Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T11:50:58.882Z Has data issue: false hasContentIssue false

5 - Wavelet-based numerical homogenization

Published online by Cambridge University Press:  07 September 2011

Bjorn Engquist
Affiliation:
University of Texas, Austin
Athanasios Fokas
Affiliation:
University of Cambridge
Ernst Hairer
Affiliation:
Université de Genève
Arieh Iserles
Affiliation:
University of Cambridge
Get access

Summary

Abstract

We consider multiscale differential equations in which the operator varies rapidly over fine scales. Direct numerical simulation methods need to resolve the small scales and they therefore become very expensive for such problems when the computational domain is large. Inspired by classical homogenization theory, we describe a numerical procedure for homogenization, which starts from a fine discretization of a multiscale differential equation, and computes a discrete coarse grid operator which incorporates the influence of finer scales. In this procedure the discrete operator is represented in a wavelet space, projected onto a coarser subspace and approximated by a banded or block-banded matrix. This wavelet homogenization applies to a wider class of problems than classical homogenization. The projection procedure is general and we give a presentation of a framework in Hilbert spaces, which also applies to the differential equation directly. We show numerical results when the wavelet based homogenization technique is applied to discretizations of elliptic and hyperbolic equations, using different approximation strategies for the coarse grid operator.

Introduction

In the numerical simulation of partial differential equations, the existence of subgrid scale phenomena poses considerable difficulties. With subgrid scale phenomena, we mean those processes which could influence the solution on the computational grid but which have length scales shorter than the grid size. Highly oscillatory initial data may, for example, interact with fine scales in the material properties and produce coarse scale contributions to the solution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×