Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T16:01:42.188Z Has data issue: false hasContentIssue false

1 - Oscillations over long times in numerical Hamiltonian systems

Published online by Cambridge University Press:  07 September 2011

E. Hairer
Affiliation:
Université de Genève
C. Lubich
Affiliation:
Universität Tübingen
Bjorn Engquist
Affiliation:
University of Texas, Austin
Athanasios Fokas
Affiliation:
University of Cambridge
Ernst Hairer
Affiliation:
Université de Genève
Arieh Iserles
Affiliation:
University of Cambridge
Get access

Summary

Introduction

The numerical treatment of ordinary differential equations has continued to be a lively area of numerical analysis for more than a century, with interesting applications in various fields and rich theory. There are three main developments in the design of numerical techniques and in the analysis of the algorithms:

  • Non-stiff differential equations. In the 19th century (Adams, Bashforth, and later Runge, Heun and Kutta), numerical integrators have been designed that are efficient (high order) and easy to apply (explicit) in practical situations.

  • Stiff differential equations. In the middle of the 20th century one became aware that earlier developed methods are impractical for a certain class of differential equations (stiff problems) due to stability restrictions. New integrators (typically implicit) were needed as well as new theories for a better understanding of the algorithms.

  • Geometric numerical integration. In long-time simulations of Hamiltonian systems (molecular dynamics, astronomy) neither classical explicit methods nor implicit integrators for stiff problems give satisfactory results. In the last few decades, special numerical methods have been designed that preserve the geometric structure of the exact flow and thus have an improved long-time behaviour.

The basic developments (algorithmic and theoretical) of these epochs are documented in the monographs [HNW93], [HW96], and [HLW06]. Within geometric numerical integration we can also distinguish between non-stiff and stiff situations. Since here the main emphasis is on conservative Hamiltonian systems, the term “stiff” has to be interpreted as “highly oscillatory”.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×