Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T03:35:13.630Z Has data issue: false hasContentIssue false

Questions for review

from Section 3 - Classic and rare scenarios in the neonatal period

Published online by Cambridge University Press:  05 March 2012

Georg Hansmann
Affiliation:
Children's Hospital Boston
Shannon E. G. Hamrick
Affiliation:
Emory University
Tilman Humpl
Affiliation:
Hospital for Sick Children, Toronto
Andrea Zimmermann
Affiliation:
Technical University Munich
Georg Hansmann
Affiliation:
Children's Hospital Boston, Harvard Medical School
Get access

Summary

  1. What are the initial steps in managing a vigorous term newborn infant – and which measures should be avoided? See p. 221.

  2. When are advanced resuscitative measures indicated in newborns? Keywords: meconium, asphyxia, premature birth/prematurity, special events. See p. 227.

  3. Why is endotracheal intubation in very small preterm infants difficult? Explain the anatomical features. See p. 236.

  4. Estimate the birth weight for the following tube sizes (inner diameter) for endotracheal intubation: 2.0-, 2.5-, or 3.0-mm-ID tube. See p. 85, Table 2.2

  5. What would you tell the parents: how high is the rate of brain damage (IVH, PVL) in preterm infants <1500 g? See p. 238.

  6. What could be the reasons for deterioration in spite of assuredly correct endotracheal intubation? See p. 222, p. 236, p. 340, p. 392, p. 410, p. 417.

  7. Below which gestational age is viability of the fetus not probable? See pp. 185–6.

  8. Is it legitimate to discontinue life-saving resuscitative measures once started in extreme prematurity? See p. 184, p. 235.

  9. What are the possible complications of monochorial twin pregnancies? See p. 240.

  10. What samples need to be collected prior to an emergency transfusion? See Table 3.1, p. 241.

  11. What are the clinical signs of a twin–twin transfusion syndrome (TTTS)? See Table 3.1, p. 240.

  12. What is in the differential diagnosis when the newborn presents with pallor and increased respiratory rate? See Table 3.2, p. 243.

  13. When infection of the newborn is suspected what diagnostic tests should be performed in the delivery room? See Table 3.2, p. 244, p. 280.

  14. […]

Type
Chapter
Information
Neonatal Emergencies , pp. 472 - 476
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cordero, L, Hon, EH. Neonatal bradycardia following nasopharyngeal stimulation. J Pediatr 1971;78(3):441–7.CrossRefGoogle ScholarPubMed
Rennie, JM, Roberston, NRC. Roberston's Textbook of Neonatology, 4th edn. Edinburgh: Churchill Livingstone, 2005.Google Scholar
Lippi, G, Salvagno, GL, Rugolotto, S, et al. Routine coagulation tests in newborn and young infants. J Thromb Thrombolysis 2007;24(2):153–5.CrossRefGoogle ScholarPubMed
Bührer, C, Bahr, S, Siebert, J, Wettstein, R, Geffers, C, Obladen, M. Use of 2% 2-phenoxyethanol and 0.1% octenidine as antiseptic in premature newborn infants of 23–26 weeks gestation. J Hosp Infect 2002;51(4):305–7.CrossRefGoogle ScholarPubMed
Lokesh, L, Kumar, P, Murki, S, Narang, A. A randomized controlled trial of sodium bicarbonate in neonatal resuscitation – effect on immediate outcome. Resuscitation 2004;60(2):219–23.CrossRefGoogle ScholarPubMed
Synnes, AR, Chien, LY, Peliowski, A, Baboolal, R, Lee, SK. Variations in intraventricular hemorrhage incidence rates among Canadian neonatal intensive care units. J Pediatr 2001;138(4):525–31.CrossRefGoogle ScholarPubMed
Vohra, S, Roberts, RS, Zhang, B, Janes, M, Schmidt, B. Heat loss prevention (HeLP) in the delivery room: a randomized controlled trial of polyethylene occlusive skin wrapping in very preterm infants. J Pediatr 2004;145:750–3.CrossRefGoogle ScholarPubMed
McCall, EM, Alderdice, FA, Halliday, HL, Jenkins, JG, Vohra, S. Interventions to prevent hypothermia at birth in preterm and/or low birthweight babies. Cochrane Database Syst Rev 2005(1):CD004210.Google ScholarPubMed
Engle, WA. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics 2008;121(2):419–32.CrossRefGoogle ScholarPubMed
Aly, H, Massaro, AN, Patel, K, El-Mohandes, AA. Is it safer to intubate premature infants in the delivery room?Pediatrics 2005;115(6):1660–5.CrossRefGoogle ScholarPubMed
Soll, RF, Morley, CJ. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2001(2):CD000510.Google ScholarPubMed
Booth, C, Premkumar, MH, Yannoulis, A, Thomson, M, Harrison, M, Edwards, AD. Sustainable use of continuous positive airway pressure in extremely preterm infants during the first week after delivery. Arch Dis Child Fetal Neonatal Ed 2006;91(6):F398–402.CrossRefGoogle ScholarPubMed
Morley, CJ, Davis, PG, Doyle, LW, Brion, LP, Hascoet, JM, Carlin, JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 2008;358(7):700–8.CrossRefGoogle ScholarPubMed
Ammari, A, Suri, M, Milisavljevic, V, et al. Variables associated with the early failure of nasal CPAP in very low birth weight infants. J Pediatr 2005;147(3):341–7.CrossRefGoogle ScholarPubMed
Yost, CC, Soll, RF. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev 2000(2):CD001456.Google ScholarPubMed
Verder, H, Albertsen, P, Ebbesen, F, et al. Nasal continuous positive airway pressure and early surfactant therapy for respiratory distress syndrome in newborns of less than 30 weeks' gestation. Pediatrics 1999;103(2):E24.CrossRefGoogle Scholar
Stevens, TP, Harrington, EW, Blennow, M, Soll, RF. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 2007(4):CD003063.Google ScholarPubMed
Kribs, A. Is it safer to intubate premature infants in the delivery room?Pediatrics 2006;117(5):1858–9; author reply 1859.CrossRefGoogle ScholarPubMed
Kribs, A, Pillekamp, F, Hunseler, C, Vierzig, A, Roth, B. Early administration of surfactant in spontaneous breathing with nCPAP: feasibility and outcome in extremely premature infants (postmenstrual age ≤27 weeks). Paediatr Anaesth 2007;17(4):364–9.CrossRefGoogle Scholar
,2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric basic life support. Pediatrics 2006;117(5):e989–1004.
Hamrick, SE, Miller, SP, Leonard, C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004;145(5):593–9.CrossRefGoogle ScholarPubMed
Bartels, DB, Kreienbrock, L, Dammann, O, Wenzlaff, P, Poets, CF. Population based study on the outcome of small for gestational age newborns. Arch Dis Child Fetal Neonatal Ed 2005;90(1):F53–9.CrossRefGoogle ScholarPubMed
Ment, LR, Allan, WC, Makuch, RW, Vohr, B. Grade 3 to 4 intraventricular hemorrhage and Bayley scores predict outcome. Pediatrics 2005;116(6):1597–8; author reply 1598.CrossRefGoogle ScholarPubMed
Heuchan, AM, Evans, N, Henderson Smart, DJ, Simpson, JM. Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch Dis Child Fetal Neonatal Ed 2002;86(2):F86–90.CrossRefGoogle ScholarPubMed
Ballabh, P, Xu, H, Hu, F, et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med 2007;13(4):477–85.CrossRefGoogle ScholarPubMed
Rabe, H, Reynolds, G, Diaz-Rossello, J. Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev 2004(4):CD003248.Google ScholarPubMed
Kaiser, JR, Gauss, CH, Pont, MM, Williams, DK. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J Perinatol 2006;26(5):279–85.CrossRefGoogle ScholarPubMed
Fabres, J, Carlo, WA, Phillips, V, Howard, G, Ambalavanan, N. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 2007;119(2):299–305.CrossRefGoogle ScholarPubMed
Osborn, DA, Evans, N, Kluckow, M, Bowen, JR, Rieger, I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 2007; 120(2):372–80.CrossRefGoogle ScholarPubMed
Fowlie, PW, Davis, PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2003;88(6):F464–6.CrossRefGoogle ScholarPubMed
Ohlsson, A, Roberts, RS, Schmidt, B, et al. Male/female differences in indomethacin effects in preterm infants. J Pediatr 2005;147(6):860–2.CrossRefGoogle ScholarPubMed
Wu, YW. Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev 2002;8(1):25–9.CrossRefGoogle ScholarPubMed
Giannakopoulou, C, Korakaki, E, Manoura, A, et al. Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants. Pediatr Int 2004;46(3):268–73.CrossRefGoogle ScholarPubMed
Resch, B, Jammernegg, A, Vollaard, E, Maurer, U, Mueller, WD, Pertl, B. Preterm twin gestation and cystic periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed 2004;89(4):F315–20.CrossRefGoogle ScholarPubMed
Shankaran, S, Langer, JC, Kazzi, SN, Laptook, AR, Walsh, M. Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 2006;118(4):1654–9.CrossRefGoogle ScholarPubMed
Meek, JH, Tyszczuk, L, Elwell, CE, Wyatt, JS. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed 1999;81(1):F15–18.CrossRefGoogle ScholarPubMed
Ment, LR, Bada, HS, Barnes, P, et al. Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002;58(12):1726–38.CrossRefGoogle ScholarPubMed
Ment, LR, Duncan, CC, Ehrenkranz, RA, et al. Intraventricular hemorrhage in the preterm neonate: timing and cerebral blood flow changes. J Pediatr 1984;104(3):419–25.CrossRefGoogle ScholarPubMed
Vohr, BR, Wright, LL, Poole, WK, McDonald, SA. Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998. Pediatrics 2005;116(3):635–43.CrossRefGoogle ScholarPubMed
Vasileiadis, GT, Gelman, N, Han, VK, et al. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 2004;114(3):e367–72.CrossRefGoogle ScholarPubMed
Patra, K, Wilson-Costello, D, Taylor, HG, Mercuri-Minich, N, Hack, M. Grades I–II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 2006;149(2):169–73.CrossRefGoogle ScholarPubMed
Mercer, JS, Vohr, BR, McGrath, MM, Padbury, JF, Wallach, M, Oh, W. Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 2006;117(4):1235–42.CrossRefGoogle ScholarPubMed
Wee, LY, Fisk, NM. The twin-twin transfusion syndrome. Semin Neonatol 2002;7(3):187–202.CrossRefGoogle ScholarPubMed
Acosta-Rojas, R, Becker, J, Munoz-Abellana, B, Ruiz, C, Carreras, E, Gratacos, E. Twin chorionicity and the risk of adverse perinatal outcome. Int J Gynaecol Obstet 2007;96(2):98–102.CrossRefGoogle ScholarPubMed
Bagchi, S, Salihu, HM. Birth weight discordance in multiple gestations: occurrence and outcomes. J Obstet Gynaecol 2006;26(4):291–6.CrossRefGoogle ScholarPubMed
Sperling, L, Kiil, C, Larsen, LU, et al. Detection of chromosomal abnormalities, congenital abnormalities and transfusion syndrome in twins. Ultrasound Obstet Gynecol 2007;29(5):517–26.CrossRefGoogle ScholarPubMed
Ruhmann, O, Lazovic, D, Bouklas, P, Schmolke, S, Flamme, CH. Ultrasound examination of neonatal hip: correlation of twin pregnancy and congenital dysplasia. Twin Res 2000;3(1):7–11.CrossRefGoogle ScholarPubMed
Sibai, BM, Hauth, J, Caritis, S, et al. Hypertensive disorders in twin versus singleton gestations. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am J Obstet Gynecol 2000;182(4):938–42.CrossRefGoogle ScholarPubMed
Umur, A, Gemert, MJ, Nikkels, PG. Monoamniotic-versus diamniotic-monochorionic twin placentas: anastomoses and twin-twin transfusion syndrome. Am J Obstet Gynecol 2003;189(5):1325–9.CrossRefGoogle ScholarPubMed
Roberts, D, Neilson, JP, Weindling, AM. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev 2001(1):CD002073.Google ScholarPubMed
Mari, G, Roberts, A, Detti, L, et al. Perinatal morbidity and mortality rates in severe twin-twin transfusion syndrome: results of the International Amnioreduction Registry. Am J Obstet Gynecol 2001;185(3):708–15.CrossRefGoogle ScholarPubMed
Gray, PH, Cincotta, R, Chan, FY, Soong, B. Perinatal outcomes with laser surgery for twin-twin transfusion syndrome. Twin Res Hum Genet 2006;9(3):438–43.CrossRefGoogle ScholarPubMed
Ackermann-Liebrich, U, Voegeli, T, Gunter-Witt, K, et al. Home versus hospital deliveries: follow up study of matched pairs for procedures and outcome. Zurich Study Team. Br Med J 1996;313(7068):1313–18.CrossRefGoogle ScholarPubMed
Murphy, PA, Fullerton, J. Outcomes of intended home births in nurse-midwifery practice: a prospective descriptive study. Obstet Gynecol 1998;92(3):461–70.Google ScholarPubMed
Johnson, KC, Daviss, BA. Outcomes of planned home births with certified professional midwives: large prospective study in North America. Br Med J 2005;330(7505):1416.CrossRefGoogle ScholarPubMed
Janssen, PA, Lee, SK, Ryan, EM, et al. Outcomes of planned home births versus planned hospital births after regulation of midwifery in British Columbia. CMAJ 2002;166(3):315–23.Google ScholarPubMed
Janssen, PA, Ryan, EM, Etches, DJ, Klein, MC, Reime, B. Outcomes of planned hospital birth attended by midwives compared with physicians in British Columbia. Birth 2007;34(2):140–7.CrossRefGoogle ScholarPubMed
Fullerton, JT, Navarro, AM, Young, SH. Outcomes of planned home birth: an integrative review. J Midwifery Womens Health 2007;52(4):323–33.CrossRefGoogle Scholar
,ACOG Practice Bulletin. Episiotomy. Clinical Management Guidelines for Obstetrician-Gynecologists. Number 71, April 2006. Obstet Gynecol 2006;107(4):957–62.Google Scholar
Cornblath, M, Hawdon, JM, Williams, AF, et al. Controversies regarding definition of neonatal hypoglycemia: suggested operational thresholds. Pediatrics 2000;105(5):1141–5.CrossRefGoogle ScholarPubMed
Cornblath, M, Ichord, R. Hypoglycemia in the neonate. Semin Perinatol 2000;24(2):136–49.CrossRefGoogle ScholarPubMed
Stanley, CA, Baker, L. The causes of neonatal hypoglycemia. N Engl J Med 1999;340(15):1200–1.CrossRefGoogle ScholarPubMed
,World Health Organization: Hypoglycaemia of the Newborn. Review of the Literature. Geneva: World Health Organization, 1997.Google Scholar
Marcus, C. How to measure and interpret glucose in neonates. Acta Paediatr 2001;90(9):963–4.CrossRefGoogle ScholarPubMed
Williams, AF. Hypoglycaemia of the newborn: a review. Bull World Health Organ 1997;75(3):261–90.Google ScholarPubMed
Dekelbab, BH, Sperling, MA. Hypoglycemia in newborns and infants. Adv Pediatr 2006;53:5–22.CrossRefGoogle ScholarPubMed
Peters, CJ, Hindmarsh, PC. Management of neonatal endocrinopathies – best practice guidelines. Early Hum Dev 2007;83(9):553–61.CrossRefGoogle ScholarPubMed
Boluyt, N, Kempen, A, Offringa, M. Neurodevelopment after neonatal hypoglycemia: a systematic review and design of an optimal future study. Pediatrics 2006;117(6):2231–43.CrossRefGoogle ScholarPubMed
Manganaro, R, Mami, C, Palmara, A, Paolata, A, Gemelli, M. Incidence of meconium aspiration syndrome in term meconium-stained babies managed at birth with selective tracheal intubation. J Perinat Med 2001;29(6):465–8.CrossRefGoogle ScholarPubMed
Wiswell, TE. Handling the meconium-stained infant. Semin Neonatol 2001; 6(3):225–31.CrossRefGoogle ScholarPubMed
2005 ,International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation. Resuscitation 2005;67(2–3):293–303.CrossRefGoogle Scholar
2005 ,American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics 2006;117(5):e1029–38.
Vain, NE, Szyld, EG, Prudent, LM, Wiswell, TE, Aguilar, AM, Vivas, NI. Oropharyngeal and nasopharyngeal suctioning of meconium-stained neonates before delivery of their shoulders: multicentre, randomised controlled trial. Lancet 2004; 364(9434):597–602.CrossRefGoogle ScholarPubMed
Saugstad, OD, Rootwelt, T, Aalen, O. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study. Pediatrics 1998;102:e1.CrossRefGoogle ScholarPubMed
Wiswell, TE, Knight, GR, Finer, NN, et al. A multicenter, randomized, controlled trial comparing Surfaxin (Lucinactant) lavage with standard care for treatment of meconium aspiration syndrome. Pediatrics 2002;109(6):1081–7.CrossRefGoogle ScholarPubMed
Kattwinkel, J. Surfactant lavage for meconium aspiration: a word of caution. Pediatrics 2002;109(6):1167–8.CrossRefGoogle ScholarPubMed
Ng, E, Taddio, A, Ohlsson, A. Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit. Cochrane Database Syst Rev 2003(1):CD002052.Google ScholarPubMed
Findlay, RD, Taeusch, HW, Walther, FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics 1996;97(1):48–52.Google ScholarPubMed
El Shahed, A, Dargaville, P, Ohlsson, A, Soll, R. Surfactant for meconium aspiration syndrome in full term/near term infants. Cochrane Database Syst Rev 2007(3):CD002054.Google ScholarPubMed
Finer, NN, Barrington, KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev 2006(4):CD000399.Google ScholarPubMed
Bahrami, KR, Meurs, KP. ECMO for neonatal respiratory failure. Semin Perinatol 2005;29(1):15–23.CrossRefGoogle ScholarPubMed
Wessel, DL. Managing low cardiac output syndrome after congenital heart surgery. Crit Care Med 2001;29(10 Suppl):S220–30.CrossRefGoogle ScholarPubMed
Allan, CK, Thiagarajan, RR, del Nido, PJ, Roth, SJ, Almodovar, MC, Laussen, PC. Indication for initiation of mechanical circulatory support impacts survival of infants with shunted single-ventricle circulation supported with extracorporeal membrane oxygenation. J Thorac Cardiovasc Surg 2007;133(3):660–7.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ. Amnioinfusion for meconium-stained liquor in labour. Cochrane Database Syst Rev 2002(1):CD000014.Google ScholarPubMed
Xu, H, Hofmeyr, J, Roy, C, Fraser, WD. Intrapartum amnioinfusion for meconium-stained amniotic fluid: a systematic review of randomised controlled trials. Br J Obstet Gynaecol 2007;114(4):383–90.CrossRefGoogle ScholarPubMed
Hagberg, H, Wennerholm, UB, Savman, K. Sequelae of chorioamnionitis. Curr Opin Infect Dis 2002;15(3):301–6.CrossRefGoogle ScholarPubMed
Kattwinkel, J. Neonatal Resuscitation, 5th edn. Elk Grove Village: American Academy of Pediatrics and American Heart Association, 2006.Google Scholar
Kliegman, R. Fetal and neonatal medicine. In: Behrman, R, Kliegman, R, eds. Nelson Essentials of Pediatrics, 4th edn. Philadelphia: W.R. Saunders Company. 2002;179–249.Google Scholar
Pickering, LK. Red Book: 2006 Report of the Committee on Infectious Diseases, 27th edn. Washington, DC: American Academy of Pediatrics, 2006.Google Scholar
Berner, R. Group B streptococci during pregnancy and infancy. Curr Opin Infect Dis 2002;15(3):307–13.CrossRefGoogle Scholar
Behrmann, R, Kliegman, R. Nelson Essentials of Pediatrics, 4th edn. Philadelphia: W.B. Saunders Company, 2002.Google Scholar
Oddie, S, Embleton, ND. Risk factors for early onset neonatal group B streptococcal sepsis: case-control study. Br Med J 2002;325(7359):308.CrossRefGoogle Scholar
Schrag, SJ, Zywicki, S, Farley, MM, et al. Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. N Engl J Med 2000;342(1):15–20.CrossRefGoogle Scholar
Schrag, SJ, Zell, ER, Lynfield, R, et al. A population-based comparison of strategies to prevent early-onset group B streptococcal disease in neonates. N Engl J Med 2002;347(4):233–9.CrossRefGoogle Scholar
Schrag, SJ, Stoll, BJ. Early-onset neonatal sepsis in the era of widespread intrapartum chemoprophylaxis. Pediatr Infect Dis J 2006;25(10):939–40.CrossRefGoogle ScholarPubMed
Eschenbach, DA. Prevention of neonatal group B streptococcal infection. N Engl J Med 2002;347(4):280–1.CrossRefGoogle ScholarPubMed
Stoll, BJ, Hansen, N, Fanaroff, AA, et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N Engl J Med 2002;347(4):240–7.CrossRefGoogle ScholarPubMed
Benitz, WE, Han, MY, Madan, A, Ramachandra, P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 1998;102(4):E41.CrossRefGoogle Scholar
Harvey, D, Holt, , Bedford, H. Bacterial meningitis in the newborn: a prospective study of mortality and morbidity. Semin Perinatol 1999;23(3):218–25.CrossRefGoogle ScholarPubMed
Wiswell, TE, Baumgart, S, Gannon, CM, Spitzer, AR. No lumbar puncture in the evaluation for early neonatal sepsis: will meningitis be missed?Pediatrics 1995;95(6):803–6.Google ScholarPubMed
Kanegaye, JT, Soliemanzadeh, P, Bradley, JS. Lumbar puncture in pediatric bacterial meningitis: defining the time interval for recovery of cerebrospinal fluid pathogens after parenteral antibiotic pretreatment. Pediatrics 2001;108(5):1169–74.Google ScholarPubMed
Nigrovic, , Kuppermann, N, Macias, CG, et al. Clinical prediction rule for identifying children with cerebrospinal fluid pleocytosis at very low risk of bacterial meningitis. J Am Med Assoc 2007;297(1):52–60.CrossRefGoogle ScholarPubMed
Young, TE, Mangum, B. Neofax 2007, 20th edn. London: Thomson PDR, 2007.Google Scholar
Taketomo, CK, Hodding, JH, Kraus, DM. Lexi Comp's Pediatric Dosage Handbook with International Index, 13th edn. Hudson: Lexicomp, 2006.Google Scholar
Robertson, J, Shilkofski, N. The Harriet Lane Handbook, 17th edn. St. Louis: Mosby, 2005.Google Scholar
Gilbert, D, Moellering, R, Sande, M. The Sanford Guide to Antimicrobial Therapy. Hyde Park, VT: Antimicrobial Therapy, Inc., 2001.Google Scholar
Carter, BS, Haverkamp, AD, Merenstein, GB. The definition of acute perinatal asphyxia. Clin Perinatol 1993;20(2):287–304.CrossRefGoogle ScholarPubMed
Gunn, AJ, Gunn, TR, Haan, HH, Williams, CE, Gluckman, PD. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 1997;99(2):248–56.CrossRefGoogle ScholarPubMed
Azzopardi, D, Edwards, AD. Hypothermia. Semin Fetal Neonatal Med 2007;12(4):303–10.CrossRefGoogle ScholarPubMed
Jacobs, S, Hunt, R, Tarnow-Mordi, W, Inder, T, Davis, P. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2007(4):CD003311.Google ScholarPubMed
,ACOG Committee Opinion. Inappropriate use of the terms fetal distress and birth asphyxia. Obstet Gynecol 2005;106(6):1469–70.CrossRefGoogle Scholar
,ACOG Committee Opinion. The Apgar score. Obstet Gynecol 2006;107(5):1209–12.Google Scholar
Nelson, KB, Emery, ES, 3rd. Birth asphyxia and the neonatal brain: what do we know and when do we know it?Clin Perinatol 1993;20(2):327–44.CrossRefGoogle Scholar
Vannucci, RC, Perlman, JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100(6):1004–14.CrossRefGoogle ScholarPubMed
The International Liaison Committee on Resuscitation (ILCOR) consensus on science with treatment recommendations for pediatric and neonatal patients: neonatal resuscitation. Pediatrics 2006;117(5):e978–88.
Hansmann, G. Neonatal resuscitation on air: it is time to turn down the oxygen tanks [corrected]. Lancet 2004;364(9442):1293–4.CrossRefGoogle Scholar
Vento, M, Sastre, J, Asensi, MA, Vina, J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med 2005;172(11):1393–8.CrossRefGoogle ScholarPubMed
Lundstrom, KE, Pryds, O, Greisen, G. Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed 1995;73(2):F81–6.CrossRefGoogle ScholarPubMed
Gluckman, PD, Wyatt, JS, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365(9460):663–70.CrossRefGoogle ScholarPubMed
Eicher, DJ, Wagner, CL, Katikaneni, LP, et al. Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatr Neurol 2005;32(1):11–17.CrossRefGoogle ScholarPubMed
Shankaran, S, Laptook, AR, Ehrenkranz, RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353(15):1574–84.CrossRefGoogle ScholarPubMed
Edwards, AD, Azzopardi, DV. Therapeutic hypothermia following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2006;91(2):F127–31.CrossRefGoogle ScholarPubMed
Wyatt, JS, Gluckman, PD, Liu, PY, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007;119(5):912–21.CrossRefGoogle ScholarPubMed
Rutherford, MA, Azzopardi, D, Whitelaw, A, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy. Pediatrics 2005;116(4):1001–6.CrossRefGoogle ScholarPubMed
Gunn, AJ, Hoehn, T, Hansmann, G, et al. Hypothermia, an evolving treatment for neonatal hypoxic ischemic encephalopathy. Pediatrics 2008;121:648–9.CrossRefGoogle ScholarPubMed
Hoehn, T, Hansmann, G, Bührer, C, et al. Therapeutic hypothermia in neonates. Review of current clinical data. ILCOR recommendations and suggestions for implementation in neonatal intensive care units. Resuscitation 2008; 78(1):7–12.CrossRefGoogle ScholarPubMed
Blackmon, LR, Stark, AR. Hypothermia: a neuroprotective therapy for neonatal hypoxic-ischemic encephalopathy. Pediatrics 2006;117(3):942–8.CrossRefGoogle ScholarPubMed
Higgins, RD, Raju, TN, Perlman, J, et al. Hypothermia and perinatal asphyxia: executive summary of the National Institute of Child Health and Human Development workshop. J Pediatr 2006;148(2):170–5.CrossRefGoogle ScholarPubMed
Perlman, JM. Intrapartum hypoxic-ischemic cerebral injury and subsequent cerebral palsy: medicolegal issues. Pediatrics 1997;99(6):851–9.CrossRefGoogle ScholarPubMed
Volpe, JJ. Neurology of the Newborn, 4th edn. Philadelphia: W.B. Saunders, 2001.Google Scholar
Dixon, G, Badawi, N, Kurinczuk, JJ, et al. Early developmental outcomes after newborn encephalopathy. Pediatrics 2002;109(1):26–33.CrossRefGoogle ScholarPubMed
Rutherford, MA, Pennock, JM, Counsell, SJ, et al. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 1998;102(2 Pt 1):323–8.CrossRefGoogle ScholarPubMed
Miller, SP, Newton, N, Ferriero, DM, et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomic factors. Pediatr Res 2002;52(1):71–7.CrossRefGoogle ScholarPubMed
Barkovich, AJ, Baranski, K, Vigneron, D, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 1999;20(8):1399–405.Google ScholarPubMed
Robertson, C, Finer, N. Term infants with hypoxic-ischemic encephalopathy: outcome at 3.5 years. Dev Med Child Neurol 1985;27(4):473–84.CrossRefGoogle ScholarPubMed
Tharp, BR. Neonatal seizures and syndromes. Epilepsia 2002;43 (Suppl 3):2–10.CrossRefGoogle ScholarPubMed
Jensen, FE. The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 2002;20(3–5): 339–47.CrossRefGoogle ScholarPubMed
Ben-Ari, Y, Holmes, GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006;5(12):1055–63.CrossRefGoogle ScholarPubMed
Sulzbacher, S, Farwell, JR, Temkin, N, Lu, AS, Hirtz, DG. Late cognitive effects of early treatment with phenobarbital. Clin Pediatr 1999;38(7):387–94.CrossRefGoogle ScholarPubMed
Calandre, EP, Dominguez-Granados, R, Gomez-Rubio, M, Molina-Font, JA. Cognitive effects of long-term treatment with phenobarbital and valproic acid in school children. Acta Neurol Scand 1990;81(6):504–6.CrossRefGoogle ScholarPubMed
Mizrahi, EM, Kellaway, P. Characterization and classification of neonatal seizures. Neurology 1987;37(12):1837–44.CrossRefGoogle ScholarPubMed
Rennie, J, Chorley, G, Boylan, G, Pressler, R, Nguyen, Y, Hooper, R. Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child Fetal Neonatal Ed 2004;89(1):F37–40.CrossRefGoogle ScholarPubMed
Toet, MC, Meij, W, Vries, LS, Uiterwaal, CS, Huffelen, KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 2002;109(5):772–9.CrossRefGoogle ScholarPubMed
Vries, LS, Toet, MC. Amplitude integrated electroencephalography in the full-term newborn. Clin Perinatol 2006;33(3):619–32.CrossRefGoogle ScholarPubMed
Miller, SP, Weiss, J, Barnwell, A, et al. Seizure-associated brain injury in term newborns with perinatal asphyxia [see comment]. Neurology 2002;58(4):542–8.CrossRefGoogle Scholar
Clancy, RR. Summary proceedings from the neurology group on neonatal seizures. Pediatrics 2006;117(3 Pt 2):S23–7.Google ScholarPubMed
Bittigau, P, Sifringer, M, Genz, K, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Nat Acad Sci USA 2002;99(23):15089–94.CrossRefGoogle ScholarPubMed
Diaz, J, Schain, RJ. Phenobarbital: effects of long-term administration on behavior and brain of artifically reared rats. Science 1978;199(4324):90–1.CrossRefGoogle Scholar
Booth, D, Evans, DJ. Anticonvulsants for neonates with seizures. Cochrane Database Syst Rev 2004(4):CD004218.Google ScholarPubMed
Painter, MJ, Scher, MS, Stein, AD, et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. New Engl J Med 1999;341(7):485–9.CrossRefGoogle ScholarPubMed
Wirrell, EC. Neonatal seizures: to treat or not to treat?Semin Pediatr Neurol 2005;12(2):97–105.CrossRefGoogle ScholarPubMed
Lanska, MJ, Lanska, DJ. Neonatal seizures in the United States: results of the National Hospital Discharge Survey, 1980–1991. Neuroepidemiology 1996;15(3):117–25.CrossRefGoogle ScholarPubMed
Rennie, JM. Neonatal seizures. Eur J Pediatr 1997;156(2):83–7.CrossRefGoogle ScholarPubMed
Castro Conde, JR, Hernandez Borges, AA, Domenech Martinez, E, Gonzalez Campo, C, Perera Soler, R. Midazolam in neonatal seizures with no response to phenobarbital [see comment]. Neurology 2005;64(5):876–9.CrossRefGoogle Scholar
Dzhala, VI, Talos, DM, Sdrulla, DA, et al. NKCC1 transporter facilitates seizures in the developing brain [see comment]. Nature Med 2005;11(11):1205–13.CrossRefGoogle Scholar
Manthey, D, Asimiadou, S, Stefovska, V, et al. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain. Exp Neurol 2005;193(2):497–503.CrossRefGoogle Scholar
Sankar, R, Painter, MJ. Neonatal seizures: after all these years we still love what doesn't work. Neurology 2005;64(5):776–7.CrossRefGoogle ScholarPubMed
Camfield, CS, Chaplin, S, Doyle, AB, Shapiro, SH, Cummings, C, Camfield, PR. Side effects of phenobarbital in toddlers; behavioral and cognitive aspects. J Pediatr 1979;95(3):361–5.CrossRefGoogle ScholarPubMed
Oberlander, TF, Warburton, W, Misri, S, Aghajanian, J, Hertzman, C. Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch Gen Psychiatry 2006;63(8):898–906.CrossRefGoogle ScholarPubMed
Cohen, LS, Altshuler, LL, Harlow, BL, et al. Relapse of major depression during pregnancy in women who maintain or discontinue antidepressant treatment. J Am Med Assoc 2006;295(5):499–507.CrossRefGoogle ScholarPubMed
Chambers, CD, Hernandez-Diaz, S, Marter, LJ, et al. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 2006;354(6):579–87.CrossRefGoogle ScholarPubMed
Finnegan, LP, Connaughton, JF, Kron, RE, Emich, JP. Neonatal abstinence syndrome: assessment and management. Addict Dis 1975;2(1–2):141–58.Google ScholarPubMed
Lipsitz, PJ. A proposed narcotic withdrawal score for use with newborn infants. A pragmatic evaluation of its efficacy. Clin Pediatr (Phila) 1975;14(6):592–4.CrossRefGoogle ScholarPubMed
Zahorodny, W, Rom, C, Whitney, W, et al. The neonatal withdrawal inventory: a simplified score of newborn withdrawal. J Dev Behav Pediatr 1998;19(2):89–93.CrossRefGoogle ScholarPubMed
Osborn, DA, Jeffery, HE, Cole, M. Opiate treatment for opiate withdrawal in newborn infants. Cochrane Database Syst Rev 2005(3):CD002059.Google ScholarPubMed
Osborn, DA, Jeffery, HE, Cole, MJ. Sedatives for opiate withdrawal in newborn infants. Cochrane Database Syst Rev 2005(3):CD002053.Google ScholarPubMed
,Neonatal drug withdrawal. American Academy of Pediatrics Committee on Drugs. Pediatrics 1998;101(6):1079–88.Google Scholar
Levinson-Castiel, R, Merlob, P, Linder, N, Sirota, L, Klinger, G. Neonatal abstinence syndrome after in utero exposure to selective serotonin reuptake inhibitors in term infants. Arch Pediatr Adolesc Med 2006;160(2):173–6.CrossRefGoogle ScholarPubMed
Moses-Kolko, EL, Bogen, D, Perel, J, et al. Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. J Am Med Assoc 2005;293(19):2372–83.CrossRefGoogle ScholarPubMed
Strasburger, JF. Fetal arrhythmias. Prog Pediatr Cardiol 2000;11(1):1–17.CrossRefGoogle ScholarPubMed
Fasnacht, M, Pfammatter, JP, Ghisla, R, et al. FETCH-Study: prospective fetal cardiology study in Switzerland. 40th Annual Meeting of the AEPC, 2005. (Abstract) Card Young May 2005 Supplement 2, Vol. 15, p. 35.Google Scholar
Trappe, HJ. Acute therapy of maternal and fetal arrhythmias during pregnancy. J Intensive Care Med 2006;21(5):305–15.CrossRefGoogle ScholarPubMed
Strasburger, JF. Prenatal diagnosis of fetal arrhythmias. Clin Perinatol 2005;32(4):891–912, viii.CrossRefGoogle ScholarPubMed
Simpson, JM. Fetal arrhythmias. Ultrasound Obstet Gynecol 2006;27(6):599–606.CrossRefGoogle ScholarPubMed
Park, MK. Pediatric Cardiology for Practitioners, 5th edn. St. Louis: Mosby, 2008.Google Scholar
Ralston, M, Hazinski, MF, Zaritsky, AL, Schexnayder, SM, Kleinman, ME. PALS Provider Manual. Dallas: American Heart Association and American Academy of Pediatrics, 2006.Google Scholar
Izmirly, PM, Rivera, TL, Buyon, JP. Neonatal lupus syndromes. Rheum Dis Clin North Am 2007;33(2):267–85, vi.CrossRefGoogle ScholarPubMed
Johnson, BA, Ades, A. Delivery room and early postnatal management of neonates who have prenatally diagnosed congenital heart disease. Clin Perinatol 2005;32(4):921–46, ix.CrossRefGoogle ScholarPubMed
Buyon, JP, Hiebert, R, Copel, J, et al. Autoimmune-associated congenital heart block: demographics, mortality, morbidity and recurrence rates obtained from a national neonatal lupus registry. J Am Coll Cardiol 1998;31(7):1658–66.CrossRefGoogle ScholarPubMed
Michaelsson, M, Engle, MA. Congenital complete heart block: an international study of the natural history. Cardiovasc Clin 1972;4(3):85–101.Google ScholarPubMed
Gordon, PA. Congenital heart block: clinical features and therapeutic approaches. Lupus 2007;16(8):642–6.CrossRefGoogle ScholarPubMed
Buyon, JP, Rupel, A, Clancy, RM. Neonatal lupus syndromes. Lupus 2004;13(9):705–12.CrossRefGoogle ScholarPubMed
Grifka, RG. Cyanotic congenital heart disease with increased pulmonary blood flow. Pediatr Clin North Am 1999;46(2):405–25.CrossRefGoogle ScholarPubMed
Waldman, JD, Wernly, JA. Cyanotic congenital heart disease with decreased pulmonary blood flow in children. Pediatr Clin North Am 1999;46(2):385–404.CrossRefGoogle ScholarPubMed
Allen, HD, Driscoll, DJ, Shaddy, RE, Feltes, TF. Moss and Adams' Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult, 7th edn. Philadelphia: Lippincott Williams and Wilkins, 2008.Google Scholar
Silberbach, M, Hannon, D. Presentation of congenital heart disease in the neonate and young infant. Pediatr Rev 2007;28(4):123–31.CrossRefGoogle ScholarPubMed
Kovalchin, JP, Silverman, NH. The impact of fetal echocardiography. Pediatr Cardiol 2004;25(3):299–306.CrossRefGoogle ScholarPubMed
Ades, A, Johnson, BA, Berger, S. Management of low birth weight infants with congenital heart disease. Clin Perinatol 2005;32(4):999–1015, x–xi.CrossRefGoogle ScholarPubMed
Nichols, DG, Ungerleider, RM, Spevak, PJ, et al. Critical Heart Disease in Infants and Children, 2nd edn. Philadelphia: Mosby, 2006.Google Scholar
Wolf, D, Vanderbruggen, K, Verbist, A, et al. Percutaneous interventions for congenital aortic stenosis. Acta Cardiol 2006;61(2):204–5.Google ScholarPubMed
Fyler, DC. Report of the New England Regional Infant Cardiac Program. Pediatrics 1980;65(2 Pt 2):375–461.Google Scholar
Alsoufi, B, Karamlou, T, McCrindle, BW, Caldarone, CA. Management options in neonates and infants with critical left ventricular outflow tract obstruction. Eur J Cardiothorac Surg 2007;31(6):1013–21.CrossRefGoogle ScholarPubMed
Alsoufi, B, Bennetts, J, Verma, S, Caldarone, CA. New developments in the treatment of hypoplastic left heart syndrome. Pediatrics 2007;119(1):109–17.CrossRefGoogle ScholarPubMed
Ferencz, C, Rubin, JD, McCarter, RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 1985;121(1):31–6.CrossRefGoogle ScholarPubMed
Pandey, R, Jackson, M, Ajab, S, Gladman, G, Pozzi, M. Subclavian flap repair: review of 399 patients at median follow-up of fourteen years. Ann Thorac Surg 2006;81(4):1420–8.CrossRefGoogle ScholarPubMed
Sudarshan, CD, Cochrane, AD, Jun, ZH, Soto, R, Brizard, CP. Repair of coarctation of the aorta in infants weighing less than 2 kilograms. Ann Thorac Surg 2006;82(1):158–63.CrossRefGoogle ScholarPubMed
Brown, JW, Ruzmetov, M, Okada, Y, Vijay, P, Rodefeld, MD, Turrentine, MW. Outcomes in patients with interrupted aortic arch and associated anomalies: a 20-year experience. Eur J Cardiothorac Surg 2006;29(5):666–73; discussion 673–4.CrossRefGoogle ScholarPubMed
Cheung, YF, Leung, MP, Lee, JW, Chau, AK, Yung, TC. Evolving management for critical pulmonary stenosis in neonates and young infants. Cardiol Young 2000;10(3):186–92.CrossRefGoogle ScholarPubMed
Humpl, T, Soderberg, B, McCrindle, BW, et al. Percutaneous balloon valvotomy in pulmonary atresia with intact ventricular septum: impact on patient care. Circulation 2003;108(7):826–32.CrossRefGoogle ScholarPubMed
Derby, CD, Pizarro, C. Routine primary repair of tetralogy of Fallot in the neonate. Expert Rev Cardiovasc Ther 2005;3(5):857–63.CrossRefGoogle ScholarPubMed
Karamlou, T, Ashburn, DA, Caldarone, CA, et al. Matching procedure to morphology improves outcomes in neonates with tricuspid atresia. J Thorac Cardiovasc Surg 2005;130(6):1503–10.CrossRefGoogle ScholarPubMed
DeBord, S, Cherry, C, Hickey, C. The arterial switch procedure for transposition of the great arteries. AORN J 2007;86(2):211–26; quiz 227–30.CrossRefGoogle ScholarPubMed
Singh, RR, Warren, PS, Reece, TB, Ellman, P, Peeler, BB, Kron, IL. Early repair of complete atrioventricular septal defect is safe and effective. Ann Thorac Surg 2006;82(5):1598–601; discussion 1602.CrossRefGoogle ScholarPubMed
Hancock Friesen, CL, Zurakowski, D, Thiagarajan, RR, et al. Total anomalous pulmonary venous connection: an analysis of current management strategies in a single institution. Ann Thorac Surg 2005;79(2):596–606.CrossRefGoogle Scholar
Skinner, J. Diagnosis of patent ductus arteriosus. Semin Neonatol 2001;6(1):49–61.CrossRefGoogle ScholarPubMed
Clyman, RI. Ibuprofen and patent ductus arteriosus. N Engl J Med 2000;343(10):728–30.CrossRefGoogle ScholarPubMed
Thebaud, B, Michelakis, ED, Wu, XC, et al. Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 2004;110(11):1372–9.CrossRefGoogle ScholarPubMed
Kajimoto, H, Hashimoto, K, Bonnet, SN, et al. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation 2007;115(13):1777–88.CrossRefGoogle ScholarPubMed
Knight, DB. The treatment of patent ductus arteriosus in preterm infants. A review and overview of randomized trials. Semin Neonatol 2001;6(1):63–73.CrossRefGoogle ScholarPubMed
Ment, LR, Oh, W, Ehrenkranz, RA, et al. Low-dose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatrics 1994;93(4):543–50.Google ScholarPubMed
Schmidt, B, Davis, P, Moddemann, D, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med 2001;344(26):1966–72.CrossRefGoogle ScholarPubMed
Clyman, RI, Saha, S, Jobe, A, Oh, W. Indomethacin prophylaxis for preterm infants: the impact of 2 multicentered randomized controlled trials on clinical practice. J Pediatr 2007;150(1):46–50, e2.CrossRefGoogle ScholarPubMed
Ment, LR, Vohr, BR, Makuch, RW, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr 2004;145(6):832–4.CrossRefGoogle ScholarPubMed
Ohlsson, A, Walia, R, Shah, S. Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2005(4):CD003481.Google ScholarPubMed
Schmidt, B, Roberts, RS, Fanaroff, A, et al. Indomethacin prophylaxis, patent ductus arteriosus, and the risk of bronchopulmonary dysplasia: further analyses from the Trial of Indomethacin Prophylaxis in Preterms (TIPP). J Pediatr 2006;148(6):730–4.CrossRefGoogle Scholar
Bose, CL, Laughon, M. Treatment to prevent patency of the ductus arteriosus: beneficial or harmful?J Pediatr 2006;148(6):713–14.CrossRefGoogle ScholarPubMed
Bose, CL, Laughon, MM. Patent ductus arteriosus: lack of evidence for common treatments. Arch Dis Child Fetal Neonatal Ed 2007;92(6):F498–502.CrossRefGoogle ScholarPubMed
Shah, SS, Ohlsson, A. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2006(1):CD004213.Google ScholarPubMed
Herrera, C, Holberton, J, Davis, P. Prolonged versus short course of indomethacin for the treatment of patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev 2007(2):CD003480.Google ScholarPubMed
Overmeire, B, Smets, K, Lecoutere, D, et al. A comparison of ibuprofen and indomethacin for closure of patent ductus arteriosus. N Engl J Med 2000;343(10):674–81.CrossRefGoogle ScholarPubMed
Vanhaesebrouck, S, Zonnenberg, I, Vandervoort, P, Bruneel, E, Hoestenberghe, MR, Theyskens, C. Conservative treatment for patent ductus arteriosus in the preterm. Arch Dis Child Fetal Neonatal Ed 2007;92(4):F244–7.CrossRefGoogle ScholarPubMed
Rennie, JM, Cooke, RW. Prolonged low dose indomethacin for persistent ductus arteriosus of prematurity. Arch Dis Child 1991;66(1 Spec No):55–8.CrossRefGoogle Scholar
Jobe, AH. Drug pricing in pediatrics: the egregious example of indomethacin. Pediatrics 2007;119(6):1197–8.CrossRefGoogle ScholarPubMed
Walsh-Sukys, MC, Tyson, JE, Wright, LL, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 2000;105(1 Pt 1):14–20.CrossRefGoogle ScholarPubMed
Cua, CL, Blankenship, A, North, AL, Hayes, J, Nelin, LD. Increased incidence of idiopathic persistent pulmonary hypertension in down syndrome neonates. Pediatr Cardiol 2007;28(4):250–4.CrossRefGoogle ScholarPubMed
Shah, PS, Hellmann, J, Adatia, I. Clinical characteristics and follow up of Down syndrome infants without congenital heart disease who presented with persistent pulmonary hypertension of newborn. J Perinat Med 2004;32(2):168–70.CrossRefGoogle ScholarPubMed
Pearson, DL, Dawling, S, Walsh, WF, et al. Neonatal pulmonary hypertension – urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med 2001;344(24):1832–8.CrossRefGoogle ScholarPubMed
Gien, J, Seedorf, GJ, Balasubramaniam, V, Markham, N, Abman, SH. Intrauterine pulmonary hypertension impairs angiogenesis in vitro: role of vascular endothelial growth factor nitric oxide signaling. Am J Respir Crit Care Med 2007;176(11):1146–53.CrossRefGoogle ScholarPubMed
Farrow, KN, Groh, BS, Schumacker, PT, et al. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 2008;102(2):226–33.CrossRefGoogle ScholarPubMed
Weinberger, B, Weiss, K, Heck, , Laskin, DL, Laskin, JD. Pharmacologic therapy of persistent pulmonary hypertension of the newborn. Pharmacol Ther 2001;89(1):67–79.CrossRefGoogle ScholarPubMed
Rosenberg, AA. Outcome in term infants treated with inhaled nitric oxide. J Pediatr 2002;140(3):284–7.CrossRefGoogle ScholarPubMed
Hoehn, T. Therapy of pulmonary hypertension in neonates and infants. Pharmacol Ther 2007;114(3):318–26.CrossRefGoogle ScholarPubMed
Tworetzky, W, Bristow, J, Moore, P, et al. Inhaled nitric oxide in neonates with persistent pulmonary hypertension. Lancet 2001;357(9250):118–20.CrossRefGoogle ScholarPubMed
Barrington, KJ, Finer, NN. Inhaled nitric oxide for preterm infants: a systematic review. Pediatrics 2007;120(5):1088–99.CrossRefGoogle ScholarPubMed
Barrington, KJ, Finer, NN. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev 2007(3):CD000509.Google ScholarPubMed
Murray, F, Patel, HH, Suda, RY, et al. Expression and activity of cAMP phosphodiesterase isoforms in pulmonary artery smooth muscle cells from patients with pulmonary hypertension: role for PDE1. Am J Physiol Lung Cell Mol Physiol 2007;292(1):L294–303.CrossRefGoogle ScholarPubMed
Schermuly, RT, Pullamsetti, SS, Kwapiszewska, G, et al. Phosphodiesterase 1 upregulation in pulmonary arterial hypertension: target for reverse-remodeling therapy. Circulation 2007;115(17):2331–9.CrossRefGoogle ScholarPubMed
Baquero, H, Soliz, A, Neira, F, Venegas, ME, Sola, A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 2006;117(4):1077–83.CrossRefGoogle ScholarPubMed
Ichinose, F, Erana-Garcia, J, Hromi, J, et al. Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 2001;29(5):1000–5.CrossRefGoogle ScholarPubMed
Zhao, L, Mason, NA, Morrell, NW, et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 2001;104(4):424–8.CrossRefGoogle ScholarPubMed
Humpl, T, Reyes, JT, Holtby, H, Stephens, D, Adatia, I. Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension: twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation 2005;111(24):3274–80.CrossRefGoogle ScholarPubMed
Shah, P, Ohlsson, A. Sildenafil for pulmonary hypertension in neonates. Cochrane Database Syst Rev 2007(3):CD005494.Google ScholarPubMed
McNamara, PJ, Laique, F, Muang-In, S, Whyte, HE. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care 2006;21(2):217–22.CrossRefGoogle ScholarPubMed
Abman, SH. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology 2007;91(4):283–90.CrossRefGoogle ScholarPubMed
Hoeper, MM, Schwarze, M, Ehlerding, S, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 2000;342(25):1866–70.CrossRefGoogle ScholarPubMed
Wedgwood, S, McMullan, DM, Bekker, JM, Fineman, JR, Black, SM. Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy. Circ Res 2001;89(4):357–64.CrossRefGoogle ScholarPubMed
Moya, MP, Gow, AJ, Califf, RM, Goldberg, RN, Stamler, JS. Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn. Lancet 2002;360(9327):141–3.CrossRefGoogle ScholarPubMed
Stege, G, Fenton, A, Jaffray, B. Nihilism in the 1990s: the true mortality of congenital diaphragmatic hernia. Pediatrics 2003;112(3 Pt 1):532–5.CrossRefGoogle ScholarPubMed
Boloker, J, Bateman, DA, Wung, JT, Stolar, CJ. Congenital diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnea/spontaneous respiration/elective repair. J Pediatr Surg 2002;37(3):357–66.CrossRefGoogle ScholarPubMed
Colvin, J, Bower, C, Dickinson, JE, Sokol, J. Outcomes of congenital diaphragmatic hernia: a population-based study in Western Australia. Pediatrics 2005;116(3):e356–63.CrossRefGoogle ScholarPubMed
Lally, KP, Lally, PA, Meurs, KP, et al. Treatment evolution in high-risk congenital diaphragmatic hernia: ten years' experience with diaphragmatic agenesis. Ann Surg 2006;244(4):505–13.Google ScholarPubMed
Levison, J, Halliday, R, Holland, AJ, et al. A population-based study of congenital diaphragmatic hernia outcome in New South Wales and the Australian Capital Territory, Australia, 1992–2001. J Pediatr Surg 2006;41(6):1049–53.CrossRefGoogle Scholar
Baglaj, M. Late-presenting congenital diaphragmatic hernia in children: a clinical spectrum. Pediatr Surg Int 2004;20(9):658–69.CrossRefGoogle ScholarPubMed
Mei-Zahav, M, Solomon, M, Trachsel, D, Langer, JC. Bochdalek diaphragmatic hernia: not only a neonatal disease. Arch Dis Child 2003;88(6):532–5.CrossRefGoogle Scholar
Holt, PD, Arkovitz, MS, Berdon, WE, Stolar, CJ. Newborns with diaphragmatic hernia: initial chest radiography does not have a role in predicting clinical outcome. Pediatr Radiol 2004;34(6):462–4.CrossRefGoogle Scholar
Hamrick, SE, Brook, MM, Farmer, DL. Fetal surgery for congenital diaphragmatic hernia and pulmonary sequestration complicated by postnatal diagnosis of transposition of the great arteries. Fetal Diagn Ther 2004;19(1):40–2.CrossRefGoogle ScholarPubMed
Casaccia, G, Crescenzi, F, Dotta, A, et al. Birth weight and McGoon Index predict mortality in newborn infants with congenital diaphragmatic hernia. J Pediatr Surg 2006;41(1):25–8; discussion 25–8.CrossRefGoogle ScholarPubMed
Nguyen, TL, Le, AD. Thoracoscopic repair for congenital diaphragmatic hernia: lessons from 45 cases. J Pediatr Surg 2006;41(10):1713–15.Google ScholarPubMed
Masumoto, K, Nagata, K, Uesugi, T, Yamada, T, Taguchi, T. Risk factors for sensorineural hearing loss in survivors with severe congenital diaphragmatic hernia. Eur J Pediatr 2007;166(6):607–12.CrossRefGoogle ScholarPubMed
Chiu, PP, Sauer, C, Mihailovic, A, et al. The price of success in the management of congenital diaphragmatic hernia: is improved survival accompanied by an increase in long-term morbidity?J Pediatr Surg 2006;41(5):888–92.CrossRefGoogle Scholar
Trachsel, D, Selvadurai, H, Bohn, D, Langer, JC, Coates, AL. Long-term pulmonary morbidity in survivors of congenital diaphragmatic hernia. Pediatr Pulmonol 2005;39(5):433–9.CrossRefGoogle ScholarPubMed
Ahmad, A, Gangitano, E, Odell, RM, Doran, R, Durand, M. Survival, intracranial lesions, and neurodevelopmental outcome in infants with congenital diaphragmatic hernia treated with extracorporeal membrane oxygenation. J Perinatol 1999;19(6 Pt 1):436–40.CrossRefGoogle ScholarPubMed
Logan, JW, Rice, HE, Goldberg, RN, Cotten, CM. Congenital diaphragmatic hernia: a systematic review and summary of best-evidence practice strategies. J Perinatol 2007;27(9):535–49.CrossRefGoogle ScholarPubMed
Meurs, K. Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia?J Pediatr 2004;145(3):312–16.CrossRefGoogle ScholarPubMed
Reyes, C, Chang, LK, Waffarn, F, Mir, H, Warden, MJ, Sills, J. Delayed repair of congenital diaphragmatic hernia with early high-frequency oscillatory ventilation during preoperative stabilization. J Pediatr Surg 1998;33(7):1010–14.CrossRefGoogle ScholarPubMed
Desfrere, L, Jarreau, PH, Dommergues, M, et al. Impact of delayed repair and elective high-frequency oscillatory ventilation on survival of antenatally diagnosed congenital diaphragmatic hernia: first application of these strategies in the more “severe” subgroup of antenatally diagnosed newborns. Intensive Care Med 2000;26(7):934–41.CrossRefGoogle ScholarPubMed
Gehlbach, BK, Schmidt, GA. Bench-to-bedside review: treating acid-base abnormalities in the intensive care unit – the role of buffers. Crit Care 2004;8(4):259–65.CrossRefGoogle ScholarPubMed
Weber, T, Tschernich, H, Sitzwohl, C, et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2000;162(4 Pt 1):1361–5.CrossRefGoogle ScholarPubMed
Adrogue, HJ, Madias, NE. Management of life-threatening acid-base disorders. First of two parts. N Engl J Med 1998;338(1):26–34.CrossRefGoogle ScholarPubMed
Kluth, D, Bührer, C, Nestoris, S, Tander, B, Werner, C, Lambrecht, W. Inhaled nitric oxide increases survival rates in newborn rats with congenital diaphragmatic hernia. Eur J Pediatr Surg 1997;7(2):90–2.CrossRefGoogle ScholarPubMed
Noori, S, Friedlich, P, Wong, P, Garingo, A, Seri, I. Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology 2007;91(2):92–100.CrossRefGoogle ScholarPubMed
Khan, AM, Lally, KP. The role of extracorporeal membrane oxygenation in the management of infants with congenital diaphragmatic hernia. Semin Perinatol 2005;29(2):118–22.CrossRefGoogle ScholarPubMed
Elbourne, D, Field, D, Mugford, M. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev 2002(1):CD001340.Google ScholarPubMed
Fligor, BJ, Neault, MW, Mullen, CH, Feldman, HA, Jones, DT. Factors associated with sensorineural hearing loss among survivors of extracorporeal membrane oxygenation therapy. Pediatrics 2005;115(6):1519–28.CrossRefGoogle ScholarPubMed
Harrison, MR, Adzick, NS, Bullard, KM, et al. Correction of congenital diaphragmatic hernia in utero VII: a prospective trial. J Pediatr Surg 1997;32(11):1637–42.CrossRefGoogle ScholarPubMed
Harrison, MR, Keller, RL, Hawgood, SB, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med 2003;349(20):1916–24.CrossRefGoogle ScholarPubMed
Cotten, CM, Goldberg, RN. Air leak syndromes. In: Spitzer, A, ed. Intensive Care of the Fetus and Neonate, 2nd edn. Philadelphia: Elsevier Mosby, 2005; p. 715–28.Google Scholar
deMello, . Pulmonary pathology. Semin Neonatol 2004;9(4):311–29.CrossRefGoogle ScholarPubMed
McIntosh, N, Becher, JC, Cunningham, S, et al. Clinical diagnosis of pneumothorax is late: use of trend data and decision support might allow preclinical detection. Pediatr Res 2000;48(3):408–15.CrossRefGoogle ScholarPubMed
Greenough, A, Sharma, A. What is new in ventilation strategies for the neonate?Eur J Pediatr 2007;166(10):991–6.CrossRefGoogle ScholarPubMed
Watkinson, M, Tiron, I. Events before the diagnosis of a pneumothorax in ventilated neonates. Arch Dis Child Fetal Neonatal Ed 2001;85(3):F201–3.CrossRefGoogle Scholar
Woodgate, PG, Davies, MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev 2001(2):CD002061.Google ScholarPubMed
Bhuta, T, Henderson-Smart, DJ. Rescue high frequency oscillatory ventilation versus conventional ventilation for pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev 2000(2):CD000438.Google ScholarPubMed
Cools, F, Offringa, M. Neuromuscular paralysis for newborn infants receiving mechanical ventilation. Cochrane Database Syst Rev 2005(2):CD002773.Google ScholarPubMed
Davenport, M, Warne, SA, Cacciaguerra, S, Patel, S, Greenough, A, Nicolaides, K. Current outcome of antenally diagnosed cystic lung disease. J Pediatr Surg 2004;39(4):549–56.CrossRefGoogle ScholarPubMed
Adzick, NS. Management of fetal lung lesions. Clin Perinatol 2003;30(3):481–92.CrossRefGoogle ScholarPubMed
Sauvat, F, Michel, JL, Benachi, A, Emond, S, Revillon, Y. Management of asymptomatic neonatal cystic adenomatoid malformations. J Pediatr Surg 2003;38(4):548–52.CrossRefGoogle ScholarPubMed
Beghetti, M, Scala, G, Belli, D, Bugmann, P, Kalangos, A, Coultre, C. Etiology and management of pediatric chylothorax. J Pediatr 2000;136(5):653–8.CrossRefGoogle ScholarPubMed
Gaede, C. Congenital chylothorax: a case study. Neonatal Netw 2006;25(5):371–81.CrossRefGoogle ScholarPubMed
Picone, O, Benachi, A, Mandelbrot, L, Ruano, R, Dumez, Y, Dommergues, M. Thoracoamniotic shunting for fetal pleural effusions with hydrops. Am J Obstet Gynecol 2004;191(6):2047–50.CrossRefGoogle ScholarPubMed
Kallanagowdar, C, Craver, RD. Neonatal pleural effusion. Spontaneous chylothorax in a newborn with trisomy 21. Arch Pathol Lab Med 2006;130(2):e22–3.Google Scholar
Markham, KM, Glover, JL, Welsh, RJ, Lucas, RJ, Bendick, PJ. Octreotide in the treatment of thoracic duct injuries. Am Surg 2000;66(12):1165–7.Google ScholarPubMed
Cheung, Y, Leung, MP, Yip, M. Octreotide for treatment of postoperative chylothorax. J Pediatr 2001;139(1):157–9.CrossRefGoogle ScholarPubMed
Chan, SY, Lau, W, Wong, WH, Cheng, LC, Chau, AK, Cheung, YF. Chylothorax in children after congenital heart surgery. Ann Thorac Surg 2006;82(5):1650–6.CrossRefGoogle ScholarPubMed
Roehr, CC, Jung, A, Proquitte, H, et al. Somatostatin or octreotide as treatment options for chylothorax in young children: a systematic review. Intensive Care Med 2006;32(5):650–7.CrossRefGoogle ScholarPubMed
Stajich, GV, Ashworth, L. Octreotide. Neonatal Netw 2006;25(5):365–9.CrossRefGoogle ScholarPubMed
Barili, F, Polvani, G, Topkara, VK, et al. Administration of octreotide for management of postoperative high-flow chylothorax. Ann Vasc Surg 2007;21(1):90–2.CrossRefGoogle ScholarPubMed
Mohseni-Bod, H, Macrae, D, Slavik, Z. Somatostatin analog (octreotide) in management of neonatal postoperative chylothorax: is it safe?Pediatr Crit Care Med 2004;5(4):356–7.CrossRefGoogle Scholar
Phibbs, RH. Hemolytic disease of the newborn. In: Rudolph, AM, ed. Rudolph's Pediatrics, 21 edn. Stamford: Appleton & Lange, 1996; 1193–200.Google Scholar
Moise, KJ. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 2002;100(3):600–11.Google ScholarPubMed
Stockman, JA. Overview of the state of the art of Rh disease: history, current clinical management, and recent progress. J Pediatr Hematol Oncol 2001;23(6):385–93.CrossRefGoogle ScholarPubMed
Bullock, R, Martin, WL, Coomarasamy, A, Kilby, MD. Prediction of fetal anemia in pregnancies with red-cell alloimmunization: comparison of middle cerebral artery peak systolic velocity and amniotic fluid OD450. Ultrasound Obstet Gynecol 2005;25(4):331–4.CrossRefGoogle ScholarPubMed
Gottstein, R, Cooke, RW. Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn. Arch Dis Child Fetal Neonatal Ed 2003;88(1):F6–10.CrossRefGoogle ScholarPubMed
Henrich, W, Heeger, J, Schmider, A, Dudenhausen, JW. Complete spontaneous resolution of severe nonimmunological hydrops fetalis with unknown etiology in the second trimester – a case report. J Perinat Med 2002;30(6):522–7.CrossRefGoogle ScholarPubMed
,Coulter. Hydrops fetalis. In: Spitzer AR, ed. Intensive Care of the Fetus and Neonate, 2nd edn. Philadelphia: Mosby Elsevier, 2005; 149–55.Google Scholar
Ismail, KM, Martin, WL, Ghosh, S, Whittle, MJ, Kilby, MD. Etiology and outcome of hydrops fetalis. J Matern Fetal Med 2001;10(3):175–81.CrossRefGoogle ScholarPubMed
Solarin, KO. Differential Diagnosis of Neonatal Respiratory Disorders, 2nd edn. Philadelphia: Elsevier Mosby, 2005.Google Scholar
Jongmans, MC, Admiraal, RJ, Donk, KP, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 2006;43(4):306–14.CrossRefGoogle ScholarPubMed
Shaw-Smith, C. Oesophageal atresia, tracheo-oesophageal fistula, and the VACTERL association: review of genetics and epidemiology. J Med Genet 2006;43(7):545–54.CrossRefGoogle ScholarPubMed
Hartman, G. Surgical Care of Conditions Presenting in the Newborn, 6th edn. Philadelphia: Lippincott Williams and Wilkins, 2005.Google Scholar
Kalhan, SC. Nutrition and Selected Disorders of the Gastrointestinal Tract, 5 edn. Philadelphia: W.B. Saunders Company, 2001.Google Scholar
Ein, SH, Palder, SB, Filler, RM. Babies with esophageal and duodenal atresia: a 30-year review of a multifaceted problem. J Pediatr Surg 2006;41(3):530–2.CrossRefGoogle ScholarPubMed
Kovesi, T, Rubin, S. Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest 2004;126(3):915–25.CrossRefGoogle ScholarPubMed
Walker, GM, Raine, PA. Bilious vomiting in the newborn: how often is further investigation undertaken?J Pediatr Surg 2007;42(4):714–16.CrossRefGoogle ScholarPubMed
Hunt, MN. The acute abdomen in the newborn. Semin Fetal Neonatal Med 2006;11(3):191–7.CrossRefGoogle ScholarPubMed
Al-Salem, AH. Congenital pyloric atresia and associated anomalies. Pediatr Surg Int 2007;23(6):559–63.CrossRefGoogle ScholarPubMed
Kallen, BA, Otterblad Olausson, P, Danielsson, BR. Is erythromycin therapy teratogenic in humans?Reprod Toxicol 2005;20(2):209–14.CrossRefGoogle ScholarPubMed
Munoz, JJ, Mansul, AJ, Malpas, TJ, Steinbrecher, HA. Intrathoracic gastric volvulus mimicking pyloric stenosis. J Paediatr Child Health 2003;39(2):149–51.CrossRefGoogle ScholarPubMed
Bianca, S, Barbagallo, MA, Ingegnosi, C, Ettore, G. Isolated hypertrophic pyloric stenosis and perinatal factors. Genet Couns 2003;14(1):101–3.Google ScholarPubMed
Gupta, AK, Guglani, B. Imaging of congenital anomalies of the gastrointestinal tract. Indian J Pediatr 2005;72(5):403–14.CrossRefGoogle ScholarPubMed
Hemming, V, Rankin, J. Small intestinal atresia in a defined population: occurrence, prenatal diagnosis and survival. Prenat Diagn 2007;27(13):1205–11.CrossRefGoogle Scholar
Shawis, R, Antao, B. Prenatal bowel dilatation and the subsequent postnatal management. Early Hum Dev 2006;82(5):297–303.CrossRefGoogle ScholarPubMed
Poki, HO, Holland, AJ, Pitkin, J. Double bubble, double trouble. Pediatr Surg Int 2005;21(6):428–31.CrossRefGoogle ScholarPubMed
Lawrence, MJ, Ford, WD, Furness, ME, Hayward, T, Wilson, T. Congenital duodenal obstruction: early antenatal ultrasound diagnosis. Pediatr Surg Int 2000;16(5–6):342–5.CrossRefGoogle ScholarPubMed
Kimber, CP, MacMahon, RA, Shekleton, P, Yardley, R. Antenatal intestinal vascular accident with subsequent small bowel atresia: case report. Ultrasound Obstet Gynecol 1997;10(3):212–14.CrossRefGoogle ScholarPubMed
Kumaran, N, Shankar, KR, Lloyd, DA, Losty, PD. Trends in the management and outcome of jejuno-ileal atresia. Eur J Pediatr Surg 2002;12(3):163–7.CrossRefGoogle ScholarPubMed
Sweeney, B, Surana, R, Puri, P. Jejunoileal atresia and associated malformations: correlation with the timing of in utero insult. J Pediatr Surg 2001;36(5):774–6.CrossRefGoogle ScholarPubMed
Stoll, C, Alembik, Y, Dott, B, Roth, MP. Associated malformations in patients with anorectal anomalies. Eur J Med Genet 2007;50(4):281–90.CrossRefGoogle ScholarPubMed
Williams, H. Green for danger! Intestinal malrotation and volvulus. Arch Dis Child Educ Pract Ed 2007;92(3):ep87–91.CrossRefGoogle ScholarPubMed
Epelman, M. The whirlpool sign. Radiology 2006;240(3):910–1.CrossRefGoogle ScholarPubMed
Amiel, J, Sproat-Emison, E, Garcia-Barceo, M, et al. Hirschsprung disease: associated syndromes and genetics. J Med Genet 2008;45(1):1–14.CrossRefGoogle ScholarPubMed
Cowles, RA, Berdon, WE, Holt, PD, Buonomo, C, Stolar, CJ. Neonatal intestinal obstruction simulating meconium ileus in infants with long-segment intestinal aganglionosis: radiographic findings that prompt the need for rectal biopsy. Pediatr Radiol 2006;36(2):133–7.CrossRefGoogle ScholarPubMed
Dimmitt, RA, Moss, RL. Meconium diseases in infants with very low birth weight. Semin Pediatr Surg 2000;9(2):79–83.CrossRefGoogle ScholarPubMed
Burge, D, Drewett, M. Meconium plug obstruction. Pediatr Surg Int 2004;20(2):108–10.CrossRefGoogle ScholarPubMed
Dimmitt, RA, Moss, RL. Clinical management of necrotizing enterocolitis. NeoReviews 2001;2:e110–e117.CrossRefGoogle Scholar
Caplan, MS, Jilling, T. New concepts in necrotizing enterocolitis. Curr Opin Pediatr 2001;13(2):111–15.CrossRefGoogle ScholarPubMed
Ng, S. Necrotizing enterocolitis in the full-term neonate. J Paediatr Child Health 2001;37(1):1–4.CrossRefGoogle ScholarPubMed
Blakely, ML, Tyson, JE, Lally, KP, et al. Laparotomy versus peritoneal drainage for necrotizing enterocolitis or isolated intestinal perforation in extremely low birth weight infants: outcomes through 18 months adjusted age. Pediatrics 2006;117(4):e680–7.CrossRefGoogle ScholarPubMed
Kitchanan, S, Patole, SK, Muller, R, Whitehall, JS. Neonatal outcome of gastroschisis and exomphalos: a 10-year review. J Paediatr Child Health 2000;36(5):428–30.CrossRefGoogle ScholarPubMed
Wilson, RD, Johnson, MP. Congenital abdominal wall defects: an update. Fetal Diagn Ther 2004;19(5):385–98.CrossRefGoogle ScholarPubMed
How, HY, Harris, BJ, Pietrantoni, M, et al. Is vaginal delivery preferable to elective cesarean delivery in fetuses with a known ventral wall defect?Am J Obstet Gynecol 2000;182(6):1527–34.CrossRefGoogle ScholarPubMed
Vegunta, RK, Wallace, LJ, Leonardi, MR, et al. Perinatal management of gastroschisis: analysis of a newly established clinical pathway. J Pediatr Surg 2005;40(3):528–34.CrossRefGoogle ScholarPubMed
McNair, C, Hawes, J, Urquhart, H. Caring for the newborn with an omphalocele. Neonatal Netw 2006;25(5):319–27.CrossRefGoogle ScholarPubMed
Lee, SL, Beyer, TD, Kim, SS, et al. Initial nonoperative management and delayed closure for treatment of giant omphaloceles. J Pediatr Surg 2006;41(11):1846–9.CrossRefGoogle ScholarPubMed
Rowland, CA, Correa, A, Cragan, JD, Alverson, CJ. Are encephaloceles neural tube defects?Pediatrics 2006;118(3):916–23.CrossRefGoogle ScholarPubMed
Luthy, DA, Wardinsky, T, Shurtleff, DB, et al. Cesarean section before the onset of labor and subsequent motor function in infants with meningomyelocele diagnosed antenatally. N Engl J Med 1991;324(10):662–6.CrossRefGoogle ScholarPubMed
Hudgins, RJ, Gilreath, CL. Tethered spinal cord following repair of myelomeningocele. Neurosurg Focus 2004;16(2):E7.CrossRefGoogle ScholarPubMed
Charney, EB, Melchionni, JB, Antonucci, DL. Ventriculitis in newborns with myelomeningocele. Am J Dis Child 1991;145(3):287–90.Google ScholarPubMed
Miller, PD, Pollack, IF, Pang, D, Albright, AL. Comparison of simultaneous versus delayed ventriculoperitoneal shunt insertion in children undergoing myelomeningocele repair. J Child Neurol 1996;11(5):370–2.CrossRefGoogle ScholarPubMed
Printzlau, A, Andersen, M. Pierre Robin sequence in Denmark: a retrospective population-based epidemiological study. Cleft Palate Craniofac J 2004;41(1):47–52.CrossRefGoogle ScholarPubMed
Eppley, BL, Aalst, JA, Robey, A, Havlik, RJ, Sadove, AM. The spectrum of orofacial clefting. Plast Reconstr Surg 2005;115(7):101e–114e.CrossRefGoogle ScholarPubMed
Trevisanuto, D, Verghese, C, Doglioni, N, Ferrarese, P, Zanardo, V. Laryngeal mask airway for the interhospital transport of neonates. Pediatrics 2005;115(1):e109–11.Google ScholarPubMed
Denny, A, Amm, C. New technique for airway correction in neonates with severe Pierre Robin sequence. J Pediatr 2005;147(1):97–101.CrossRefGoogle ScholarPubMed
Donnelly, V, Foran, A, Murphy, J, McParland, P, Keane, D, O'Herlihy, C. Neonatal brachial plexus palsy: an unpredictable injury. Am J Obstet Gynecol 2002;187(5):1209–12.CrossRefGoogle ScholarPubMed
Hsu, TY, Hung, FC, Lu, YJ, et al. Neonatal clavicular fracture: clinical analysis of incidence, predisposing factors, diagnosis, and outcome. Am J Perinatol 2002;19(1):17–21.CrossRefGoogle Scholar
Anand, P, Birch, R. Restoration of sensory function and lack of long-term chronic pain syndromes after brachial plexus injury in human neonates. Brain 2002;125(Pt 1):113–22.CrossRefGoogle ScholarPubMed
Halloran, DR, Alexander, GR. Preterm delivery and age of SIDS death. Ann Epidemiol 2006;16(8):600–6.CrossRefGoogle ScholarPubMed
Vennemann, MM, Bajanowski, T, Butterfass-Bahloul, T, et al. Do risk factors differ between explained sudden unexpected death in infancy (SUDI) and SIDS?Arch Dis Child 2005;90(5):520–2.CrossRefGoogle Scholar
Quaglini, S, Rognoni, C, Spazzolini, C, Priori, SG, Mannarino, S, Schwartz, PJ. Cost-effectiveness of neonatal ECG screening for the long QT syndrome. Eur Heart J 2006;27(15):1824–32.CrossRefGoogle ScholarPubMed
Kum-Nji, P, Meloy, L, Herrod, HG. Environmental tobacco smoke exposure: prevalence and mechanisms of causation of infections in children. Pediatrics 2006;117(5):1745–54.CrossRefGoogle ScholarPubMed
Thach, BT. The role of respiratory control disorders in SIDS. Respir Physiol Neurobiol 2005;149(1–3):343–53.CrossRefGoogle ScholarPubMed
,AAP. The changing concept of sudden infant death syndrome: diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk. Pediatrics 2005;116(5):1245–55.CrossRefGoogle Scholar
Dempsey, EM, Barrington, K. Crystalloid or colloid for partial exchange transfusion in neonatal polycythemia: a systematic review and meta-analysis. Acta Paediatr 2005;94(11):1650–5.CrossRefGoogle ScholarPubMed
Armentrout, DC, Huseby, V. Polycythemia in the newborn. MCN Am J Matern Child Nurs 2003;28(4):234–9; quiz 240–1.CrossRefGoogle ScholarPubMed
Cordero, L, Franco, A, Joy, SD. Monochorionic monoamniotic twins: neonatal outcome. J Perinatol 2006;26(3):170–5.CrossRefGoogle ScholarPubMed
Wiswell, TE, Tin, W, Ohler, K. Evidence-based use of adjunctive therapies to ventilation. Clin Perinatol 2007;34(1):191–204, ix.CrossRefGoogle Scholar
Connor, JA, Thiagarajan, R. Hypoplastic left heart syndrome. Orphanet J Rare Dis 2007;2:23.CrossRefGoogle ScholarPubMed
Ostrea, EM, Villanueva-Uy, ET, Natarajan, G, Uy, HG. Persistent pulmonary hypertension of the newborn: pathogenesis, etiology, and management. Paediatr Drugs 2006;8(3):179–88.CrossRefGoogle ScholarPubMed
Birdi, K, Prasad, AN, Prasad, C, Chodirker, B, Chudley, AE. The floppy infant: retrospective analysis of clinical experience (1990–2000) in a tertiary care facility. J Child Neurol 2005;20(10):803–8.CrossRefGoogle Scholar
Vasta, I, Kinali, M, Messina, S, et al. Can clinical signs identify newborns with neuromuscular disorders?J Pediatr 2005;146(1):73–9.CrossRefGoogle ScholarPubMed
Rao, P. Neonatal gastrointestinal imaging. Eur J Radiol 2006;60(2):171–86.CrossRefGoogle ScholarPubMed
Moghal, NE, Embleton, ND. Management of acute renal failure in the newborn. Semin Fetal Neonatal Med 2006;11(3):207–13.CrossRefGoogle ScholarPubMed
Volmink, J, Siegfried, NL, Merwe, L, Brocklehurst, P. Antiretrovirals for reducing the risk of mother-to-child transmission of HIV infection. Cochrane Database Syst Rev 2007(1):CD003510.Google ScholarPubMed
Grosch-Worner, I, Schafer, A, Obladen, M, et al. An effective and safe protocol involving zidovudine and caesarean section to reduce vertical transmission of HIV-1 infection. Aids 2000;14(18):2903–11.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×