Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T20:02:49.690Z Has data issue: false hasContentIssue false

9 - Series Solutions of Linear Ordinary Differential Equations

from III - ORDINARY DIFFERENTIAL EQUATIONS

Published online by Cambridge University Press:  05 April 2013

Tomas B. Co
Affiliation:
Michigan Technological University
Get access

Summary

In this chapter, we focus our attention on obtaining analytical solutions of linear differential equations with coefficients that are not constant. These solutions are not as simple as those for which the coefficients were constant. One general approach is to use a power series formulation.

In Section 9.1, we describe the main approaches of power series solution. Depending on the equation, one can choose to expand the solution around an ordinary point or a singular point. Each of these choices will determine the structure of the series. For an ordinary point, the expansion is simply a Taylor series, whereas for a singular point, we need a series known as a Frobenius series.

Although the power series method is straightforward, power series solutions can be quite lengthy and complicated. Nonetheless, for certain equations, solutions can be found based on the parameters of the equations, thus yielding direct solutions. This is the case for two important classes of second-order equations that have several applications. These are the Legendre equations and Bessel equations, which we describe in Sections 9.2 and 9.3, respectively.

We have also included other important equations in the exercises, such as hyper-geometric equations, Jacobi equations, Laguerre equations, Hermite equations, and so forth, where the same techniques given in this chapter can be used to generate the useful functions and polynomials. Fortunately, the special functions and polynomials that solve these equations, including Legendre polynomials, Legendre functions and Bessel functions, are included in several computer software programs such as MATLAB.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×