401 (2003).Google Scholar
[194] R., Laflamme, E., Knill, W.H., Zurek, P., Catasi, and S.V.S., Mariappan, “NMR GHZ”, arXiv: quant-phys/9709025 (1997) and Phil. Trans. Roy. Soc. Lond. A 356, 1941–1948 (1998).Google Scholar
[195] S., Lloyd, “Microscopic analogs of the Greenberger–Horne–Zeilinger experiment”, Phys. Rev. A 57, R1473–1476 (1998).Google Scholar
[196] U., Sakaguchi, H., Ozawa, C., Amano, and T., Fokumi, “Microscopic analogs of the Greenberger–Horne–Zeilinger experiment on an NMR quantum computer”, Phys. Rev. 60, 1906–1911 (1999).Google Scholar
[197] N.D., Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states”, Phys. Rev. Lett. 65, 1838–1841 (1990).Google Scholar
[198] J., Acacio de Barros, and P., Suppes, “Inequalities for dealing with detector efficiencies in Greenberger–Horne–Zeilinger experiments”, Phys. Rev. Lett. 84, 793–797 (2000).Google Scholar
[199] B., Yurke and D., Stoler, “Einstein–Podolsky–Rosen effects from independent particle sources”, Phys. Rev. Lett. 68, 1251–1254 (1992).Google Scholar
[200] S., Massar and S., Pironio, “Greenberger–Horne–Zeilinger paradox for continuous variables”, Phys. Rev. A 64, 062108 (2001).Google Scholar
[201] H.J., Bernstein, D.M., Greenberger, M.A., Horne, and A., Zeilinger, “Bell theorem without inequalities for two spinless particles”, Phys. Rev. A 47, 78–84 (1993).Google Scholar
[202] F., Laloë, “Correlating more than two particles in quantum mechanics”, Current Science 68, 1026–1035 (1995); http://hal.archives-ouvertes.fr/hal-00001443.Google Scholar
[203] D.J., Wineland, J.J., Bollinger, W.M., Itano, F.L., Moore, and D.J., Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy”, Phys. Rev. A 46, R6797–6800 (1992).Google Scholar
[204] J.J, Bollinger, W.M., Itano, D.J., Wineland, and D.J., Heinzen, “Optimal frequency measurements with maximally correlated states”, Phys. Rev. A 54, R4649–4652 (1996).Google Scholar
[205] J.A., Dunningham, K., Burnett, and S.M., Barnett, “Interferometry below the standard limit with Bose–Einstein condensates”, Phys. Rev. Lett. 89, 150401 (2002).Google Scholar
[206] A.N., Boto, P., Kok, D.S., Abrams, S.L., Braunstein, C.P., Williams, and J.P., Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit”, Phys. Rev. Lett. 85, 2733–2736 (2000).Google Scholar
[207] G., Björk, L.L., Sanchez-Soto, and J., Söderholm, “Entangled state lithography: tailoring any pattern with a single state”, Phys. Rev. Lett. 86, 4516–4519 (2001).Google Scholar
[208] M., d'Angelo, M.V., Chekhova, and Y., Shih, “Two-photon diffraction and quantum lithography”, Phys. Rev. Lett. 87, 013602 (2001).Google Scholar
[209] A., Zeilinger, M.A., Horne, H., Weinfurter, and M., Zukowski, “Three-particle entanglements from two entangled pairs”, Phys. Rev. Lett. 78, 3031–3034 (1997).Google Scholar
[210] K., Molmer and A., Sorensen, “Multiparticle entanglement of hot trapped ions”, Phys. Rev. Lett. 82, 1835–1838 (1999).Google Scholar
[211] C.A., Sackett, D., Klepinski, B.E., King, C., Langer, V., Meyer, C.J., Myatt, M., Rowe, O.A., Turchette, W.M., Itano, D.J., Wineland, and C., Monroe, “Experimental entanglement of four particles”, Nature 404, 256–259 (2000).Google Scholar
[212] A., Cabello, “Violating Bell's inequalities beyond Cirelson's bound”, Phys. Rev. Lett. 88, 060403 (2002).Google Scholar
[213] S., Marcovitch, B., Reznik, and L., Vaidman, “Quantum mechanical realization of a Popescu–Rohrlich box”, Phys. Rev. A 75, 022102 (2007).Google Scholar
[214] N.D., Mermin, “What's wrong with this temptation?”, Phys. Today 47, June 1994, pp. 9–11;Google Scholar
Quantum mysteries refined”, Am. J. Phys. 62, 880–887 (1994).
[215] D., Boschi, S., Branca, F., De Martini, and L., Hardy, “Ladder proof of nonlocality without inequalities: theoretical and experimental results”, Phys. Rev. Lett. 79, 2755–2758 (1997).Google Scholar
[216] S., Goldstein, “Nonlocality without inequalities for almost all entangled states for two particles”, Phys. Rev. Lett. 72, 1951–1954 (1994).Google Scholar
[217] G., Ghirardi and L., Marinatto, “Proofs of nonlocality without inequalities revisited”, Phys. Lett. A 372, 1982–1985 (2008).Google Scholar
[218] S., Kochen and E.P., Specker, “The problem of hidden variables in quantum mechanics”, J. Math. Mech. 17, 59–87 (1967).Google Scholar
[219] F., Belifante, Survey of Hidden Variables Theories, Pergamon Press (1973).Google Scholar
[220] A., Cabello, J.M., Estebaranz, and G., Garcia-Alcaine, “Bell–Kochen–Specker theorem: a proof with 18 vectors”, Phys. Lett. A 212, 183–187 (1996).Google Scholar
[221] A., Peres, “Incompatible results of quantum measurements”, Phys. Lett. A 151, 107–108 (1990).Google Scholar
[222] N.D., Mermin, “Simple unified form for the major no-hidden-variables theorems”, Phys. Rev. Lett. 65, 3373 (1990).Google Scholar
[223] A., Cabello, “Experimentally testable state-independent quantum contextuality”, Phys. Rev. Lett. 101, 210401 (2008).Google Scholar
[224] A., Cabello and G., Garcia-Alcaine, “Proposed experimental tests of the Bell–Kochen–Specker theorem”, Phys. Rev. Lett. 80, 1797–1799 (1998).Google Scholar
[225] C., Simon, M., Zukowski, H., Weinfurter, and A., Zeilinger, “Feasible Kochen–Specker experiment with single particles”, Phys. Rev. Lett. 85, 1783–1786 (2000).Google Scholar
[226] Y.-F., Huang, C.-F., Li, Y.-S., Zhang, J.-W., Pan, and G.-C., Guo, “Experimental test of the Kochen–Specker theorem with single photons”, Phys. Rev. Lett. 90, 250401 (2003).Google Scholar
[227] A.A., Klyachko, M.A., Can, S., Binicioglu, and A.S., Shumovsky, “Simple tests for hiddden variables in spin-1 systems”, Phys. Rev. Lett. 101, 020403 (2008).Google Scholar
[228] R., Lapkiewicz, P., Li, C., Schaeff, N.K., Langford, S., Ramelow, M., Wieskiak, and A., Zeilinger, “Experimental non-classicality of an indivisible quantum system”, Nature 474, 490–493 (2011).Google Scholar
[229] Y., Hasegawa, R., Loidl, G., Badurek, M., Baron, and H., Rauch, “Quantum contextuality in a single-neutron optical experiment”, Phys. Rev. Lett. 97, 230401 (2006).Google Scholar
[230] G., Kirchmair, F., Zähringer, R., Gerritsma, M., Kleinmann, O., Gühne, A., Cabello, R., Blatt, and C.F., Roos, “State-independent experimental test of quantum contextuality”, Nature 460, 494–497 (2009).Google Scholar
[231] O., Moussa, C.A., Ryan, D.G., Gory, and R., Laflamme, “Testing contextuality on quantum ensembles with one clean qubit”, Phys. Rev. Lett. 104, 160501 (2010).Google Scholar
[232] P., Grangier, “Contextual objectivity: a realistic interpretation of quantum mechanics”, Eur. J. Phys. 23, 331–337 (2002); arXiv: quant-ph/0012122 (2000), 0111154 (2001), 0301001 (2003), and 0407025 (2004).Google Scholar
[233] E., Schrödinger, “Discussion of probability relations between separated systems”, Proc. Cambridge Phil. Soc. 31, 555 (1935);Google Scholar
Probability relations between separated systems”, Proc. Cambridge Phil. Soc. 32, 446 (1936).CrossRef
[234] http://en.wikiquote.org/wiki/Werner_Heisenberg.
[235] M., Horodecki, P., Horodecki, and R., Horodecki, “Limits for entanglement measures”, Phys. Rev. Lett. 84, 2014–2017 (2000).Google Scholar
[236] M. B., Plenio and S., Virmani, “An introduction to entanglement measures”, quant-ph/0504163 (2006); Quant. Info. Comput. 7, 1–51 (2007).Google Scholar
[237] A., Méthot and V., Scarani, “An anomaly of non-locality”, quant-ph/0601210 (2006); Quant. Info. Comput. 7, 157–170 (2007).Google Scholar
[238] V., Coffman, J., Kundu, and W.K., Wootters, “Distributed enganglement”, Phys. Rev. A 61, 052306 (2000).Google Scholar
[239] T.J., Osborne and F., Verstraete, “General monogamy inequality for bipartite qubit entanglement”, Phys. Rev. Lett. 96, 220503 (2006).Google Scholar
[240] B., Toner, “Monogamy of non-local quantum correlations”, Proc. Roy. Soc. A 465, 59–68 (2009).Google Scholar
[241] B., Toner and F., Verstraete, “Monogamy of Bell correlations and Tsirelson's bound”, quant-ph/0611001 (2006).Google Scholar
[242] A., Peres, “Separability criterion for density matrices”, Phys. Rev. Lett. 77, 1413–1415 (1996).Google Scholar
[243] M., Horodecki, P., Horodecki, and R., Horodecki, “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A 223, 1–8 (1996).Google Scholar
[244] E., Hagley, X., Maître, G., Nogues, C., Wunderlich, M., Brune, J.M., Raimond, and S., Haroche, “Generation of Einstein–Podolsky–Rosen pairs of atoms”, Phys. Rev. Lett. 79, 1–5 (1997).Google Scholar
[245] Q.A., Turchette, C.S., Wood, B.E., King, C.J., Myatt, D., Leibfried, W.M., Itano, C., Monroe, and D.J., Wineland, “Deterministic entanglement of two trapped ions”, Phys. Rev. Lett. 81, 3631–4 (1998).Google Scholar
[246] J.I., Cirac and P., Zoller, “Quantum computations with cold trapped ions”, Phys. Rev. Lett. 74, 4091–4094 (1995).Google Scholar
[247] R., Blatt and D., Wineland, “Entangled states of trapped atomic ions”, Nature 453, 1008–1015 (2008).Google Scholar
[248] M., Steffen, M.A., Ansmann, R.C., Bialczak, N., Katz, E., Lucero, R., McDermott, M., Neeley, E.M., Weig, A.N., Cleland, and J.M., Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography”, Science 313, 1423–1425 (2006).Google Scholar
[249] M., Zukowski, A., Zeilinger, M.A., Horne, and A.K., Ekert, “Event-ready-detectors Bell experiment via entanglement swapping”, Phys. Rev. Lett. 71, 4287–4290 (1993).Google Scholar
[250] J.W., Pan, D., Bouwmeester, H., Weinfurter, and A., Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted”, Phys. Rev. Lett. 80, 3891–3894 (1998).Google Scholar
[251] D., Leibfried, E., Knill, S., Seidelin, J., Britton, R.B., Blakestad, J., Chiaverini, D.B., Hume, W.M., Itano, J.D., Jost, C., Langer, R., Ozeri, R., Reichle, and D.J., Wineland, “Creation of a six-atom ‘Schrödinger cat' state”, Nature 438, 639–642 (2005).Google Scholar
[252] H., Häffner, W., Hänsel, C.F., Roos, J., Benhelm, D., Chek-al-kar, M., Chwalla, T., Körber, U.D., Rapol, M., Riebe, P.O., Schmidt, C., Becher, O., Gühne, W., Dür, and R., Blatt, “Scalable multiparticle entanglemùent of trapped ions”, Nature 438, 643–646 (2005).Google Scholar
[253] M., Radmark, M., Zukowski, and M., Bourennane, “Experimental tests of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state”, Phys. Rev. Lett. 103, 150501 (2009).Google Scholar
[254] M., Radmark, M., Wiesniak, M., Zukowski, and M., Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source”, Phys. Rev. A 80, 040302(R) (2009).Google Scholar
[255] J.F., Poyatos, J.I., Cirac, and P., Zoller, “Quantum reservoir engineering with laser cooled trapped ions”, Phys. Rev. Lett. 77, 4728–4731 (1996).Google Scholar
[256] S., Diehl, A., Micheli, A., Kantian, B., Kraus, H.P., Büchler, and P., Zoller, “Quantum states and phases in driven open quantum systems with cold atoms”, Nature Physics 4, 878–883 (2008).Google Scholar
[257] B., Kraus, H.P., Büchler, S., Diehl, A., Kantian, A., Micheli, and P., Zoller, “Preparation of entangled states by quantum Markov processes”, Phys. Rev. A 78, 042307 (2008).Google Scholar
[258] M., Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics”, Rev. Mod. Phys. 76, 1267–1305 (2005).Google Scholar
[259] M., Brune, E., Hagley, J., Dreyer, X., Maître, A., Maali, C., Wunderlich, J.M., Raimond, and S., Haroche, “Observing the progressive decoherence of the ‘meter' in a quantum measurement”, Phys. Rev. Lett. 77, 4887–4890 (1996).Google Scholar
[260] C.H., Bennett, G., Brassard, S., Popescu, B., Schumacher, J.A., Smolin, and W.K., Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76, 722–725 (1996).Google Scholar
[261] C.H., Bennett, H., Bernstein, S., Popescu, and B., Schumacher, “Concentrating partial entanglement by local operations”, Phys. Rev. A 53, 2046–2052 (1996).Google Scholar
[262] C.H., Bennett, D.P., DiVincenzo, J.A., Smolin, and W.K., Wootters, “Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 3824–3851 (1996).Google Scholar
[263] J.W., Pan, C., Simon, C., Brukner, and A., Zeilinger, “Entanglement purification for quantum communication”, Nature 410, 1067–1070 (2001).Google Scholar
[264] S., Haroche and J.-M., Raimond, Exploring the Quantum: Atoms, Cavities and Photons, Oxford University Press (2008).Google Scholar
[265] C., Cohen-Tannoudji, J., Dupont-Roc, and G., Gryndberg, Atom–Photon Interactions, Wiley (1992).Google Scholar
[266] W.K., Wootters and W.H., Zurek, “A single quantum cannot be cloned”, Nature 299, 802–803 (1982).Google Scholar
[267] D., Dieks, “Communication by EPR devices”, Phys. Lett. A 92, 271–272 (1982).Google Scholar
[268] A., Peres, “How the no-cloning theorem got its name”, Fortschritte der Phys. 51, 458–461 (2003).Google Scholar
[269] N., Gisin and S., Massar, “Optimal quantum cloning machines”, Phys. Rev. Lett. 79, 2153–2156 (1997).Google Scholar
[270] D.T., Smithey, M., Beck, M.G., Raymer, and A., Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum”, Phys. Rev. Lett. 70, 1244–1247 (1993).Google Scholar
[271] D.T., Smithey, M., Beck, J., Cooper, and M.G., Raymer, “Measurement of number-phase uncertainty relations of optical fields”, Phys. Rev. A 48, 3159–3167 (1993).Google Scholar
[272] U., Leonhardt, Measuring the Quantum State of Light, Cambridge University Press (1997).Google Scholar
[273] Y., Aharonov and D., Rohrlich, Quantum Paradoxes; Quantum Theory for the Perplexed, Wiley-VCH (2005).Google Scholar
[274] Y., Aharonov, D.Z., Albert, and L., Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100”, Phys. Rev. Lett. 60, 1351–1354 (1988).Google Scholar
[275] Y., Aharonov, S., Popescu, and J., Tollaksen, “A time-symmetric formulation of quantum mechanics”, Physics Today (November 2010), 27–32.Google Scholar
[276] J.S., Lundeen, B., Sutherland, A., Patel, C., Stewart, and C., Bamber, “Direct measurement of the quantum wavefunction”, Nature 474, 188–191 (2011).Google Scholar
[277] A.E., Allahverdyan, R., Balian, and Th. M., Nieuwenhuizen, “Determining a quantum state by means of a single apparatus”, Phys. Rev. Lett. 92, 120402 (2004).Google Scholar
[278] C.H., Bennett and G., Brassard, “Quantum cryptography: public key distribution and coin tossing”, in Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore India (1984), pp. 175–179.Google Scholar
[279] A.K., Ekert, “Quantum cryptography based on Bell's theorem”, Phys. Rev. Lett. 67, 661–663 (1991).Google Scholar
[280] C.H., Bennett, G., Brassard, and N.D., Mermin, “Quantum cryptography without Bell's theorem”, Phys. Rev. Lett. 68, 557–559 (1992).Google Scholar
[281] C.H., Bennett, G., Brassard, and A.K., Ekert, “Quantum cryptography”, Scientific American 267, 50–57 (October 1992).Google Scholar
[282] N., Gisin, G., Ribordy, W., Tittel, and H., Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 74, 145–195 (2002).Google Scholar
[283] C.H., Bennett, “Quantum cryptography using any two nonorthogonal states”, Phys. Rev. Lett. 68, 3121–3124 (1992).Google Scholar
[284] P., Townsend, J.G., Rarity, and P.R., Tapster, “Single photon interference in a 10 km-long optical fiber interferometer”, Electron. Lett. 29, 634–635 (1993).Google Scholar
[285] C.H., Bennett, G., Brassard, C., Crépeau, R., Jozsa, A., Peres, and W.L., Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett. 70, 1895–1898 (1993).Google Scholar
[286] D., Bouwmeester, J.W., Pan, K., Mattle, M., Eibl, H., Weinfurter, and A., Zeilinger, “Experimental quantum teleportation”, Nature 390, 575–579 (1997).Google Scholar
[287] A., Peres, Quantum Theory: Concepts and Methods, Kluwer (1993); see also [94].Google Scholar
[288] M., Le Bellac, Physique Quantique, 2nd edition, CNRS Editions and EDP Sciences (2007).Google Scholar
[289] S., Massar and S., Popescu, “Optimal extraction of information from finite quantum ensembles”, Phys. Rev. Lett. 74, 1259–1263 (1995).Google Scholar
[290] S., Popescu, “Bell's inequalities versus teleportation: what is nonlocality?”, Phys. Rev. Lett. 72, 797–800 (1994); arXiv: quant-ph/9501020 (1995).Google Scholar
[291] T., Sudbury, “The fastest way from A to B”, Nature 390, 551–552 (1997).Google Scholar
[292] G.P., Collins, “Quantum teleportation channels opened in Rome and Innsbruck”, Phys. Today 51, 18–21 (February 1998).Google Scholar
[293] Y., Xia, J., Song, P.-M., Lu, and H.-S., Song, “Teleportation of an N-photon Greenberger–Horne-Zeilinger (GHZ) polarization-entangled state using linear elements”, J. Opt. Soc. Am. B 27, A1–A6 (2010).Google Scholar
[294] X.M., Jin, J.G., Ren, B., Yang, Z.H., Yi, F., Zhou, X.F., Xu, S.K., Wang, D., Yang, Y.F., Hu, S., Jiang, T., Yang, H., Yin, K., Chen, C.Z., Peng, and J.W., Pan, “Experimental free-space quantum teleportation”, Nature Photonics 4, 376–381 (2010).Google Scholar
[295] C.H., Bennett, “Quantum information and computation”, Phys. Today 48, 24–30 (October 1995).Google Scholar
[296] D.P., DiVincenzo, “Quantum computation”, Science 270, 255–261 (October 1995).Google Scholar
[297] C.H., Bennett, and D.P., DiVicenzo, “Quantum information and computation”, Science 404, 247–255 (2000).Google Scholar
[298] D., Bouwmeester, A.K., Ekert, and A., Zeilinger editors, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer (2000).
[299] D., Mermin, Quantum Computer Science: An Introduction, Cambridge University Press (2007).Google Scholar
[300] D., Deutsch, “Quantum theory, the Church–Turing principle and the universal quantum computer”, Proc. Roy. Soc. A 400, 97–117 (1985).Google Scholar
[301] http://en.wikipedia.org/wiki/History_of_quantum_computing
[302] M., Le Bellac, Le monde quantique, EDP Sciences (2010).Google Scholar
[303] P., Shor, Proceedings of the 55th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, California (1994), pp. 124–133.Google Scholar
[304] D., Mermin, “What has quantum mechanics to do with factoring?”, Phys. Today 60, 8–9 (April 2007);Google Scholar
Some curious facts about quantum factoring”, Phys. Today 60, 10–11 (October 2007).
[305] L.K., Grover, “A fast quantum mechanical algorithm for database search”, Proceedings, 28th Annual ACM Symposium on the Theory of Computing (May 1996), p. 212;Google Scholar
From Schrödinger's equation to quantum search algorithm”, Am. J. Phys. 69, 769–777 (2001).
[306] D., Deutsch and R., Jozsa, “Rapid solution of problems by quantum computation”, Proceedings of the Royal Society of London A439, 553–558 (1992).Google Scholar
[307] D.S., Abrams and S., Lloyd, “Simulation of many-body Fermi systems on a universal quantum computer”, Phys. Rev. Lett. 79, 2586–2589 (1997).Google Scholar
[308] A.W., Harrow, A., Hassidim, and S., Lloyd, “Quantum algorithm for linear systems of equations”, Phys. Rev. Lett. 103, 150502 (2009).Google Scholar
[309] L.M.K., Vandersypen, M., Steffen, G., Breyta, C.S., Yannoni, M.H., Sherwood and I.L., Chuang, “Experimental realization of quantum Shor's factoring algorithm using nuclear magnetic resonance”, Nature 414, 883–887 (2001).Google Scholar
[310] P.W., Shor, “Scheme for reducing decoherence in quantum computer memory”, Phys. Rev. A 52, R2493–R2496 (1995).Google Scholar
[311] A.M., Steane, “Error correcting codes in quantum theory”, Phys. Rev. Lett. 77, 793–796 (1996).Google Scholar
[312] J., Preskill, “Battling decoherence: the fault-tolerant quantum computer”, Phys. Today 52, 24–30 (June 1999).Google Scholar
[313] C.H., Bennett, G., Brassard, S., Popescu, B., Schumacher, J.A., Smolin, and W.K., Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels”, Phys. Rev. Lett. 76, 722–725 (1996).Google Scholar
[314] C.H., Bennett, D.P., DiVincenzo, J.A., Smolin, and W.A., Wootters, “Mixed-state entanglement and quantum error correction”, Phys. Rev. A 54, 3824–3851 (1996).Google Scholar
[315] H.J., Briegel, W., Dür, J.I., Cirac, and P., Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication”, Phys. Rev. Lett. 81, 5932–5935 (1998).Google Scholar
[316] R.B., Griffiths and Chi-Sheng, Niu, “Semiclassical Fourier transform for quantum computation”, Phys. Rev. Lett. 76, 3228–3231 (1996).Google Scholar
[317] F., Verstraete, M.M., Wolf, and J.I., Cirac, “Quantum computation and quantum-state engineering driven by dissipation”, Nature Physics 5, 633–636 (2009).Google Scholar
[318] S., Haroche and J.M., Raimond, “Quantum computing: dream or nightmare?”, Phys. Today 49, 51–52 (August 1996).Google Scholar
[319] P., Grangier, J.A., Levenson, and J.P., Poizat, “Quantum non demolition measurements in optics”, Nature 396, 537–542 (1998).Google Scholar
[320] H.D., Zeh, “On the interpretation of measurement in quantum theory”, Found. Phys. I, 69–76 (1970).Google Scholar
[321] W.H., Zurek, “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D 24, 1516–1525 (1981);Google Scholar
Environment-induced superselection rules”, Phys. Rev. D 26, 1862–1880 (1982).
[322] W.H., Zurek, “Decoherence, einselection, and the quantum origin of the classical”, Rev. Mod. Phys. 75, 715–775 (2003).Google Scholar
[323] K., Hepp, “Quantum theory of measurement and macroscopic observables”, Helv. Phys. Acta 45, 237–248 (1972).Google Scholar
[324] J.S., Bell, “On wave packet reduction in the Coleman–Hepp model”, Helv. Phys. Acta 48, 93–98 (1975); reprinted in [6].Google Scholar
[325] W.H., Zurek, “Preferred states, predictability, classicality and the environment-induced decoherence”, Progr. Theor. Phys. 89, 281–312 (1993);Google Scholar
a shorter version is available in “Decoherence and the transition from quantum to classical”, Phys. Today 44, 36–44 (October 1991).
[326] W.H., Zurek, “Environment-assisted invariance, entanglement, and probabilities in quantum physics”, Phys. Rev. Lett. 90, 120404 (2003).Google Scholar
[327] F., Hund, “Zur Deutung der Molekelspektren III”, Zeit. Phys. 43, 805–826 (1927).Google Scholar
[328] J., Trost and K., Hornberger, “Hund's paradox and the collisional stabilization of chiral molecules”, Phys. Rev. Lett. 103, 023202 (2009).Google Scholar
[329] Y., Aharonov, J., Anadan, S., Popescu, and L., Vaidman, “Superpositions of time evolutions of a quantum system and a quantum time-translation machine”, Phys. Rev. Lett. 64, 2965–2968 (1990).Google Scholar
[330] N.W.M., Richtie, J.G., Story, and R.G., Hulet, “Realization of a measurement of a weak value”, Phys. Rev. Lett. 66, 1107–1110 (1991).Google Scholar
[331] D.R., Solli, C.F., McCormick, R.Y., Chiao, S., Popescu, and J.M., Hickmann, “Fast light, slow light, and phase singularities: a connection to generalized weak values”, Phys. Rev. Lett. 92, 043601 (2004).Google Scholar
[332] N., Brunner, V., Scarani, M., Wegmüller, M., Legré, and N., Gisin, “Direct measurement of superluminal group velocity and signal velocity in an optical fiber”, Phys. Rev. Lett. 93, 203902 (2004).Google Scholar
[333] G.J., Pryde, J.L., O'Brien, A.G., White, T.C., Ralph, and H.M., Wiseman, “Measurement of quantum weak values of photon polarization”, Phys. Rev. Lett. 94, 220405 (2005).Google Scholar
[334] R., Mir, J.S., Lundeen, M.W., Mitchell, A.M., Steinberg, J.L., Garretson, and H.M., Wiseman, “A double slit ‘which way’ experiment on the complementarity-uncertainty debate”, New. J. Phys. 9, 287–297 (2007).Google Scholar
[335] J.S., Lundeen and A.M., Steinberg, “Experimental joint weak measurement on a photon pair as a probe of Hardy's paradox”, Phys. Rev. Lett. 102, 020404 (2009).Google Scholar
[336] K., Yokota, T., Yamamoto, M., Koashi, and N., Imoto, “Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair”, New. J. Phys. 11, 033011 (2009).Google Scholar
[337] P., Ben Dixon, D.J., Starling, A.N., Jordan, and J.C., Howell, “Ultrasensitive beam deflection measurement via interferometric weak value amplification”, Phys. Rev. Lett. 102, 173601 (2009).Google Scholar
D.J., Starling, P., Ben Dixon, A.N., Jordan, and J.C., Howell, “Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values”, Phys. Rev. A80, 041803 (2009).Google Scholar
[338] N., Brunner and C., Simon, “Measuring small longitudinal phase shifts: weak measurements or standard interferometry”, Phys. Rev. Lett. 105, 010405 (2010).Google Scholar
[339] N.S., Williams and A.N., Jordan, “Weak values and the Leggett–Garg inequality in solid-state qubits”, Phys. Rev. Lett. 100, 026804 (2008).Google Scholar
[340] D.T., Gillepsie, “The mathematics of Brownian motion and Johnson noise”, Am. J. Phys. 64, 225–240 (1995).Google Scholar
[341] H.P., McKean, Stochastic Integrals, AMS Chelsea Publishing, Providence (1969).Google Scholar
[342] N., Gisin, “A simple nonlinear dissipative quantum evolution equation”, J. Phys. A 14, 2259–2267 (1981).Google Scholar
[343] N., Gisin, “Irreversible quantum dynamics and the Hilbert space structure of quantum dynamics”, J. Math. Phys. 24, 1779–1782 (1983).Google Scholar
[344] N., Gisin, “Quantum measurements and stochastic processes”, Phys. Rev. Lett. 52, 1657–1660 (1984).Google Scholar
[345] T.A., Brun, “A simple model of quantum trajectories”, Am. J. Phys. 70, 719–737 (2002).Google Scholar
[346] K., Jacobs and D.A., Steck, “A straightforward introduction to continuous quantum measurement”, Contemp. Phys. 47, 279–303 (2007); arXiv: quant-ph/0611067 (2006).Google Scholar
[347] V.P., Belavkin, “Non-demolition measurement and control in quantum dynamical systems”, Proc. of CISM Seminars on Information Complexity and Control in Quantum Systems, A., Blaquière, S., Diner, and G., Lochak editors, Springer Verlag (1987), pp. 311–329.Google Scholar
[348] N.F., Mott, “The wave mechanics of α-ray tracks”, Proc. Royal Soc. A 126, 79–84 (1929);Google Scholar
reprinted in “Quantum theory of measurement”, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 129–134.
[349] W., Nagourney, J., Sandberg, and H., Dehmelt, “Shelved optical electron amplifier: observation of quantum jumps”, Phys. Rev. Lett. 56, 2797–2799 (1986);Google Scholar
H., Dehmelt, “Experiments with an isolated subatomic particle at rest”, Rev. Mod. Phys. 62, 525–530 (1990).Google Scholar
[350] T., Sauter, W., Neuhauser, R., Blatt, and P.E., Toschek, “Observation of quantum jumps”, Phys. Rev. Lett. 57, 1696–1698 (1986).Google Scholar
[351] J.C., Bergquist, R.G., Hulet, W.M., Itano, and D.J., Wineland, “Observation of quantum jumps in a single atom”, Phys. Rev. Lett. 57, 1699–1702 (1986).Google Scholar
[352] W.M., Itano, J.C., Bergquist, R.G., Hulet, and D.J., Wineland, “Radiative decay rates in Hg+ from observation of quantum jumps in a single ion”, Phys. Rev. Lett. 59, 2732–2735 (1987).Google Scholar
[353] E., Schrödinger, “Are there quantum jumps?”, British J. Phil. Sci. 3, 109–123 and 233–242 (1952).Google Scholar
[354] G., Greenstein and A.G., Zajonc, “Do quantum jumps occcur at well-defined moments of time?”, Am. J. Phys. 63, 743–745 (1995).Google Scholar
[355] C., Cohen-Tannoudji and J., Dalibard, “Single-atom laser spectroscopy looking for dark periods in fluorescence light”, Europhys. Lett. 1, 441–448 (1986).Google Scholar
[356] M., Porrati and S., Puttermann, “Wave-function collapse due to null measurements: the origin of intermittent atomic fluorescence”, Phys. Rev. A 36, 929–932 (1987).Google Scholar
[357] S., Peil and G., Gabrielse, “Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states”, Phys. Rev. Lett. 83, 1287–1290 (1999).Google Scholar
[358] D., Hanneke, S., Fogwell, and G., Gabrielse, “New measurement of the electron magnetic moment and the fine structure constant”, Phys. Rev. Lett. 100, 120801 (2008).Google Scholar
[359] M., Brune, S., Haroche, V., Lefevre, J.M., Raimond, and N., Zagury, “Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection”, Phys. Rev. Lett. 65, 976–979 (1990).Google Scholar
[360] S., Gleyzes, S., Kuhr, C., Guerlin, J., Bernu, S., Deleglise, U.B., Hoff, M., Brune, J.-M., Raimond, and S., Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity”, Nature 446, 297–300 (2007);Google Scholar
C., Guerlin, J., Bernu, S., Deleglise, C., Sayrin, S., Gleyzes, S., Kuhr, M., Brune, J.M., Raimond, and S., Haroche, “Progressive state collapse and quantum non-demolition photon counting”, Nature 448, 889–893 (2007).Google Scholar
[361] J., Javanainen and S.M., Yoo, “Quantum phase of a Bose–Einstein condensate with arbitrary number of atoms”, Phys. Rev. Lett. 76, 161–164 (1996).Google Scholar
[362] M.R., Andrews, C.G., Townsend, H.J., Miesner, D.S., Durfee, D.M., Kurn, and W., Ketterle, “Observation of interference between two Bose condensates”, Science 275, 637–641 (1997).Google Scholar
[363] A.J., Leggett and F., Sols, “On the concept of spontaneously broken gauge symmetry in condensed matter physics”, Found. Phys. 21, 353–364 (1991).Google Scholar
[364] E.P., Wigner, “Interpretation of quantum mechanics”, lectures given in 1976 at Princeton University, later published in Quantum Theory of Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 260–314;Google Scholar
see also Wigner's contribution in “Foundations of quantum mechanics”, Proc. Enrico Fermi Int. Summer School, B., d'Espagnat editor, Academic Press (1971).
[365] N.D., Mermin, “What is quantum mechanics trying to tell us?”, Am. J. Phys. 66, 753–767 (1998).Google Scholar
[366] B., Misra and E.C.G., Sudarshan, “The Zeno's paradox in quantum theory”, J. Math. Phys. (NY) 18, 756–763 (1977).Google Scholar
[367] A., Zeilinger, “A foundational principle for quantum mechanics”, Found. Phys. 29, 631–643 (1999).Google Scholar
[368] C., Brukner and A., Zeilinger, “Operationally invariant information in quantum measurements”, Phys. Rev. Lett. 83, 3354–3357 (1999).Google Scholar
[369] C.A., Fuchs, “Quantum foundations in the light of quantum information”, arXiv: quant-ph/0106166 (2001).Google Scholar
[370] C.A., Fuchs, “Quantum mechanics as quantum information (and only a little more)”, arXiv: quant-ph/0205039 (2002).Google Scholar
[371] I., Pitowsky, “Betting on the outcomes of measurements: a Bayesian theory of quantum probability”, Studies in History and Philosophy of Modern Physics 34, 395–414 (2003).Google Scholar
[372] G., Auletta, “Quantum information as a general paradigm”, Found. Phys. 35, 787–815 (2005).Google Scholar
[373] J., Bub, “Quantum probabilities: an information-theoretic interpretation”, in Probabilities in Physics, C., Beisbart and S., Hartmann editors, Oxford University Press (2011).Google Scholar
[374] D., Deutsch and P., Hayden, “Information flow in entangled quantum systems”, Proc. Royal Soc. A 456, 1759–1774 (2000).Google Scholar
[375] L.E., Ballentine, “The statistical interpretation of quantum mechanics”, Rev. Mod. Phys. 42, 358–381 (1970).Google Scholar
[376] A.J., Leggett, “Probing quantum mechanics towards the everyday world: where do we stand?”, Physica Scripta T102, 69–73 (2002).Google Scholar
[377] Y., Aharonov, J., Anandan, and L., Vaidman, “Meaning of the wave function”, Phys. Rev. A 47, 4616–4626 (1993).Google Scholar
[378] C., Rovelli, “Relational quantum mechanics”, Int. J. Theor. Phys. 35, 1637–1678 (1996).Google Scholar
[379] F., Laudisa and C., Rovelli, “Relational quantum mechanics”, Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/qm-relational/Google Scholar
[380] M., Smerlak and C., Rovelli, “Relational EPR”, Found. Phys. 37, 427–445 (2007).Google Scholar
[381] P., Mittelstaedt, Quantum Logic, Kluwer Academic Publishers (1978).Google Scholar
[382] E.G., Beltrametti and G., Cassinelli, The Logic of Quantum Mechanics, Cambridge University Press (1984).Google Scholar
[383] A., Grinbaum, “The significance of information in quantum theory”, Ph.D. thesis, Ecole polytechnique (2004), arXiv: quant-ph/0410071 (2004).Google Scholar
Reconstruction of quantum theory”, Brit. J. Phil. Sci 58, 387–408 (2007).
[384] F., Zwicky, “On a new type of reasoning and some of its possible consequences”, Phys. Rev. 43, 1031–1033 (1933).Google Scholar
[385] G., Birkhoff and J., von Neumann, “The logic of quantum mechanics”, Ann. Math. 37, 823–843 (1936).Google Scholar
[386] P., Jordan, “Zur Quanten-Logik”, Archiv der Mathematik 2, 166–171 (1949).Google Scholar
[387] M., Strauss, “Grundlagen der modernen Physik”, in Mikrokosmos-Makrokosmos: Philosophish-theoretische Probleme der Naturwissenchaften, Technik und Medizin, Akademie Verlag, Berlin (1967).Google Scholar
[388] K.R., Popper, “Birkhoff and von Neumann's interpretation of quantum mechanics”, Nature 219, 682–685 (1968).Google Scholar
[389] R., Hughes, “La logique quantique”, Pour la Science December 1981, 36–49.Google Scholar
[390] H., Reichenbach, Philosophic Foundations of Quantum Mechanics, University of California Press (1965).Google Scholar
[391] C.F., von Weizsäcker, Göttingische Gelehrte Anzeigen 208, 117–136 (1954).
[392] P., Jordan, J., von Neumann, and E., Wigner, “An algebraic generalization of the quantum mechanical formalism”, Ann. Math. 35, 29–64 (1934).Google Scholar
[393] I.M., Gelfand and M.A., Naimark, “On the embedding of normed rings into the ring of operators in Hilbert space”, Mat. Sbornik 12, 197–213 (1943).Google Scholar
[394] I.E., Segal, “Irreductible representations of operator algebras”, Bull. Amer. Math. Soc. 61, 69–105 (1947);Google Scholar
Postulates for general quantum mechanics”, Ann. Math. 48, 930–948 (1947).
[395] R., Haag and D., Kastler, “An algebraic approach to quantum field theory”, J. Math. Phys. 7, 848–861 (1964).Google Scholar
[396] F.J., Murray and J., von Neumann, “On rings of operators”, Ann. Math. 37, 116–229 (1936).Google Scholar
[397] A., Connes, “Une classification des facteurs du type III”, Ann. Sci. Ecole Norm. Sup. 6, 133–252 (1973).Google Scholar
[398] A., Connes, Noncommutative Geometry, Academic Press (1994).Google Scholar
[399] G., Mackey, Mathematical Foundations of Quantum Mechanics, Benjamin, New York (1963).Google Scholar
[400] C., Piron, “Axiomatique quantique”, Helv. Phys. Acta 37, 439–468 (1964).Google Scholar
[401] J.M., Jauch and C., Piron, “On the structure of quantal proposition systems”, Helv. Phys. Acta 42, 842–848 (1969).Google Scholar
[402] M.P., Solèr, “Characterization of Hilbert spaces by orthomodular spaces”, Comm. Algebra 23, 219–243 (1995).Google Scholar
[403] B., Coecke and E.O., Paquette, “Categories for the practicing physicist”, arXiv: 0905.3010v2 [quant-ph]; in New Strucutres for Physics, Springer (2011), pp. 173–286.Google Scholar
[404] B., Coecke, “Quantum picturalism”, Contemp. Phys. 51, 59–83 (2010).Google Scholar
[405] H., Barnum and A., Wilce, “Information processing in convex operational theories”, Electronic Notes in Theor. Computer Sci. 12, 3–15 (2011).Google Scholar
[406] A., Wilce, “Quantum logic and probability theory”, Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/entries/qt-quantlog/.Google Scholar
[407] A.M., Gleason, “Measures on the closed subspaces of a Hilbert space”, J. Math. and Mech. 6, 885–893 (1957).Google Scholar
[408] P., Bush, “Quantum states and generalized observables: a simple proof of Gleason's theorem”, Phys. Rev. Lett. 91, 120403 (2003).Google Scholar
[409] J.S., Bell, “Are there quantum jumps?”, in Schrödinger – Centenary Celebration of a Polymath, C.W., Kilmister editor, Cambridge University Press (1987), p. 41; see also Chapter 22 of [6].Google Scholar
[410] J.S., Bell, “Beables for quantum field theory”, CERN-TH.4035/84 (August 2 1984); Phys. Rep. 137, 49–54 (1986); Chapter 19 of [6].Google Scholar
[411] L., de Broglie, “La mécanique ondulatoire et la structure atomique de la matière et du rayonnement”, J. Physique et le Radium, série VI, tome VIII, 225–241 (1927);Google Scholar
Interpretation of quantum mechanics by the double solution theory”, Ann. Fond. Louis de Broglie 12, 1 (1987).
[412] L., de Broglie, Tentative d'Interprétation Causale et Non-linéaire de la Mécanique Ondulatoire, Gauthier-Villars, Paris (1956).Google Scholar
[413] L., de Broglie, Les Incertitudes d'Heisenberg et l'Interprétation Probabiliste de la Mécanique Ondulatoire, Gauthier-Villars and Bordas, Paris (1982).Google Scholar
[414] J.T., Cushing, Quantum Mechanics, University of Chicago Press (1994).Google Scholar
[415] D., Bohm, “Proof that probability density approaches ∣Ψ∣2 in causal interpretation of quantum theory”, Phys. Rev. 89, 458–466 (1953).Google Scholar
[416] E., Madelung, “Quantentheorie in hydrodynamische Form”, Z. Phys. 40, 322–326 (1927).Google Scholar
[417] D., Dürr, S., Goldstein, and N., Zanghì, “Quantum equilibrium and the origin of absolute uncertainty”, J. Stat. Phys. 67, 843–907 (1992).Google Scholar
[418] D., Bohm and J.P., Vigier, “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations”, Phys. Rev. 96, 208–216 (1954).Google Scholar
[419] A., Valentini, “Signal-locality, uncertainty, and the subquantum H -theorem” I, Phys. Lett. A 156, 5–11 (1991); II, Phys. Lett. A 158, 1–8 (1991).Google Scholar
[420] A., Valentini and H., Westman, “Dynamical origin of quantum probabilities”, Proc. Roy. Soc. A 461, 253–272 (2004).Google Scholar
[421] A., Valentini, “Signal-locality in hidden-variables theories”, Phys. Lett. A 297, 273–278 (2002);Google Scholar
“Beyond the quantum”, Physics World (November 2009).
[422] P., Holland, “Hamiltonian theory of wave and particle in quantum mechanics II: Hamilton–Jacobi theory and particle back-reaction”, Nuov. Cim. B 116, 1143–1172 (2001).Google Scholar
[423] C., Philippidis, C., Dewdney, and B.J., Hiley, “Quantum interference and the quantum potential”, Nuov. Cim. 52 B, 15–23 (1979).Google Scholar
[424] P.R., Holland, The Quantum Theory of Motion, Cambridge University Press (1993).Google Scholar
[425] J.S., Bell, “De Broglie–Bohm, delayed choice double slit experiment, and density matrix”, International Journal of Quantum Chemistry 18, supplement symposium 14, 155–159 (1980); Chapter 14 of [6].Google Scholar
[426] B.J., Hiley, “Welcher Weg experiments from the Bohm perspective”, contribution to the Växjö conference (2005), http://www.bbk.ac.uk/tpru/BasilHiley/WelcherWegBohmBJH2.pdf.Google Scholar
[427] L., Vaidman, “The reality of Bohmian quantum mechanics or can you kill with an empty wave bullet?”, Found. Phys. 35, 299–312 (2005).Google Scholar
[428] E., Deotto and G.C., Ghirardi, “Bohmian mechanics revisited”, Found. Phys. 28, 1–30 (1998).Google Scholar
[429] B.G., Englert, M.O., Scully, G., Süssmann, and H., Walther, “Surrealistic Bohm trajectories”, Z. Naturforschung 47a, 1175–1186 (1992).Google Scholar
[430] C., Dewdney, P.R., Holland, and A., Kyprianidis, “What happens in a spin measurement?”, Phys. Lett. A119, 259–267 (1986).Google Scholar
[431] E.P., Wigner, “Rejoinder”, Am. J. Phys. 39, 1097 (1971).Google Scholar
[432] J., Clauser, “Von Neumann's informal hidden-variable argument”, Am. J. Phys. 39, 1095 (1971);Google Scholar
Reply to Dr Wigner's objections”, Am. J. Phys. 39, 1098 (1971).CrossRef
[433] D., Dürr, S., Goldstein, R., Tumulka, and N., Zanghì, “Bohmian mechanics and quantum field theory”, Phys. Rev. Lett. 93, 090402 (2004).Google Scholar
[434] D., Dürr, S., Goldstein, R., Tumulka, and N., Zanghì, “Trajectories and particle creation and annihilation in quantum field theory”, J. Phys. A Math. Gen. 36, 4143–4149 (2003).Google Scholar
[435] W., Struyve, “Field beables for quantum field theory”, arXiv: 0707.3685v2 [quant-ph] (2007).Google Scholar
[436] K., Berndl, D., Dürr, S., Goldstein, and N., Zhanghi, “Nonlocality, Lorentz invariance, and Bohmian quantum theory”, Phys. Rev. A53, 2062–2073 (1996).Google Scholar
[437] H., Nikolić, “Relativistic quantum mechanics and the Bohmian interpretation”, Found. Phys. Lett. 18, 549–561 (2005);Google Scholar
QFT as pilot-wave theory of particle creation and destruction”, J. Mod. Phys. A 25, 1477–1505 (2010);
Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory”, J. Phys. Conference Series 67, 012035 (2007).
[438] J.S., Bell, Chapter 18 of [47] (page 128 of [6]).
[439] C., Dewdney, L., Hardy, and E.J., Squires, “How late measurements of quantum trajectories can fool a detector”, Phys. Lett. A 184, 6–11 (1993).Google Scholar
[440] C., Cohen-Tannoudji, B., Diu, and F., Laloë, Mécanique quantique, Hermann (1973 and 1977);Google Scholar
Quantum mechanics, Wiley (1977).
[441] R.B., Griffiths, “Bohmian mechanics and consistent histories”, Phys. Lett. A 261, 227–234 (1999).Google Scholar
[442] M., Correggi and G., Morchio, “Quantum mechanics and stochastic mechanics for compatible observables at different times”, Ann. Physics 296, 371–389 (2002).Google Scholar
[443] A., Neumaier, “Bohmian mechanics contradicts quantum mechanics”, arXiv: quant-ph/0001011 (2000).Google Scholar
[444] G., Brida, E., Cagliero, G., Falzetta, M., Genovese, M., Gramegna, and C., Novero, “A first experimental test of the de Broglie–Bohm theory against standard quantum mechanics”, arXiv: quant-ph/0206196 (2002).Google Scholar
[445] P., Ghose, “An experiment to distinguish between de Broglie–Bohm and standard quantum mechanics”, arXiv: quant-ph/0003037 (2003).Google Scholar
[446] R.P., Feynman and A.R., Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill (1965).Google Scholar
[447] I., Fényes, “Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik”, Zeit. Physik 132, 81–106 (1952).Google Scholar
[448] E., Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev. 150, 1079–1085 (1966).Google Scholar
[449] R., Werner, “A generalization of stochastic mechanics and its relation to quantum mechanics”, Phys. Rev. D 34, 463–469 (1986).Google Scholar
[450] T.C., Wallstrom, “Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations”, Phys. Rev. A 49, 1613–1617 (1994).Google Scholar
[451] P., Damgaard and H., Hüffel editors, Stochastic Quantization, World Scientific (1988).
[452] M., Masujima, Path Integral Quantization and Stochastic Quantization, Springer Verlag (2000 and 2009).Google Scholar
[453] G., Parisi and Y.-S., Wu, “Perturbation theory without gauge fixing”, Sci. Sin. 24, 483–496 (1981).Google Scholar
[454] E., Gozzi, “Functional-integral approach to Parisi-Wu stochastic quantization: scalar theory”, Phys. Rev. D 28, 1922–1930 (1983).Google Scholar
[455] M., Dickson and D., Dieks, “Modal interpretation of quantum mechanics”, Stanford Encyclopedia of Philosophy (2007), http://plato.stanford.edu/entries/qm-modal/Google Scholar
[456] B.C., van Fraassen, “A formal approach to the philosophy of science”, in Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, R., Colodny editor, University of Pittsburg Press (1972), pp. 303–366;Google Scholar
The Einstein–Podolsky–Rosen paradox”, Synthese 29, 291–309 (1974);
Quantum Mechanics: An Empiricist View, Clarendon Press, Oxford, (1991).
[457] S., Kochen, “A new interpretation of quantum mechanics”, in Symposium on the Foundations of Modern Physics, P., Mittelstaedt and P., Lahti editors, World Scientific (1985), pp. 151–169.Google Scholar
[458] D., Dieks, “The formalism of quantum theory: an objective description of reality?”, Annalen der Physik 500, 174–190 (1988);Google Scholar
Quantum mechanics without the projection postulate and its realistic interpretation”, Found. Phys. 19, 1397–1423 (1989);
Resolution of the measurement problem through decoherence of the quantum statePhys. Lett. A 142, 439–446 (1989);
Modal interpretation of quantum mechanics, measurements, and macroscopic behaviour”, Phys. Rev. A 49, 2290–2300 (1994).
[459] R., Healey, The Philosophy of Quantum Mechanics: An Interactive Interpretation, Cambridge University Press (1989);Google Scholar
Measurement and quantum indeterminateness”, Found. Phys. Lett. 6, 307–316 (1993).
[460] G., Bacciagaluppi, “Topics in the modal interpretation of quantum mechanics”, dissertation, Cambridge University (1996);Google Scholar
Delocalized properties in the modal interpretation of a continuous model of decoherence”, Found. Phys. 30, 1431–1444 (2000).
[461] M., Dickson, “Wavefunction tails in the modal interpretation”, Proceedings of the Philosophy of Science Association 1994, D., Hull, M., Forbes, and R., Burian editors, Vol. 1, 366–376 (1994).Google Scholar
[462] J., Berkovitz and M., Hemmo, “Modal interpretations of quantum mechanics and relativity: a reconsideration”, Found. Phys. 35, 373–397 (2005).Google Scholar
[463] R., Healey, “Modal interpretation, decoherence, and the quantum measurement problem”, in Quantum Measurement: Beyond Paradox, R., Healey and G., Hellmann editors, Minnesota Studies in the Philosophy of Science 17(1998), pp. 52–86.Google Scholar
[464] W., Myrvold, “Modal interpretation and relativity”, Found. Phys. 32, 1173–1784 (2002).Google Scholar
[465] R., Clifton, “The modal interpretation of algebraic quantum field theory”, Phys. Lett. A 271, 167–177 (2000).Google Scholar
[466] L., Diosi, “Quantum stochastic processes as models for state vector reduction”, J. Phys. A 21, 2885–2898 (1988).Google Scholar
[467] R., Haag, “Fundamental irreversibility and the concept of events”, Comm. Math. Phys. 132, 245–251 (1990);Google Scholar
An evolutionary picture for quantum physics”, Comm. Math. Phys. 180, 733–743 (1996).
[468] A., Jadczyk, “On quantum jumps, events, and spontaneous localization models”, Found. Phys. 25, 743–762 (1995).Google Scholar
[469] P., Pearle, “How stands collapse I”, J. Phys. A: Math. Theor. 40, 3189–3204 (2007).Google Scholar
[470] P., Pearle, “On the time it takes a state vector to reduce”, J. Stat. Phys. 41, 719–727 (1985).Google Scholar
[471] A., Barchielli, L., Lanz, and G.M., Prosperi, “A model for the macroscopic description and continual observations in quantum mechanics”, Nuov. Cim. 42 B, 79–121 (1982).Google Scholar
[472] A., Barchielli, “Continual measurements for quantum open systems”, Nuov. Cim. 74 B, 113–138 (1983);Google Scholar
Measurement theory and stochastic differential equations in quantum mechanics”, Phys. Rev. A 34, 1642–1648 (1986).
[473] F., Benatti, G.C., Ghirardi, A., Rimini, and T., Weber, “Quantum mechanics with spontaneous localization and the quantum theory of measurement”, Nuov. Cim. 100 B, 27–41 (1987).Google Scholar
[474] F., Benatti, G.C., Ghirardi, A., Rimini, and T., Weber, “Operations involving momentum variables in non-hamiltonian evolution equations”, Nuov. Cim. 101 B, 333–355 (1988).Google Scholar
[475] P., Blanchard, A., Jadczyk, and A., Ruschhaupt, “How events come into being: EEQT, particle tracks, quantum chaos and tunneling time”, in Mysteries, Puzzles and Paradoxes in Quantum Mechanics, R., Bonifacio editor, American Institute of Physics, AIP Conference Proceedings, no. 461 (1999);Google Scholar
J. Mod. Optics 47, 2247–2263 (2000).
[476] P., Pearle, “Combining stochastic dynamical state-vector reduction with spontaneous localization”, Phys. Rev. A 39, 2277–2289 (1989).Google Scholar
[477] G.C., Ghirardi, P., Pearle, and A., Rimini, “Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles”, Phys. Rev. A 42, 78–89 (1990).Google Scholar
[478] P., Pearle, “Cosmogenesis and collapse”, arXiv: 1003.5582v2 [gr-qc] (2010); Found. Phys. 42, 4–18 (2012).Google Scholar
[479] Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony, Festschrift volumes 1 and 2, R.S., Cohen, M.A., Horne, and J.J., Stachel editors, Boston Studies in the Philosophy of Science, vol. 193 and 194, Kluwer Academic Publishers (1997); P., Pearle, vol. 1, p. 143; G., Ghirardi and T., Weber, vol. 2, p. 89.Google Scholar
[480] A., Shimony, “Desiderata for a modified quantum dynamics”, pp. 49–59 in “PSA 1990 vol. 2, Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, A., Fine, M., Forbes, and L., Wessel editors, Philosophy of Science Association, East Lansing, MI (USA).
[481] P., Pearle, “How stands collapse II”, in Quantum Reality, Relativistic Causality and Closing the Epistemic Circle: Essays in Honour of Abner Shimony, W., Mryvold and J., Christian editors, Springer (2009), pp. 257–292.Google Scholar
[482] L.F., Santos and C.O., Escobar, “A proposed solution to the tail problem of dynamical reduction models”, Phys. Lett. A 278, 315–318 (2001).Google Scholar
[483] L., Diosi, “Continuous quantum measurement and Itô formalism”, Phys. Lett. 129 A, 419–423 (1988).Google Scholar
[484] L., Diosi, “Models for universal reduction of macroscopic quantum fluctuations”, Phys. Rev. A 40, 1165–1174 (1989).Google Scholar
[485] G.C., Ghirardi, R., Grassi, and A., Rimini, “Continuous-spontaneous-reduction model involving gravity”, Phys. Rev. A 42, 1057–1064 (1990).Google Scholar
[486] R., Penrose, The Emperor's New Mind, Oxford University Press (1989);Google Scholar
Shadows of the Mind, Oxford University Press (1994).
[487] N., Gisin, “Stochastic quantum dynamics and relativity”, Helv. Phys. Acta 62, 363–371 (1989).Google Scholar
[488] G.C., Ghirardi, R., Grassi, and P., Pearle, “Relativistic dynamical reduction models: general framework and examples”, Found. Phys. 20, 1271–1316 (1990).Google Scholar
[489] P., Pearle, “Completely quantized collapse and consequences”, Phys. Rev. A 72, 022112 (2005).Google Scholar
[490] D.J., Bedingham, “Relativistic state reduction dynamics”, arXiv: 1003.2774v2 [quant-ph] (2010).Google Scholar
[491] D.J., Bedingham, D., Dürr, G., Ghirardi, S., Goldstein, R., Tumulka, and N., Zanghi, “Matter density and relativistic models of wave function collapse”, arXiv: 1111.1425v2 [quant-ph] (2011).Google Scholar
[492] N., Gisin, “Weinberg's non-linear quantum mechanics and supraluminal communications”, Phys. Lett. A 143, 1–2 (1990).Google Scholar
[493] R., Tumulka, “On spontaneous wave function collapse and quantum field theory”, Proc. Roy. Soc. A 462, 1897–1908 (2006);Google Scholar
A relativistic version of the Ghirardi–Rimini–Weber model”, J. Stat. Phys 125, 821–840 (2006); “Collapse and relativity”, arXiv: quant-ph/0602208 (2006).
[494] A., Bassi and G., Ghirardi, “Dynamical reduction models”, Phys. Rep. 379, 257–426 (2003).Google Scholar
[495] S., Weinberg, “Precision tests of quantum mechanics”, Phys. Rev. Lett. 62, 485–488 (1989).Google Scholar
[496] K., Wòdkiewicz and M.O., Scully, “Weinberg's nonlinear wave mechanics”, Phys. Rev. A 42, 5111–5116 (1990).Google Scholar
[497] P., Pearle, J., Ring, J.I., Collar, and F.T., Avignone, “The CSL collapse model and spontaneous radiation: an update”, Found. Phys. 29, 465–480 (1998).Google Scholar
[498] H.S., Miley, F.T., Avignone, R.L., Brodzinski, J.I., Collar, and J.H., Reeves, “Suggestive evidence for the two-neutrino double-β decay of 76 Ge”, Phys. Rev. Lett. 65, 3092–3095 (1990).Google Scholar
[499] K., Hornberger, S., Gerlich, P., Haslinger, S., Nimmrichter, and M., Arndt, “Quantum interference of clusters and molecules”, Rev. Mod. Phys. 84, 157–173 (2012).Google Scholar
[500] G.C., Ghirardi, “Quantum superpositions and definite perceptions: envisaging new feasible tests”, Phys. Lett. A 262, 1–14 (1999).Google Scholar
[501] J., Dalibard, Y., Castin, and K., Molmer, “Wave function approach to dissipative processes in quantum optics”, Phys. Rev. Lett. 68, 580–583 (1992).Google Scholar
[502] K., Molmer, Y., Castin, and J., Dalibard, “Monte Carlo wave-function method in quantum optics”, Journ. Optical. Soc. Am. B 10, 524–538 (1993).Google Scholar
[503] H.J., Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Physics, monograph 18, Springer-Verlag (1993).Google Scholar
[504] M.B., Plenio and P.L., Knight, “The quantum-jump approach to dissipative dynamics in quantum optics”, Rev. Mod. Phys. 70, 101–141 (1998).Google Scholar
[505] N., Gisin and I.C., Percival, “The quantum-state diffusion model applied to open systems”, J. Phys. A 25, 5677–5691 (1992);Google Scholar
Quantum state diffusion, localization and quantum dispersion entropy”, 26, 2233–2243 (1993);
The quantum state diffusion picture of physical processes”, 26, 2245–2260 (1993).
[506] I.C., Percival, Quantum State Diffusion, Cambridge University Press (1998).Google Scholar
[507] J.G., Cramer, “The transactional interpretation of quantum mechanics”, Rev. Mod. Phys. 58, 647–687 (1986); in an appendix, this article contains a review of the various interpretations of quantum mechanics.Google Scholar
[508] J.G., Cramer, “Generalized absorber theory and the Einstein–Podolsky–Rosen paradox”, Phys. Rev. D 22, 362–376 (1980).Google Scholar
[509] R., Omnès, “Logical reformulation of quantum mechanics”, J. Stat. Phys. 53, “I: Foundations”, 893–932; “II: Interferences and the EPR experiments”, 933–955; “III: Classical limit and irreversibility”, 957–975 (1988).Google Scholar
[510] M., Gell-Mann and J.B., Hartle, “Classical equations for quantum systems”, Phys. Rev. D 47, 3345–3382 (1993).Google Scholar
[511] R., OmnèsThe Interpretation of Quantum Mechanics, Princeton University Press (1994);Google Scholar
Understanding Quantum Mechanics, Princeton University Press (1999).
[512] R.B., Griffiths and R., Omnès, “Consistent histories and quantum measurements”, Phys. Today 52, 26–31 (August 1999).Google Scholar
[513] P.C., Hohenberg, “Colloquium: an introduction to consistent quantum theory”, Rev. Mod. Phys. 82, 2835–2844 (2010).Google Scholar
[514] Y., Aharonov, P.G., Bergmann, and J.L., Lebowitz, “Time symmetry in the quantum process of measurement”, Phys. Rev. B 134, 1410–1416 (1964).Google Scholar
[515] R.B., Griffiths, “Consistent histories and quantum reasoning”, Phys. Rev. A 54, 2759–2774 (1996).Google Scholar
[516] R.B., Griffiths, “Choice of consistent family, and quantum incompatibility”, Phys. Rev. A 57, 1604–1618 (1998).Google Scholar
[517] “Observant readers take the measure of novel approaches to quantum theory: some get Bohmed”, Phys. Today 52, 11–15 and 89–92 (February 1999).
[518] R.B., Griffiths, “Correlations in separated quantum systems: a consistent history analysis of the EPR problem”, Am. J. Phys. 55, 11–17 (1987).Google Scholar
[519] F., Dowker and A., Kent, “Properties of consistent histories”, Phys. Rev. Lett. 75, 3038–3041 (1995);Google Scholar
On the consistent histories approach to quantum mechanics”, J. Stat. Phys. 82, 1575–1646 (1996).
[520] A., Kent, “Quasiclassical dynamics in a closed quantum system”, Phys. Rev. A 54, 4670–4675 (1996).Google Scholar
[521] T.A., Brun, “Continuous measurements, quantum trajectories, and decoherent histories”, Phys. Rev. A 61, 042107 (2000).Google Scholar
[522] H., Everett III, “Relative state formulation of quantum mechanics”, Rev. Mod. Phys. 29, 454–462 (1957);Google Scholar
reprinted in Quantum Theory and Measurement, J.A., Wheeler and W.H., Zurek editors, Princeton University Press (1983), pp. 315–323.
[523] H., Everett III, Letter to L.D., Raub dated April 7 (1983), http://dspace.nacs.uci.edu/xmlui/handle/10575/1205.
[524] D., Deutsch, “The structure of the multiverse”, Proc. Roy. Soc. London A 458, 2911–2923 (2002).Google Scholar
[525] D., Deutsch, “Quantum theory of probability and decisions”, Proc. Roy. Soc. London A 455, 3129–3137 (1999).Google Scholar
[526] M.A., Rubin, “Relative frequency and probability in the Everett interpretation of Heisenberg–picture quantum mechanics”, Found. Phys. 33, 379–405 (2002).Google Scholar
[527] D., Wallace, “Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation”, Stud. Hist. Phil. Mod. Phys. 34, 415–438 (2003).Google Scholar
[528] S., Saunders, “Derivation of the Born rule from operational assumptions”, Proc. Roy. Soc. London A 460, 1771–1788 (2004).Google Scholar
[529] W.H., Zurek, “Probabilities from entanglement, Born's rule pk = ∣Ψk∣2 from envariance”, Phys. Rev. A 71, 052105 (2005).Google Scholar
[530] A., Kent, “Against many world interpretations”, Int. Journ. Mod. Phys A 5, 1745–1762 (1990).Google Scholar
[531] P., Van Esch, “On the Born rule and the Everett programme”, Ann. Found. Louis de Broglie 32, 51–59 (2007).Google Scholar
[532] D., Wallace, “Quantum probability from subjective likelihood: improving on Deutsch's proof of the probability rule”, Studies in History and Philosophy of Modern Physics 38, 311–332 (2007).Google Scholar
[533] H., Price, “Probability in the Everett world: comments on Wallace and Greaves”, arXiv: quant-ph/0604191 (2006); “Decisions, decisions, decisions: can Savage salvage the Everettian probability?”, arXiv: quant-ph/0802.1390 (2008).Google Scholar
[534] H.D., Zeh, “Roots and fruits of decoherence”, Séminaire Poincaré 1, 115–129 (2005); available at http://www.bourbaphy.fr/.Google Scholar
[535] D., Deutsch and P., Hayden, “Information flow in entangled quantum systems”, Proc. Roy. Soc. London A 456, 1759–1774 (2000).Google Scholar
[536] B., DeWitt, The Global Approach to Quantum Field Theory, vol. 1, Clarendon Press (2003), p. 144.Google Scholar
[537] M., Tegmark, “Parallel universes”, in Science and Ultimate Reality: From Quantum to Cosmos, J.D., Barrow, P.C.W., Davies, and C.L., Harper editors, Cambridge University Press (2003);Google Scholar
“Many worlds in context”, arXiv: 0905.2182v2 [quant-ph] (2009) in Many Worlds? Everett, Quantum Theory and Reality, S., Saunders, J., Barrett, A., Kent, and D., Wallace editors, Oxford University Press (2010).
[538] T., Damour, “Einstein 1905–1955: son approche de la physique”, Séminaire Poincaré 1, 1–25 (2005); available at http://www.bourbaphy.fr/.Google Scholar
[539] J.S., Bell, “The measurement theory of Everett and de Broglie's pilot wave”, in Quantum Mechanics, Determinism, Causality, and Particles, M., Flato et al. editors, Dordrecht-Holland, D. Reidel (1976), pp. 11–17; Chapter 11 of 2004 edition of [6].Google Scholar
[540] A., Einstein, “Quantentheorie des einatomigen idealen Gases”, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3–14 (1925).Google Scholar
[541] M.H., Anderson, J.R., Ensher, M.R., Matthews, C.E., Wieman, and E.A., Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor”, Science 269, 198–201 (1995).Google Scholar
[542] K.B., Davis, M.-O., Mewes, M.R., Andrews, N.J., van Druten, D.S., Durfee, D.M., Kurn, and W., Ketterle, “Bose–Einstein condensation in a gas of sodium atoms”, Phys. Rev. Lett. 75, 3969–3973 (1995).Google Scholar
[543] H., Hertz, Miscellaneous Papers, translated from first German edition (1895) by D.E., Jones and G.A., Schott, Macmillan (London, 1896), vol. 1, p. 318.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139177160.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139177160.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Franck Laloë, Ecole Normale Supérieure, Paris
  • Book: Do We Really Understand Quantum Mechanics?
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139177160.025
Available formats
×