Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T04:49:20.690Z Has data issue: false hasContentIssue false

3 - Passive Scalar Transport in Turbulence: A Computational Perspective

Published online by Cambridge University Press:  05 February 2013

T. Gotoh
Affiliation:
Nagoya Institute of Technology
P.K. Yeung
Affiliation:
Schools of Aerospace Engineering
Peter A. Davidson
Affiliation:
University of Cambridge
Yukio Kaneda
Affiliation:
Aichi Institute of Technology, Japan
Katepalli R. Sreenivasan
Affiliation:
New York University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, R. C., and Catrakis, H. 2005. On intermittency and the physical thickness of turbulent fluid interfaces. J. Fluid Mech., 540, 39–48.Google Scholar
Aivalis, K. G., Sreenivasan, K. R., Tsuji, Y, Klewicki, J. C., and Biltoft, C. A. 2002. Temperature structure functions for air flow over moderately heated ground. Phys. Fluids, 14, 2439–2446.Google Scholar
Antonia, R. A., and Orlandi, P. 2003a. Effect of Schmidt number on passive scalar turbulence. Appl. Mech. Rev., 56, 615–632.Google Scholar
Antonia, R. A., and Orlandi, P. 2003b. On the Batchelor constant in decaying isotropic turbulence. Phys. Fluids, 15, 2084–086.Google Scholar
Antonia, R. A., and Sreenivasan, S. R. 1977. Lognormality of temperature dissipation in a turbulent boundary layer. Phys. Fluids, 20, 1800–1804.Google Scholar
Antonia, R. A., Chambers, A. J., Britz, D., and Browne, L. W. B. 1986. Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport. J. Fluid Mech., 172, 211–229.Google Scholar
Antonia, R. A., Hopfinger, E. J., Gagne, Y., and Anselmet, F. 1998. Temperature structure functions in turbulent shear flows. Phys. Rev.A, 30, 2704–2707.Google Scholar
Antonia, R. A., Zhou, T., and Xu, G. 2000. Second-order temperature and velocity structure functions: Reynolds number dependence. Phys. Fluids, 12, 1509–1517.Google Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M., and Gibson, C. H. 1987. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids, 30, 2343–2353.Google Scholar
Batchelor, G. K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133.Google Scholar
Batchelor, G. K., Howells, I. K., and A., , Townsend, A. 1959. Small-scale variations of convected quantities like temperature in turbulent fluid, Part 2: The case of large conductivity. J. Fluid Mech., 5, 134–139.Google Scholar
Biferale, L., and Procaccia, I. 2005. Anisotropy in turbulent flows and in turbulent transport. Phys. Rep., 414, 43–164.Google Scholar
Biferale, L., Calzavarini, L., Lanotte, A. S., and Toschi, F. 2004. Universality of anisotropic turbulence. PhysicaA, 338, 194 – 200.Google Scholar
Bilger, R. W. 1989. Turbulent diffusion flames. Ann. Rev. Fluid Mech., 21, 101–135.Google Scholar
Bogucki, D., Domaradzki, J. A., and Yeung, P. K. 1997. Direct numerical simulations of passive scalars with Pr > 1 advected by turbulent flow. J. Fluid Mech., 343, 111–130.Google Scholar
Boratav, O. N., and Pelz, R. B. 1998. Coupling between anomalous velocity and passive scalar increments in turbulence. Phys. Fluids, 10, 2122–2124.Google Scholar
Borgas, M. S., Sawford, B. L., Xu, S, Donzis, D. A., and Yeung, P. K. 2004. High Schmidt number scalars in turbulence: Structure functions and Lagrangian theory. Phys. Fluids, 16, 3888–3899.Google Scholar
Bos, W. J. T., Touil, H., and Bertoglio, J.-P. 2005. Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient. Phys. Fluids, 17, 125108.Google Scholar
Brethouwer, G., Hunt, J. C. R., and Nieuwstadt, F. T. M. 2003. Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech., 474, 193–225.Google Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A.Thomae, S., Wu, X-Z., Zaleski, S., and Zanetti, G. 1989. Scaling of hard thermal turbulence in Rayleigh–Benard convection. J. Fluid Mech., 204, 1–30.Google Scholar
Celani, A., Lanotte, A., Mazzino, A., and Vergassola, M. 2000. Universality and saturation of intermittency in passive scalar turbulence. Phys. Rev. Lett., 84, 2385–2388.Google Scholar
Celani, A., Lanotte, A., Mazzino, A., and Vergassola, M. 2001. Fronts in passive scalar turbulence. Phys. Fluids, 13, 1768–1783.Google Scholar
Chambers, A.J., and Antonia, R.A. 1984. Atmospheric estimate of power-law exponents μ and μθ. Boundary-Layer Met., 28, 343–352.Google Scholar
Chasnov, J. R., Canuto, V. M., and Rogallo, R. S. 1988. Turbulence spectrum of a passive temperature field: Results of a numerical simulation. Phys. Fluids, 31, 2065–2067.Google Scholar
Chen, S., and Cao, N. 1997. Anomalous scaling and structure instability in three-dimensional passive scalar turbulence. Phys. Rev. Lett., 78, 3459–3462.Google Scholar
Chertkov, M., Falkovich, G., and Lebedev, V. 1996. Nonuniversaality of the scaling exponents of a passive scalar convected by a random flow. Phys. Rev. Lett., 76, 3707–3710.Google Scholar
Ching, E. S. 1993. Probability densities of turbulent temperature fluctuations. Phys. Rev. Lett., 70, 283–286.Google Scholar
Colucci, P. J., Jaberi, F. A., Givi, P., and Pope, S. B. 1998. Filtered density function for large-eddy simulation of turbulent reacting flows. Phys. Fluids, 10, 499–515.Google Scholar
Corrsin, S. 1951. On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys., 22, 469–473.Google Scholar
Danaila, L, and Antonia, R. A. 2009. Spectrum of a passive scalar in moderate Reynolds number homogeneous isotropic turbulence. Phys. Fluids, 21, 111702.Google Scholar
Danaila, L., and Mydlarski, L. 2001. Effect of gradient production on scalar fluctuations in decaying grid turbulence. Phys. Rev. E., 64, 016316.Google Scholar
Danaila, L., Anselmet, F., Zhou, T., and Antonia, R. A. 1999. A generalization of Yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence. J. Fluid Mech., 391, 359–372.Google Scholar
Dimotakis, P. E. 2005. Turbulent mixing. Ann. Rev. Fluid Mech., 37, 329–356.Google Scholar
Doering, C. R. 2009. The 3D Navier–Stokes problem. Ann. Rev. Fluid Mech., 41, 109–128.Google Scholar
Donzis, D. A., and Sreenivasan, K. R. 2010. The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech., 657, 171–188.Google Scholar
Donzis, D. A., and Yeung, P. K. 2010. Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. PhysicaD, 239, 1278–1287.Google Scholar
Donzis, D. A., Sreenivasan, K. R., and Yeung, P. K. 2005. Scalar dissipation rate and Dissipative anomaly in isotropic turbulence. J. Fluid Mech., 532, 199–216.Google Scholar
Donzis, D. A., Yeung, P. K., and Sreenivasan, K. R. 2008a. Energy dissipation rate and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids, 20, 045108.Google Scholar
Donzis, D. A., Yeung, P. K., and Pekurovsky, D. 2008b. Turbulence simulations on O(104) processors. In: TeraGrid'08 Conference, Las Vegas, NV, June 2008.
Donzis, D. A., Sreenivasan, K. R., and Yeung, P. K. 2010. The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow, Turb. & Combust., 85, 549–566.Google Scholar
Dopazo, C, Martin, J., and J., Hierro. 2007. Local geometry of isoscalar surfaces. Phys. Rev. E., 76, 056316.Google Scholar
Eswaran, V., and Pope, S. B. 1988. Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids, 31, 506–520.Google Scholar
Eyink, G. L. 1996. Intermittency and anomalous scaling of passive scalars in any space dimension. Phys. Rev. E., 54, 1497–1503.Google Scholar
Falkovich, G. 1994. Bottleneck phenomenon in developed turbulence. Phys. Fluids, 6, 1411–1413.Google Scholar
Ferchichi, M., and Tavoularis, S. 2002. Scalar probability density function and and fine structure in uniformly sheared turbulence. J. Fluid Mech., 461, 155–182.Google Scholar
Fox, R. O. 1999. The Lagrangian spectral relaxation model for differential diffusion in homogeneous turbulence. Phys. Fluids, 11, 1550–1571.Google Scholar
Fox, R. O. 2003. Computational Models for Turbulent Reacting Flows. Cambridge University Press.
Fox, R. O., and Yeung, P. K. 2003. Improved Lagrangian mixing models for passive scalars in isotropic turbulence. Phys. Fluids, 15, 961–985.Google Scholar
Frisch, U. 1995. Turbulence. Cambridge University Press.
Gibson, C. H. 1968. Fine structure of scalar fields mixed by turbulence. 2. Spectral theory. Phys. Fluids, 11, 2316–2327.Google Scholar
Gollub, J. P., Clarke, J., Gharib, M., Lane, B., and Mesquita, O. N. 1991. Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett., 67, 3507–3510.Google Scholar
Gotoh, T. 1989. Passive scalar diffusion in two-dimensional turbulence in the Lagrangian renormalized approximation. J. Phys. Soc. Jpn., 58, 2365.Google Scholar
Gotoh, T., and Watanabe, T. 2012. Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence. PhysicaD, 241, 141–148.Google Scholar
Gotoh, T., Nagaki, J., and Kaneda, Y. 2000. Passive scalar spectrum in the viscous–convective range in two-dimensional steady turbulence. Phys. Fluids, 12, 155–168.Google Scholar
Gotoh, T., Fukayama, D., and Nakano, T. 2002. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids, 14, 1065–1081.Google Scholar
Grant, H. L., A., , Hughes, B., Vogel, W. M., and Moilliet, A. 1968. The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech., 34, 423–442.Google Scholar
Gylfason, A., and Warhaft, Z. 2004. On higher order passive scalar structure functions in grid turbulence. Phys. Fluids, 16, 4012–4019.Google Scholar
Herring, H. R., and Kraichnan, R. H. 1979. A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations. J. Fluid Mech., 91, 581–597.Google Scholar
Higgins, K., Ooi, A., and Chong, M. S. 2006. Batchelor's spectrum from an axisymmetric strained scalar field. Phys. Fluids, 18, 065111.Google Scholar
Hill, R. J. 2002. Structure-function equations for scalars. Phys. Fluids, 14, 1745–1756.Google Scholar
Holzer, M., and Siggia, E. D. 1994. Turbulent mixing of a passive scalar. Phys. Fluids, 6, 1820–1837.Google Scholar
Ishihara, T., and Kaneda, Y. 1992. Stretching and distortion of material line elements in two-dimensional turbulence. J. Phys. Soc. Jpn., 61, 3547–3558.Google Scholar
Ishihara, T., Gotoh, T., and Kaneda, Y. 2009. Study of high Reynolds number isotropic turbulence by direct numerical simulations. Ann. Rev. Fluid Mech., 41, 165–180.Google Scholar
Jaberi, F. A., Miller, R. S., Mandia, C. K., and Givi, P. 1996. Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech., 313, 241–282.Google Scholar
Jayesh, , and Warhaft, Z. 1992. Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence. Phys. Fluids, A4, 2292–2306.Google Scholar
Jukkien, M. C., Castiglione, P., and Tabeling, P. 2000. Experimental observation of Batchelor dispersion of passive tracers. Phys. Rev. Lett., 85, 3636.Google Scholar
Kaneda, Y. 1986. Inertial range structure of turbulent velocity and scalar fields in a Lagrangian renormalized approximation. Phys. Fluids, 29, 701–708.Google Scholar
Kaneda, Y., and Ishihara, T. 2006. High resolution direct numerical simulation of turbulence. J. Turb., 7 (20), 1–17.Google Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, T., and Uno, A. 2003. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids, 15, L21–L24.Google Scholar
Kerstein, A. R. 1991. Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech., 231, 361–394.Google Scholar
Kimura, Y., and Kraichnan, R. H. 1993. Statistics of an advected passive scalar. Phys. Fluids, A5, 2264–2277.Google Scholar
Kraichnan, R. H. 1966. Isotropic turbulence and inertial-range structure. Phys. Fluids, 9, 1728–1752.Google Scholar
Kraichnan, R. H. 1968. Small-scale structure of scalar field convected by turbulence. Phys. Fluids, 11, 945–953.Google Scholar
Kraichnan, R. H. 1974. Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech., 64, 737–762.Google Scholar
Kraichnan, R. H. 1994. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett., 72, 1016–1019.Google Scholar
Kurien, S., and Sreenivasan, K. R. 2001. Measures of anisotropy and universal properties of turbulence. Pages 53–111 of: New Trends in Turbulence, NATO Advanced Study Institute, Les Houches, France. Springer and EDP-Sciences.
Kurien, S., Aivalis, K., and Sreenivasan, K. R. 2001. Anisotropy of small-scale scalar turbulence. J. Fluid Mech., 448, 279–288.Google Scholar
Lévêque, E., Ruiz-Chavarria, G., Baudet, C., and Ciliberto, S. 1999. Scaling laws for the turbulent mixing of a passive scalar in the wake of a cylinder. Phys. Fluids, 11, 1869–1879.Google Scholar
Li, Y., and Meneveau, C. 2006. Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport. J. Fluid Mech., 558, 133–142.Google Scholar
Lumley, J. L. 1964. The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci., 21, 99–102.Google Scholar
Lumley, J. L. 1967. Similarity and the turbulence spectrum. Phys. Fluids, 10, 855–858.Google Scholar
Mills, R. R., Kistler, A. L., O'Brien, V., and Corrsin, S. 1958. Turbulence and temperature fluctuations behind a heated grid. NASA TN 4288.
Moin, P., and Mahesh, K. 1998. Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech., 30, 539–578.Google Scholar
Moisy, F., Willaime, H., Anderson, J. S., and Tabeling, P. 2001. Passive scalar intermittency in low temperature helium flows. Phys. Rev. Lett., 86, 4827–4830.Google Scholar
Mydlarski, L. 2003. Mixed velocity-passive scalar statistics in high-Reynolds number turbulence. J. Fluid Mech., 475, 173–203.Google Scholar
Mydlarski, L., and Warhaft, Z. 1998. Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech., 358, 135–175.Google Scholar
Newman, G. R., and Herring, J. R. 1979. A test field model study of a passive scalar in isotropic turbulence. J. Fluid Mech., 94, 163–194.Google Scholar
Oakey, A. N. 1982. Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256–271.Google Scholar
Obukhov, A. M. 1949. Structure of the temperature field in a turbulent flow. IZv. Akad. Nauk SSSR. Ser. Geogr. Geofiz., 13, 58–69.Google Scholar
O'Gorman, P. A., and Pullin, D. I. 2005. Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient. J. Fluid Mech., 532, 111–140.Google Scholar
Orlandi, P., and Antonia, R. A. 2002. Dependence of the nonstationary form of Yaglom's equation on the Schmidt number. J. Fluid Mech., 451, 99–108.Google Scholar
Overholt, M. R., and Pope, S. B. 1996. Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids, 8, 3128–3148.Google Scholar
Piller, M., Nobile, E., and Hanratty, T. 2002. DNS study of turbulent transport at low Prandtl numbers in a channel flow. J. Fluid Mech., 458, 419–441.Google Scholar
Pope, S. B. 1985. PDF methods for turbulent reactive flows. Progr. Energy & Combust. Sci., 11, 119–192.Google Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.
Pumir, A. 1994. A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids, 6, 2118–2132.CrossRefGoogle Scholar
Pumir, A., Shraiman, B., and Siggia, E. D. 1991. Exponential tails and random advection. Phys. Rev. Lett., 66, 2984–2987.Google Scholar
Qian, J. 1986. Turbulent passive scalar field of a small Prandtl number. Phys. Fluids, 29, 3586–3589.Google Scholar
Qian, J. 1995. Viscous range of turbulent scalar of large Prandtl number. Fluid Dyn. Res., 15, 103–112.Google Scholar
Rogallo, R. S. 1981. Numerical experiments in homogeneous turbulence. NASA TM 81315. NASA Ames Research Center, Moffett Field, CA.
Rogers, M. M., Mansour, N. N., and Reynolds, W. C. 1989. An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech., 203, 77–101.Google Scholar
Ruiz-Chavarria, G., Baudet, C., and Ciliberto, S. 1996. Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. PhysicaD, 99, 369–380.Google Scholar
Schumacher, J., and Sreenivasan, K. R. 2005. Statistics and geometry of passive scalars in turbulence. Phys. Fluids, 17, 125107.Google Scholar
Schumacher, J., Sreenivasan, K. R., and Yeung, P. K. 2003. Schmidt number dependence of derivative moments for quasistatic straining motion. J. Fluid Mech., 479, 221–230.Google Scholar
Schumacher, J., Sreenivasan, K. R., and Yeung, P. K. 2005. Very fine structures in scalar mixing. J. Fluid Mech., 531, 113–122.Google Scholar
Shraiman, B. I., and Siggia, E. D. 1994. Lagrangian path integrals and fluctuations in random flows. Phys. Rev. E., 49, 2912–2927.Google Scholar
Shraiman, B. I., and Siggia, E. D. 1998. Anomalous scaling for a passive scalar near the Batchelor limit. Phys. Rev. E., 57, 2965–2977.Google Scholar
Shraiman, B. I., and Siggia, E. D. 2000. Scalar turbulence. Nature, 405, 639–646.Google Scholar
Sirivat, A., and Warhaft, Z. 1983. The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J. Fluid Mech., 128, 323–346.Google Scholar
Sreenivasan, K. R. 1991. On local isotropy of passive scalars in turbulent shear flows. Proc. Roy. Soc. Lond., Ser. A, 434, 165–182.Google Scholar
Sreenivasan, K. R. 1998. An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids, 10, 528–529.Google Scholar
Sreenivasan, K. R. 2004. Possible effects of small-scale intermittency in turbulent reacting flows. Flow, Turb. & Combust., 72, 115–131.Google Scholar
Sreenivasan, K. R., and Antonia, R. A. 1997. The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech., 29, 435–472.Google Scholar
Sreenivasan, K. R., and Kailasnath, P. 1993. An update on the intermittency exponent in turbulence. Phys. FluidsA, 5, 512–513.Google Scholar
Sreenivasan, K. R., and Prasad, R. P. 1989. New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows. PhysicaD, 38, 322–329.Google Scholar
Sreenivasan, K. R., Antonia, R. A., and Britz, D. 1979. Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech., 94, 745–775.Google Scholar
Sreenivasan, K. R., Tavoularis, S., Henry, R., and Corrsin, S. 1980. Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech., 100, 597–621.Google Scholar
Sreenivasan, K.R. 1996. The passive scalar spectrum and the Obukhov-Corrsin constant. Phys. Fluids, 8, 189–196.Google Scholar
Stolovitzky, G., Kailasnath, P., and Sreenivasan, K. R. 1995. Refined similarity hypotheses for passive scalars mixed by turbulence. J. Fluid Mech., 297, 275–291.Google Scholar
Tavoularis, S., and Corrsin, S. 1981. Experiments in nearly homogeneous shear flow with a uniform mean temperature gradient. J. Fluid Mech., 104, 311–347.Google Scholar
Thoroddsen, S. T., and Van Atta, C. W. 1992. Exponential tails and skewness of density-gradient probability density functions in stably stratified turbulence. J. Fluid Mech., 244, 547–566.Google Scholar
Vedula, P., Yeung, P. K., and Fox, R. O. 2001. Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech., 433, 29–60.Google Scholar
Wang, L. P., Chen, S., and Brasseur, J. G. 1999. Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 2. Passive scalar field. J. Fluid Mech., 400, 163–197.Google Scholar
Warhaft, Z. 2000. Passive scalars in turbulent flows. Ann. Rev. Fluid Mech., 32, 203–240.Google Scholar
Warhaft, Z., and Lumley, J. L. 1978. An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech., 88, 659–6840.Google Scholar
Watanabe, T., and Gotoh, T. 2004. Statistics of a passive scalar in homogeneous turbulence. New J. Phys., 6, 40.Google Scholar
Watanabe, T., and Gotoh, T. 2006. Intermittency in passive scalar turbulence under the uniform mean scalar gradient. Phys. Fluids, 18, 058105.Google Scholar
Watanabe, T., and Gotoh, T. 2007a. Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech., 590, 117–146.Google Scholar
Watanabe, T., and Gotoh, T. 2007b. Scalar flux spectrum in isotropic turbulence with a uniform mean scalar gradient. Phys. Fluids, 19, 121701.Google Scholar
Watanabe, T., and Gotoh, T. 2010. Coil-stretch transition in ensemble of polymers in isotropic turbulence. Phys. Rev. E., 81, 066301.Google Scholar
Yaglom, A. M. 1949. On the local structure of a temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR, 69, 743–746.Google Scholar
Yakhot, V., and Sreenivasan, K. R. 2005. Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys., 121, 823–841.Google Scholar
Yeh, T. T., and Atta, C. W. Van. 1973. Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech., 58, 233–261.Google Scholar
Yeung, P. K. 1996. Multi-scalar triadic interactions in differential diffusion with and without mean scalar gradients. J. Fluid Mech., 321, 235–278.Google Scholar
Yeung, P. K. 1998. Correlation and conditional statistics in differential diffusion: scalars with uniform mean gradients. Phys. Fluids, 10, 2621–2635.Google Scholar
Yeung, P. K. 2001. Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech., 427, 241–274.Google Scholar
Yeung, P. K., Xu, S., and Sreenivasan, K. R. 2002. Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids, 14, 4178–4191.Google Scholar
Yeung, P. K., Xu, S., Donzis, D. A., and Sreenivasan, K. R. 2004. Simulations of three-dimensional turbulent mixing for Schmidt numbers of the order 1000. Flow, Turb. & Combust., 72, 333–347.Google Scholar
Yeung, P. K., Donzis, D. A., and Sreenivasan, K. R. 2005. High-Reynolds-number simulation of turbulent mixing. Phys. Fluids, 17, 081703.Google Scholar
Yeung, P. K., Pope, S. B., and Sawford, B. L. 2006b. Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turb., 7(58), 1–12.Google Scholar
Yokokawa, M., Itakura, T., Uno, A., Ishihara, T., and Kaneda, Y. 2002 (November). 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator. In: Proceedings of the Supercomputing Conference, Baltmore, MD. Nov. 2002.
Yu, H., and Meneveau, C. 2010. Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows. Phys. Rev. Lett., 104, 084502.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×