Bibliography[1] N. R., Amundson, Mathematical Methods in Chemcial Engineering: Matrices and Their Applications, vol. 1, Prentice Hall, New Jersey, 1966.

[2] N. R., Amundson and R., Aris, Mathematical Methods in Chemcial Engineering, vol. 2, Prentice Hall, New Jersey, 1973.

[3] G., Arfken, Mathematical Methods for Physicists, Academic Press, New York, third ed., 1985.

[4] V. I., Arnold, Ordinary Differential Equations, Springer-Verlag, Berlin Heidelberg, third ed., 1992.

[5] O., Axelsson and V. A., Barker, Finite Element Solution of Boundary Value Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2001.

[6] P., Bamberg and S., Sternberg, A Course in Mathematics for Students of Physics, vol. 1 and 2, Cambridge University Press, Cambridge, UK, 1990.

[7] K. J., Beers, NumericalMethods for Chemical Engineering, Cambridge University Press, Cambridge, UK, 2007.

[8] R. B., Bird, W. E., Stewart, and E. N., Lightfoot, Transport Phenonomena, John Wiley & Sons, second ed., 2007.

[9] W. E., Boyce and R.C., DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons, New York, third ed., 1977.

[10] K. E., Brenan, S. L., Campbell, and L. R., Petzold, Numerical Solution of Initial Value Problems in Differential Algebraic Equations, North-Holland, New York, 1989.

[11] D. N., Burghes and M. S., Borrie, Modeling with Differential Equations, Ellis Horwood, West Sussex, England, 1981.

[12] G., Cain and G. H., Meyer, Separation of Variables for Partial Differential Equations, An Eigenfunction Approach, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[13] B. J., Cantewell, Introduction to Symmetry Analysis, Cambridge University Press, Cambridge, UK, 2002.

[14] H. S., Carslaw and J. C., Jaeger, Conduction of Heat in Solids, Oxford University Press, London, second ed., 1959.

[15] C. T., Chen, Linear System Theory and Design, Oxford University Press, USA, 1984.

[16] C. R., Chester, Techniques in Partial Differential Equations, McGraw-Hill, New York, 1970.

[17] R. Courant, and
D., Hilbert, Methods of Mathematical Physics, vol. 1 and 2, John Wiley & Sons, New York, 1962.

[18] G., Dahlquist and Å., Björck, Numerical Methods, Dover Publications, New York, 1974.

[19] L., Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Boston, 1997.

[20] A. S., Deif, Advanced Matrix Theory for Scientists and Engineers, Abacus Press, Kent, England, 1982.

[21] J. E., Dennis and R. B., Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, New Jersey, 1983.

[22] J., Donea and A., Huerta, Finite Element Methods for Flow Problems, John Wiley & Sons, New York, 2003.

[23] L., Dresner, Similarity Solutions of Nonlinear Partial Differential Equations, Pitman Publishing, London, 1983.

[24] P., DuChateau and D., Zachmann, Applied Partial Differential Equations, Dover Publications, New York, 1989.

[25] L., Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia, 2005.

[26] D. K., Faddeev and V. N., Faddeeva, Computational Methods of Linear Algebra, W.H. Freeman, San Francisco, 1963.

[27] J. D., Faires and R. L., Burden, Numerical Methods, Brook/Cole Publishing Company, Pacific Grove, CA, third ed., 2002.

[28] S. J., Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, New York, 1993.

[29] J. H., Ferziger and M., Perić, Computational Methods of Fluid Dynamics, Springer Verlag, Berlin, 2002.

[30] B. A., Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York, 1972.

[31] G. B., Folland, Fourier Analysis and Its Applications, Brooks/Cole Publishing Company, Pacific Grove, CA, 1992.

[32] G., Friedlander and M., Joshi, Introduction to the Theory of Distributions, Cambridge University Press, Cambridge, UK, second ed., 1998.

[33] J. C., Friedly, Dynamic Behaviour of Processes, Prentice-Hall, New Jersey, 1972.

[34] G. F., Froment and K. B., Bischoff, Chemical Reactor Analysis and Design, John Wiley & Sons, New York, first ed., 1979.

[35] F. R., Gantmacher, Matrix Analysis, vol. 1 and 2, Chelsea Publishing Company, New York, 1977.

[36] C. W., Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 1971.

[37] N. E., Gibbs, J., William, G., Poole, and P. K., Stockmeyer, An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal., 13 (1976), pp. 236–250.

[38] P., Glendinning, Stability, Instability, and Chaos: an Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK, 1994.

[39] G. H., Golub and C. F. V., Loan, Matrix Computations, John Hopkins University Press, Baltimore, third ed., 1996.

[40] M. D., Greenberg, Foundations of Applied Mathematics, Prentice Hall, New Jersey, 1978.

[41] J., Guckenheimer and P., Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, Berlin, second ed., 1983.

[42] W., Hahn, Stability of Motion, Springer-Verlag, Berlin, 1968.

[43] E., Hairer, S. P., Nørsett, and G., Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin Heidelberg, second ed., 1993.

[44] E., Hairer and G., Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin Heidelberg, second ed., 1996.

[45] F. B., Hildebrand, Methods of Applied Mathematics, Dover Publications, New York, second ed., 1965.

[46] L., Hogben, ed., Handbook of Linear Algebra, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[47] R. A., Horn and C. R., Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.

[48] R. A., Horn and C. R., Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.

[49] T. J., R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, New York, 2000.

[50] M., Humi and W., Miller, Second Course in Ordinary Differential Equations for Scientists and Engineers, Springer Verlag, New York, 1987.

[51] P. E., Hydon, Symmetry Methods for Differential Equations, A Beginner's Guide, Cambridge University Press, Cambridge, MA, 2000.

[52] E. L., Ince, Ordinary Differential Equations, Dover Publications, New York, 1956.

[53] E., Isaacson and H. B., Keller, Analysis of Numberical Methods, John Wiley & Sons, New York, 1966.

[54] A., Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, UK, 1996.

[55] V. G., Jenson and G. V., Jeffreys, Mathematical Methods in Chemical Engineering, Academic Press, London, second ed., 1977.

[56] C., Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover Publications, New York, 2009.

[57] T., Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980.

[58] A. C., King, J., Billigham, and S. R., Otto, Differential Equations: Linear, Nonlinear, Ordinary, Partial, Cambridge University Press, Cambridge, UK, 2003.

[59] R., Knobel, An Introduction to the Mathematical Theory of Waves, American Mathematical Society, Providence, RI, 1999.

[60] E., Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, ninth ed., 2006.

[61] M. C., Lai, A note on finite difference discretizations for poisson equation on a disk, Numerical Methods for Partial Difference Equations, 17 (2001), pp. 199–203.

[62] P. D., Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society of Industrial and Applied Mathematics, Philadephia, 1987.

[63] E. S., Lee, Quasilinearization and Invariant Imbedding, Academic Press, New York, 1968.

[64] R. J., LeVeque, NumericalMethods for Conservation Laws, Birkhäuser Verlag, Switzerland, 1992.

[65] R. J., LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002.

[66] R. W., Lewis, P., Nithiarasu, and K. N., Seethataramu, Fundamentals of the Finite Element Method for Heat and Fluid Flow, John Wiley & Sons, New York, 2004.

[67] H., Lomax, T. H., Pulliam, and D. W., Zingg, Fundamentals of Computational Fluid Dynamics, Springer Verlag, Berlin, 2001.

[68] H. S., Mickley, T. K., Sherwood, and C. E., Reed, Applied Mathematics in Chemical Engineering, McGraw-Hill, Company, New York, 1957.

[69] K. W., Morton and D. F., Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, Cambridge, UK, second ed., 2005.

[70] G. M., Murphy, Ordinary Differential Equations and Their Solutions, D. Van Nostrand Company, Princeton, NJ, 1960.

[71] P. V., O'Neil, Advanced Engineering Mathematics, Cengage Learning – Engineering, Stanford, CT, seventh ed., 2011.

[72] P. O., Persson and G., Strang,
A simple mesh generator in matlab, SIAM Review, 46 (2004), pp. 329–345.

[73] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, third ed., 2007.

[74] H.-K., Rhee, R., Aris, and N. R., Amundson, First-Order Partial Differential Equations: Theory and Applications of Single Equations, vol. 1, Dover Publications, New York, 2001.

[75] R. G., Rice and D. D., Do, Applied Mathematics and Modeling for Chemical Engineers, John Wiley & Sons, New York, 1995.

[76] J. I., Richards and H. K., Youn, Theory of Distributions, A Nontechnical Introduction, Cambridge University Press, Cambridge, UK, 1990.

[77] K. F., Riley, M. P., Hobson, and S. J., Bence, Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, UK, third ed., 2006.

[78] Y., Saad, IterativeMethods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, second ed., 2003.

[79] H. M., Schey, Div, Grad, Curl and All That: An Informal Text on Vector Calculus, W.W. Norton & Company, New York, 1992.

[80] J. H., Seinfeld, Mathematical Methods in Chemcial Engineering, vol. 3, Prentice Hall, New Jersey, 1974.

[81] I. N., Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.

[82] I. P., Stavroulakis and S. A., Tersian, Partial Differential Equation: An Introduction with Mathematica and MAPLE, World Scientific Publishing Company, Singapore, 1999.

[83] H., Stephani, Differential Equations, Their Solution Using Symmetries, Cambridge University Press, Cambridge, UK, 1989.

[84] H. H., Storey and C., Rosenbrock, Computational Techniques for Chemical Engineers, Pergamon Press, New York, 1966.

[85] G., Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986.

[86] S. H., Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Westview Press, Cambridge, MA, 2001.

[87] J. W., Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer Verlag, New York, 1995.

[88] E. G., Thompson, Introduction to the Finite Element Method, John Wiley & Sons, New York, 2005.

[89] N., Tufillaro, T., Abbott, and J., Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos, Addison-Wesley Publishing Company, Redwood City, CA, 1992.

[90] C. R., Wiley and L. C., Barrett, Advanced Engineering Mathematics, McGraw-Hill Book, New York, fifth ed., 1982.

[91] O. C., Zienkiewicz, R. L., Taylor, and P., Nithiarasu, The Finite Element Method for Fluid Dynamics, Elsevier Butterworth-Heinemann, Amsterdam, sixth ed., 2005.

[92] O. C., Zienkiewicz, R. L., Taylor, and J. Z., Zhu, The Finite Element Method, Its Basis and Fundamentals, Elsevier Butterworth-Heinemann, Amsterdam, sixth ed., 2005.

[93] D., Zwillinger, Handbook of Integration, Jones and Bartlett Publishers, Boston, 1992.

[94] D., Zwillinger, Handbook of Differential Equations, Academic Press, San Diego, third ed., 1997.