Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T01:31:30.579Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2016

James Gubernatis
Affiliation:
Los Alamos National Laboratory
Naoki Kawashima
Affiliation:
University of Tokyo
Philipp Werner
Affiliation:
Université de Fribourg, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quantum Monte Carlo Methods
Algorithms for Lattice Models
, pp. 469 - 483
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, F. S. 1970. Numerical Methods That Work. New York: Harper and Row.
Affleck, I., Kennedy, T., Lieb, E. L., and Tasaki, H. 1987. Rigorous results on valence bond ground states in antiferromagnets. Phys. Rev. Lett., 59, 799.Google Scholar
Affleck, I., Kennedy, T., Lieb, E. L., and Tasaki, H. 1988. Valence bond ground states in isotropic quantum antiferromagnets. Comm. Math. Phys., 115, 477.Google Scholar
Aho, A. V., Ullman, J. D., and Hopcroft, J. E. 1983. Data Structures and Algorithms. Lebanon, IN: Addison Wesley.
Aichhorn, M., Pourovskii, L., and Georges, A. 2011. Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO. Phys. Rev. B, 84, 054529.Google Scholar
Alet, F., Wessel, S., and Troyer, M. 2005. Generalized directed loop method for quantum Monte Carlo simulations. Phys. Rev. E, 71, 036706.Google Scholar
Allen, M. P., and Tildesley, D. J. 1987. Computer Simulations of Liquids. Oxford University Press.
Anderson, J. B. 1975. Random walk simulation of the SchrÖdinger equation: He+3.J. Chem. Phys., 63, 1499.Google Scholar
Anderson, J. B. 1976. Quantum chemistry by random walk. J. Chem. Phys., 65, 4121.Google Scholar
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198.Google Scholar
Anderson, P. W. 1973. Resonating valence bonds: a new kind of insulator?Mater. Res. Bull., 8, 153.Google Scholar
Anderson, P. W. 1987. The resonating valence bond state in La2CuO4 and superconductivity. Science, 235, 1196.Google Scholar
Andreev, A. F., and Lifshitz, I. M. 1969. Quantum theory of defects in crystals. Sov. Phys.JETP, 29, 1107.Google Scholar
Anisimov, V. I., and Gunnarsson, O. 1991. Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B, 43, 7570.Google Scholar
Anisimov, V. I., Zaanen, J., and Andersen, O. K. 1991. Band theory and Mott insulators: Hubbard-U instead of Stoner-I. Phys. Rev. B, 44, 943.Google Scholar
Arnow, D. M., Kalos, M. H., Lee, M. A., and Schmidt, K. E. 1982. Green's function Monte Carlo for few fermion problems.J. Chem. Phys., 77, 5562.Google Scholar
Aryasetiawan, F., Imada, M., Georges, A., Kotliar, G., Biermann, S., and Lichtenstein, A. I. 2004. Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B, 70, 195104.Google Scholar
Assaad, F. F. 1998. SU(2) invariant auxiliary field quantum Monte Carlo algorithm for Hubbard models. In: Krause, E., and Jager, W. (eds.), High Performance Computing in Science and Engineering. New York: Springer-Verlag.
Assaad, F. F., and Lang, T. C. 2007. Diagrammatic determinantal quantum Monte Carlo methods: projective schemes and applications to the Hubbard-Holstein model. Phys. Rev. B, 76, 035116.Google Scholar
Barker, A. A. 1965. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma. Aust. J. Phys., 18, 119.Google Scholar
Bartlett, J. H., Gibbons, J. J., and Dunn, C. G. 1935. The normal helium atom. Phys. Rev., 47, 679.Google Scholar
Batrouni, G., and Scalettar, R. T. 1990. Anomalous decouplings and the fermion sign problem. Phys. Rev. B, 42, 2282.Google Scholar
Baxter, R. J. 1982. Exactly Solved Models in Statistical Mechanics. London: Academic Press.
Baym, G., and Mermin, N. D. 1961. Determination of thermodynamic Green's functions. J. Math. Phys., 2, 236.Google Scholar
Beach, K. S. D., Alet, F., Mambrini, M., and Capponi, S. 2009. SU(N) Heisenberg model on the square lattice: a continuous-N quantum Monte Carlo study. Phys. Rev. B, 80, 184401.Google Scholar
Bemmel, H. J. M., ten Haaf, D. F. B., van Saarlos, W., van Leeuwen, J. M. J., and An, G. 1994. Fixed-node quantum Monte Carlo method for lattice fermions. Phys. Rev. Lett., 72, 2442.Google Scholar
Berg, B. A., and Neuhaus, T. 1991. Multicanonical algorithms for first order phase transitions. Phys. Lett. B, 267, 249.Google Scholar
Berg, B. A., and Neuhaus, T. 1992. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys. Rev. Lett., 68, 9.Google Scholar
Bethe, Hans A. 1935. Statistical theory of superlattices. Proc. Roy. Soc. London A, 150, 552.Google Scholar
Blaizot, J. P., and Ripka, G. 1986. Quantum Theory of Finite Systems. Cambridge, MA: MIT Press.
Blankenbecler, R., Scalapino, D. J., and Sugar, R. L. 1981. Monte Carlo calculations of coupled boson-fermion systems. I. Phys. Rev. D, 24, 2278.Google Scholar
BlÖte, H. W. J., and Nightingale, M. P. 1982. Critical behavior of the two-dimensional Potts model with a continuous number of states: a finite size scaling analysis. Physica A, 112, 405.Google Scholar
Blume, D., Lewerenz, M., Niyaz, P., and Whaley, K. B. 1997. Excited states by quantum Monte Carlo methods: imaginary time evolution with projection operators. Phys. Rev. E, 55, 3664.Google Scholar
Blume, D., Lewerenz, M., and Whaley, K. B. 1998. Excited states by quantum Monte Carlo method. Math. Comp. Simul., 47, 133.Google Scholar
Boehnke, L., Hafermann, H., Ferrero, M., Lechermann, F., and Parcollet, O. 2011. Orthogonal polynomial representation of imaginary-time Green's functions. Phys. Rev. B, 84, 075145.Google Scholar
Boguslawski, K., Marti, K. H., and Reiher, M. 2011. Construction of CASCI-type wavefunctions for very large matrices. J. Chem. Phys., 134, 224101.Google Scholar
Bonča, J., and Gubernatis, J. E. 1993a. Quantum Monte Carlo simulations of the degenerate single-impurity Anderson model. Phys. Rev. B, 47, 13137.Google Scholar
Bonča, J., and Gubernatis, J. E. 1993b. Real-time dynamics from imaginary-time quantum Monte Carlo simulations: tests on oscillator chains. Phys. Rev. B, 47, 13137.Google Scholar
Bonča, J., and Gubernatis, J. E. 1994. Degenerate Anderson impurity model in the presence of spin-orbit and crystal field splitting. Phys. Rev B, 50, 10427.Google Scholar
Boninsegni, M., and Prokof'ev, N. 2005. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett., 95, 237204.Google Scholar
Booth, T. E. 2003a. Computing the higher k-eigenfunctions by Monte Carlo power iteration: a conjecture, corrigendum. Nucl. Sci. Eng., 144, 113.Google Scholar
Booth, T. E. 2003b. Computing the higher k-eigenfunctions by Monte Carlo power iteration: a conjecture. Nucl. Sci. Eng., 143, 291.Google Scholar
Booth, T. E. 2003c. Improvements to the Monte Carlo second eigenfunction estimation. Tech. rept. LA-UR-03-4100. Los Alamos National Laboratory.
Booth, T. E. 2009. Particle transport applications. Page 215 of: Rubino, G., and Tuffin, B. (eds.), Rare Event Simulation using Monte Carlo Methods. Chichester: Wiley.
Booth, T. E. 2010. Examples of superfast power iteration. Tech. rept. LA-UR-10-06663. Los Alamos National Laboratory.
Booth, T. E. 2011a. A multiple eigenvalue power iteration convergence metric. Tech. rept. LA-UR-11-02223. Los Alamos National Laboratory.
Booth, T. E. 2011b. A simple eigenfunction convergence acceleration method for Monte Carlo. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (MC2011).
Booth, T. E. 2011c. Test of the multiple k-eigenfunction convergence acceleration method in MCNP. Tech. rept. LA-UR-11-02222. Los Alamos National Laboratory.
Booth, T. E., and Gubernatis, J. E. 2009a. Monte Carlo determination of multiple extremal eigenpairs. Phys. Rev. E., 80, 46704.Google Scholar
Booth, T. E., and Gubernatis, J. E. 2009b. The sewing algorithm. Comp. Phys. Commun., 180, 509.Google Scholar
Bouchoud, J. P., Georges, A., and Lihuillier, C. 1988. Pair wave functions for strongly correlated fermions and the determinantal representation. J. de Phys., 49, 553.Google Scholar
Brissenden, R. J., and Garlick, A. R. 1986. Biases in the estimations of keff and its errors by Monte Carlo estimation. Annals of Nuclear Energy, 13, 63.Google Scholar
Brower, R., Chandrasekharan, S., and Wiese, U.-W. 1998. Green's functions from quantum cluster algorithms. Physica A., 261, 520.Google Scholar
Bryan, R. K. 1990. Maximum entropy analysis of oversampled data problems. Eur. Biophys. J., 18, 165.Google Scholar
Cafferel, M., and Ceperley, D. M. 1992. A Bayesian analysis of Green's function Monte Carlo correlation functions. J. Chem Phys., 97, 8415.Google Scholar
Camp, W. J., and Fisher, M. E. 1972. Decay of order in classical many-body systems I: introduction and formal theory. Phys. Rev. B., 6, 946.Google Scholar
Cardy, J. 1996. Scaling and Renormalization in Statistical Physics. Cambridge University Press.
Carlson, J., Gubernatis, J. E., Ortiz, G., and Zhang, S. 1999. Issues and observations on applications of the constrained-path Monte Carlo method to many-fermion systems. Phys. Rev. B., 59, 12788.Google Scholar
Ceperley, D. M., and Bernu, B. 1988. The calculation of excited state properties with quantum Monte Carlo. J. Chem. Phys., 89, 6316.Google Scholar
Chandrasekharan, S., Cox, J., and Wiesse, U.-J. 1999. Meron cluster solution of fermion sign problems. Phys. Rev. Lett., 83, 3116.Google Scholar
Chandrasekharan, S., Cox, J., Osborn, J. C., and Wiesse, U.-J. 2003. Meron cluster approach to systems of strongly correlated electrons. Nucl. Phys. B, 673, 405.Google Scholar
Changlani, H. J., Kinder, J. M., Umrigar, C. J., and Chan, G. K.-L. 2009. Approximating strongly correlated wave functions with correlator product states. Phys. Rev. B, 80, 245116.Google Scholar
Cirac, J. I., and Verstraete, F. 2009. Renormalization and tensor product states in spin chains and lattices. J. Phys. A: Math. Theor., 42, 504004.Google Scholar
Coldwell, R. L. 1977. Zero Monte Carlo calculations or quantum mechanics is easier. Int. J. Quant. Chem. Symp., 11, 215.Google Scholar
Corboz, P., Jordan, J., and Vidal, G. 2010a. Simulation of fermionic lattice models in two spatial dimensions with fermionic projected entangled pairs: next-nearest neighbor Hamiltonians. Phys. Rev. B, 82, 245119.Google Scholar
Corboz, P., Orus, R., Bauer, B., and Vidal, G. 2010b. Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled pairs. Phys. Rev. B, 81, 165104.Google Scholar
Costi, T. A. 2000. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett., 85, 1504–1507.Google Scholar
Courant, R., and Hilbert, D. 1965. Methods of Mathematical Physics. Vol. 1. New York: Interscience.
Creutz, M. 1980. Monte Carlo study of quantized SU(2) gauge theory. Phys. Rev. D, 21, 2308.Google Scholar
de Oliveira, P. M. C., Penna, T. J. P., and Herrmann, H. J. 1998a. Broad histogram Monte Carlo. Braz. J. Phys., 26, 677.Google Scholar
de Oliveira, P. M. C., Penna, T. J. P., and Herrmann, H. J. 1998b. Broad histogram Monte Carlo. Eur. Phys. J. B, 1, 205.Google Scholar
Dukelsky, J., Martin-Delgado, M. A., Nishino, T., and Sierra, G. 1998. Equivalence of the variational matrix product method and the density-matrix renormalization group applied to spin chains. Europhys. Lett., 43, 457.Google Scholar
Edegger, B., Muthukumar, V. N., and Gros, C. 2007. Gutzwiller-RVB theory of high temperature superconductivity: results from renormalized mean field theory and variational Monte Carlo calculations. Adv. Phys., 56, 927.CrossRefGoogle Scholar
Enz, C. P. 1992. A Course on Many-Body Theory Applied to Solid State Physics. Lecture Notes in Physics, vol. 11. Singapore: World Scientific.
Everett, C. J., and Cashwell, E. D. 1983. A third Monte Carlo sampler. Tech. rept. LA- 9721-MS. Los Alamos National Laboratory.
Evertz, H. G., and Marcu, M. 1994. Page 65 in: Suzuki, M. (ed.), Quantum Monte Carlo Methods in Condensed Matter Physics. Singapore: World Scientific.
Evertz, H. G., Lana, G., and Marcu, M. 1993. Cluster algorithm for vertex models. Phys. Rev. Lett., 70, 875.Google Scholar
Fahy, S. B., and Hamann, D. R. 1990. Positive-projection Monte Carlo simulation: a new variational approach to strongly interacting fermion systems. Phys. Rev. Lett., 65, 3437.Google Scholar
Fahy, S. B., and Hamann, D. R. 1991. Diffusive behavior of states in the Hubbard- Stratonovich transformation. Phys. Rev. B, 43, 765.Google Scholar
Fazekas, P. 1999. Lecture Notes on Electron Correlation and Magnetism. Singapore: World Scientific.
Fazekas, P., and Anderson, P. W. 1974. Ground state properties of anisotropic triangular antiferromagnets. Phil. Mag., 30, 423.Google Scholar
Ferrenberg, A. M., and Swendsen, R. H. 1988. New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett., 61, 2635.Google Scholar
Fetter, A. L., and Walecka, J. D. 1971. Quantum Theory of Many-Particle Systems. New York: McGraw-Hill.
Feynman, R. P., and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.
Fisher, M. E., and Barber, M. N. 1972. Scaling theory for finite-size effects in critical region. Phys. Rev. Lett., 28, 1516.Google Scholar
Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag.
Fortuin, C. M., and Kasteleyn, P. W. 1972. Random cluster model. 1. Introduction and relation to other models. Physica, 57, 536.Google Scholar
Friel, N., and Wyse, J. 2012. Estimating the evidence: a review. Statistica Neerlandica, 66, 288.Google Scholar
Fuchs, S., Pruschke, T., and Jarrell, M. 2010. Analytic continuation of quantum Monte Carlo data by stochastic analytic inference. Phys. Rev. E, 81, 56701.Google Scholar
Fuchs, S., Gull, E., Pollet, L., Burovski, E., Kozik, E., Pruschke, T., and Troyer, M. 2011. Thermodynamics of the 3D Hubbard model on approaching the Néel transition. Phys. Rev. Lett., 106, 030401.Google Scholar
Fukui, K., and Todo, S. 2009. Order-N cluster Monte Carlo method for spin systems with long-range interactions. J. Comp. Phys., 228, 2629.Google Scholar
Fulde, P. 1991. Electron Correlations in Molecules and Solids. Solid-State Sciences, vol. 100. Berlin: Springer-Verlag.
Gammel, J. T., Campbell, D. K., and Loh, E. Y. 1993. Extracting infinite system properties from finite-size clusters: phase randomization boundary condition averaging. Synthetic Metals, 57, 4437.CrossRefGoogle Scholar
Gelbard, E., and Gu, A. G. 1994. Biases in Monte Carlo eigenvalue calculations. Nuclear Science and Engineering, 117, 1.Google Scholar
Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M. J. 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68, 13.Google Scholar
Geyer, C. J. 1991. Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. American Statistical Association, vol. 156, New York: American Statistical Association.
Giamarchi, T., and Lhuillier, C. 1990. Variational Monte Carlo study of incommensurate antiferromagnetic phases in the two-dimensional Hubbard model. Phys. Rev. B, 42, 10641.Google Scholar
Giamarchi, T., and Lhuillier, C. 1991. Phase diagrams of the two-dimensional Hubbard and tJ models by a variational Monte Carlo method. Phys. Rev. B, 43, 12943.Google Scholar
Goldstone, J. 1961. Field theories with superconductor solutions. Nuovo Cimento, 19, 154.Google Scholar
Golub, G. H., and Loan, C. F. Van. 1989. Matrix Computations. Baltimore, MD: Johns Hopkins University Press.
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., and Bloch, I. 2002. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415, 39.Google Scholar
Gros, C. 1988. Superconductivity in correlated wave functions. Phys. Rev. B, 38, 931.Google Scholar
Gubernatis, J. E.Editor's note to “Proof of validity of Monte Carlo method for canonical averaging” by M. Rosenbluth. The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm. ed. J. E., Gubernatis, AIP Conference Proceedings, 690, 31 (2003). New York: American Institute of Physics.
Gubernatis, J. E. 2012. Unpublished manuscript.
Gubernatis, J. E., and Booth, T. E. 2008. Multiple extremal eigenvalues by the power method. J. Comp. Phys., 227, 8508.Google Scholar
Gubernatis, J. E., and Zhang, X. Y. 1994. Negative weights in quantum Monte Carlo simulations at finite temperatures using the auxiliary field method. Intl. J. Mod. Phys. C, 8, 590.Google Scholar
Gubernatis, J. E., Hirsch, J. E., and Scalapino, D. J. 1987. Spin and charge corelations around an Anderson magnetic impurity. Phys. Rev. B, 35, 8478.Google Scholar
Gull, E.,Werner, P., Millis, A. J., and Troyer, M. 2007. Performance analysis of continuoustime solvers for quantum impurity models. Phys. Rev. B, 76, 235123.Google Scholar
Gull, E., Werner, P., Parcollet, O., and Troyer, M. 2008. Continuous-time auxiliary-field Monte Carlo for quantum impurity models. Europhys. Lett., 82, 57003.Google Scholar
Gull, E., Millis, A. J., Lichtenstein, A. I., Rubtsov, A. N., Troyer, M., and Werner, P. 2011. Continuous-timeMonte Carlo methods for quantum impurity models. Rev. Mod. Phys., 83, 349.Google Scholar
Gull, S. F., and Skilling, J. 1984. Maximum entropy image reconstruction. IEE Proc., 131F, 646.Google Scholar
Gutzwiller, M. C. 1965. Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett., 10, 159.Google Scholar
Hamann, D. R., and Fahy, S. B. 1990. Energy measurement in auxiliary-field many-electron calculations. Phys. Rev. B, 41, 11352.Google Scholar
Hammond, B. L., W. A., LesterJr., and Reynolds, P. J. 1994. Monte Carlo Methods in ab Initio Quantum Chemistry. Singapore: World Scientific.
Handscomb, D. C. 1962a. A Monte Carlo method applied to the Heisenberg ferromagnet. Proc. Cambridge Philos. Soc., 58, 594.Google Scholar
Handscomb, D. C. 1962b. The Monte Carlo method in quantum statistical mechanics. Proc. Cambridge Philos. Soc., 58, 594.Google Scholar
Harada, K., and Kawashima, N. 2001. Loop algorithm for Heisenberg models with biquadratic interaction and phase transitions in two dimensions. J. Phys. Soc. Jpn., 70, 13.Google Scholar
Harada, K., and Kawashima, N. 2002. Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems. Phys. Rev. E., 66, 056705.Google Scholar
Harada, K., Troyer, M., and Kawashima, N. 1998. The two-dimensional S= 1 quamtum Heisenberg antiferromagnet at finite temperatures. J. Phys. Soc. Jpn., 67, 1130.Google Scholar
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97.Google Scholar
Hatano, N., and Suzuki, M. 1992. Representation basis in quantum Monte Carlo calculations and the negative-sign problem. Phys. Lett. A, 163, 246.Google Scholar
Hatano, N., and Suzuki, M. 2005. Finding exponential product formulas of higher orders. Lect. Notes Phys., 679, 37.Google Scholar
Haule, K. 2007. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B, 75, 155113.Google Scholar
Haule, K. 2015. Exact Double Counting in Combining the Dynamical Mean Field Theory and the Density Functional Theory. Phys. Rev. Lett., 115, 196403.Google Scholar
Hettler, M. H., Tahvildar-Zadeh, A. N., Jarrell, M., Pruschke, T., and Krishnamurthy, H. R. 1998. Nonlocal dynamical correlations of strongly interacting electron systems. Phys. Rev. B, 58, R7475.Google Scholar
Himeda, A., and Ogata, M. 2000. Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional tJmodel. Phys. Rev. Lett., 85, 4345.Google Scholar
Himeda, A., Kato, T., and Ogata, M. 2002. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional tt_Jmodel. Phys. Rev. Lett., 88, 117001.Google Scholar
Hirsch, J. E. 1983. Discrete Hubbard-Stratonovich transformation for fermion lattice models. Phys. Rev. B, 28, 1983.Google Scholar
Hirsch, J. E. 1985. Two-dimensional Hubbard model. Phys. Rev. B, 31, 4403.Google Scholar
Hirsch, J. E. 1987. Simulations of the three-dimensional Hubbard model: half-filled band sector. Phys. Rev. B, 35, 1851.Google Scholar
Hirsch, J. E., and Fye, R. M. 1986. Monte Carlo method for magnetic impurities in metals. Phys. Rev. Lett., 56, 2521.Google Scholar
Hoshen, J., and Kopelman, R. 1976. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B, 14, 3438.Google Scholar
Householder, A. S. 2006. The Theory of Matrices in Numerical Analysis. New York: Dover.
Hukushima, K., and Nemoto, K. 1996. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65, 1604.Google Scholar
Huscroft, C., Gross, R., and Jarrell, M. 2000. Maximum entropy method of obtaining thermodynamic properties from quantum Monte Carlo simulations. Phys. Rev. B, 61, 9300.Google Scholar
Iazzi, M., and Troyer, M. 2014. Efficient continuous-time quantum Monte Carlo algorithm for fermionic lattice models. arXiv:1411. 0683.
Janke, W., and Kappler, S. 1995. Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions. Phys. Rev. Lett., 74, 212.Google Scholar
Jarrell, M., and Gubernatis, J. E. 1996. Bayesian inference and the analytic continuation of quantum Monte Carlo data. Phys. Rept., 269, 133.Google Scholar
Jarrell, M., Macridin, A., Mikelsons, K., Doluweera, D. G. S. P., and Gubernatis, J. E.The dynamical cluster approximation with quantum Monte Carlo cluster solvers.” AIP Conference Proceedings, 1014, 24. (2008).Google Scholar
Jordan, P., and Wigner, E. 1928. Über das Paulische Äquivalenzverbot. Zeit. Phys., 47, 631.Google Scholar
Kalos, M. H., and Pederiva, F. 2000. Exact Monte Carlo for continuum fermion systems. Phys. Rev. Lett., 85, 3547.Google Scholar
Kalos, M. H., and Whitlock, P. A. 1986. Monte Carlo Methods I: Basics. New York: Wiley-Interscience.
Karlin, S., and Taylor, H.W. 1975. A First Course in Stochastic Processes. Academic Press.
Kashurnikov, V. A., Prokof'ev, N. V., Svistunov, B. V., and Troyer, M. 1999. Quantum spin chains in a magnetic field. Phys. Rev. B, 59, 1162.Google Scholar
Kasteleyn, P.W., and Fortuin, C. M. 1969. Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. Suppl., 26, 11.Google Scholar
Kato, Y., and Kawashima, N. 2009. Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential. Phys. Rev. E, 79, 021104.Google Scholar
Kato, Y., and Kawashima, N. 2010. Finite-size scaling for quantum criticality above the upper critical dimension: superfluid–Mott-insulator transition in three dimensions. Phys. Rev. E, 81, 011123.CrossRefGoogle Scholar
Kaul, R. 2007. Private communication.
Kawashima, N. 1996. Cluster algorithms for anisotropic quantum spin models. J. Stat. Phys., 82, 131.Google Scholar
Kawashima, N. 2007. Unpublished manuscript.
Kawashima, N., and Gubernatis, J. E. 1994. Loop algorithms for Monte Carlo simulations of quantum spin systems. Phys. Rev. Lett., 73, 1295.Google Scholar
Kawashima, N., Evertz, H., and Gubernatis, J. E. 1994. Loop algorithms for quantum simulations of fermions on lattices. Phys. Rev. B, 50, 136.Google Scholar
Kawashima, N., Jarrell, M., and Gubernatis, J. E. 1996. Cluster Monte Carlo study of the quantum XY model in two dimensions. Int. J. Mod. Phys. C, 7, 433.Google Scholar
Khinchin, A. I. 1957. Mathematical Foundations of Information Theory. New York: Dover.
Kim, D. Y., and Chan, M. H. W. 2012. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett., 109, 155301.Google Scholar
Knuth, D. E. 1997. The Art of Computer Programming, vol. 2: Seminumerical Algorithms, third ed. Reading: Addison Wesley. Page 119.
Kotliar, G., Savrasov, S. Y., Haule, K., Oudovenko, V. S., Parcollet, O., and Marianetti, C. A. 2006. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys., 78, 865.Google Scholar
Kuklov, A. B., and Svistunov, B. V. 2003. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett., 90, 100401.Google Scholar
Kuklov, A. B., Prokof'ev, N., and Svistunov, B. V. 2004. Commensurate two-component bosons in an optical lattice: ground state phase diagram. Phys. Rev. Lett., 92, 050402.Google Scholar
Landau, D. P., and Binder, K. 2000. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press.
Läuchli, A. M., and Werner, P. 2009. Krylov implementation of the hybridization expansion impurity solver and application to 5-orbital models. Phys. Rev. B, 80, 235117.Google Scholar
Li, Z.-X., Jiang, Y.-F., and Yao, H. 2014. Solving fermion sign problem in quantum Monte Carlo by Majorana representation. arXiv:1408. 2269.
Liang, S., Doucot, D., and Anderson, P. W. 1988. Some new variational resonating valence bond type wave functions for the spin antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett., 61, 365.Google Scholar
Lichtenstein, A. I., and Katsnelson, M. I. 2000. Antiferromagnetism and d-wave superconductivity in cuprates: a cluster dynamical mean-field theory. Phys. Rev. B, 62, R9283.Google Scholar
Lin, C., Zong, F. H., and Ceperley, D. M. 2001. Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. Phys. Rev. E, 64, 016702.Google Scholar
Lin, X., Zhang, H., and Rappe, A. M. 2000. Optimization of quantum Monte Carlo wave functions using analytical energy derivatives. J. Chem. Phys., 112, 2650.Google Scholar
Liu, J. S. 2001. Monte Carlo Strategies for Scientific Computing. New York: Springer-Verlag.
Loh, E. Y.Jr., and Gubernatis, J. E. 1992. Stable numerical simulations of models of interacting electrons in condensed-matter physics. Chap. 4 of: Hanke,W., and Kopaev, Yu. V. (eds.). Electronic Phase Transitions. Modern Problems in Condensed-Matter Physics, vol. 32. Amsterdam: North-Holland.Google Scholar
Loh, E. Y.Jr., Gubernatis, J. E., Scalettar, R. T., Sugar, R. L., and White, S. R. 1989. Stable matrix-multiplication algorithms for the low-temperature numerical simulation of fermions. Page 55 of: Baeriswyl, D., and Campbell, D. K. (eds.). Interacting Electrons in Reduced Dimensions. NATO ASI Series, vol. 213. New York: Plenum.Google Scholar
Loh, E. Y.Jr., Gubernatis, J. E., Scalettar, R. T., White, S. R., Scalapino, D. J., and Sugar, R. L. 1990. Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B, 41, 9301.Google Scholar
Loh, E. Y.Jr., Gubernatis, J. E., Scalettar, R. T., White, S. R., Scalapino, D. J., and Sugar, R. L. 2005. Numerical stability and the sign problem in the determinant quantum Monte Carlo method. Int. J. Mod. Phys. C, 16, 1319.Google Scholar
Luijten, E., and Blöte, H.W. J. 1995. Monte Carlo method for spin models with long-range interactions. Int. J. Mod. Phys. C, 6, 359.Google Scholar
Ma, S.-K. 1985. Modern Theory of Critical Phenomena. Singapore: World Scientific.
Maier, T., Jarrell, M., Pruschke, T., and Hettler, M. H. 2005. Quantum cluster theories. Rev. Mod. Phys., 77, 1027.Google Scholar
Majumdar, D. K., and Ghosh, C. K. 1969a. On nearest-neighbor interaction in linear chain: I. J. Math. Phys., 10, 1388.Google Scholar
Majumdar, D. K., and Ghosh, C. K. 1969b. On nearest-neighbor interaction in linear chain: II. J. Math. Phys., 10, 1399.Google Scholar
Marinari, E., and Parisi, G. 1992. Simulated tempering: a new Monte Carlo scheme. Europhys. Lett., 19, 451.Google Scholar
Marshall, W. 1955. Antiferromagetism. Proc. Roy. Soc. (London) A, 232, 48.Google Scholar
Marti, K., Bauer, B., Reiher, M., Troyer, M., and Verstraete, F. 2010. Complete-graph tensor network states: a new fermionic wavefunction for molecules. New J. Phys., 12, 103008.Google Scholar
Marzari, N., and Vanderbilt, D. 1997. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B, 56, 12847.Google Scholar
Masaki, A., Suzuki, T., Harada, K., Todo, S., and Kawashima, N. 2013. Parallelized quantum Monte Carlo algorithm with non-local worm update. Phys. Rev. Lett. 112, 140603 (2014).Google Scholar
Masaki-Kato, A., Suzuki, T., Harada, K., Todo, S., and Kawashima, N. 2014. Parallelized quantum Monte Carlo algorithm with nonlocal worm updates. Phys. Rev. Lett., 112, 140603.Google Scholar
Matsubara, T., and Masuda, H. 1956. A lattice model of liquid helium. Prog. Theor. Phys., 16, 416.Google Scholar
McCulloch, I. 2007. From density-matrix renormalization group to matrix product states. J. Stat. Mech., P10014.Google Scholar
McQueen, P. G., and Wang, C. S. 1991. Variational Monte Carlo evaluation of Gutzwiller states for the Anderson lattice model. Phys. Rev. B, 44, 10021.Google Scholar
Metropolis, N. 1985. Monte Carlo: in the beginning and some great expectations. Page 62 of: Alcouffe, R., et al. (eds.). Monte Carlo Calculations and Applications in Neutronics, Photonics, and Statistical Physics. Berlin: Springer-Verlag.Google Scholar
Metropolis, N. 1987. The beginning of the Monte Carlo method. Los Alamos Science, Special Issue, 125.Google Scholar
Metropolis, N., and Ulam, S. 1949. The Monte Carlo method. J. Am. Stat. Assoc., 44, 335.Google Scholar
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, A. 1953. Equations of state by fast computing machines. J. Chem. Phys., 21, 1087.Google Scholar
Metzner, W., and Vollhardt, D. 1989. Correlated lattice fermions in d-dimensions. Phys. Rev. Lett., 62, 324.Google Scholar
Meyer, C. D. 2000. Matrix Analysis and Applied Linear Algebra Research. Philadelphia: SIAM.
Mezzacapo, F. 2011. Variational study of a mobile hole in a two-dimensional quantum antiferromagnet using entangled-plaquette states. Phys. Rev. B, 83, 115111.Google Scholar
Mezzacapo, F., Schuch, N., Boninsegni, M., and Cirac, J. I. 2009. Ground-state properties of quantum many-body systems: entangled-plaquette states and variational Monte Carlo. New J. Phys., 11, 83026.CrossRefGoogle Scholar
Mikelsons, K., Macridin, A., and Jarrell, M. 2009. Relationship between Hirsch-Fye and weak-coupling diagrammatic quantum Monte Carlo methods. Phys. Rev. E, 79, 057701.Google Scholar
Moskowitz, J. W., Schmidt, K. E., Lee, M. A., and Kalos, M. H. 1982. A new look at correlation energy in atomic and molecular systems. II: the application of the Green's function Monte Carlo method to LiH. J. Chem. Phys., 77, 349.CrossRefGoogle Scholar
Muramatsu, A., Zumbach, G., and Zotos, X. 1992. A geometric view of the minus-sign problem. Int. J. Modern Phys. C, 3, 185.Google Scholar
Nambu, Y. 1960. Quasiparticles and gauge invariance in the theory of superconductivity. Phys. Rev., 117, 648.ndash;663.Google Scholar
Nave, C. P., Ivanov, D. A., and Lee, P. A. 2006. Variational Monte Carlo study of the current carried by a quasiparticle. Phys. Rev. B, 73, 104502.Google Scholar
Negele, J.W., and Orland, H. 1988. Quantum Many-Particle Systems. New York: Addison- Wesley.
Neuscamman, E., Changlani, H., Kinder, J. M., and Chan, G. K.-L. 2011. Nonstochastic algorithms for Jastrow-Slater and correlator product state wavefunctions. Phys. Rev.B, 84, 205132.Google Scholar
Neuscamman, E., Umrigar, C. J., and Chan, G. K.-L. 2012. Optimizing large parameter set in variational quantum Monte Carlo. Phys. Rev. B, 85, 045103.Google Scholar
Newman, M. E. J., and Barkema, G. T. 1999. Monte Carlo Methods in Statistical Physics. New York: Oxford University Press.
Nielsen, M. A., and Chaung, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
Nightingale, M. P. 1999. Basics, quantum Monte Carlo, and statistical mechanics. In:
Nightingale, M. P., and Umrigar, C. J. (eds.). Quantum Monte Carlo Methods in Physics and Chemistry. NATO Science Series, vol. 525. Dordrecht: Kluwer.
Nightingale, M. P., and Melik-Alaverdian, V. 2001. Optimization of ground and excited states wave functions and van der Waals clusters. Phys. Rev. Lett., 87, 43401.Google Scholar
Nishimori, H., and Ortiz, G. 2010. Elements of Phase Transitions and Critical Phenomena. Oxford University Press.
Oguri, A., and Asahata, T. 1992. Brinkman-Rice transition in the three-band Hubbard model. Phys. Rev. B, 46, 14073.Google Scholar
Oguri, A., Asahata, T., and Maekawa, S. 1994. Gutzwiller wave function in the three-band Hubbard: a variational Monte Carlo study. Phys. Rev. B, 49, 6880.Google Scholar
Ohgoe, T.Suzuki, T. and Kawashima, N. 2012. Commensurate supersolid of threedimensional lattice bosons. Phys. Rev. Lett., 108, 185302.Google Scholar
Ortiz, G., Ceperley, D. M., and Martin, R. M. 1993. New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field. Phys. Rev. Lett., 71, 2777.Google Scholar
Ortiz, G., Gubernatis, J. E., and Carlson, J. A. 1997. Stochastic approach to lattice fermions in a magnetic field. Bull. Am. Phys. Soc., March Meeting, M11.10.Google Scholar
Ostlund, S., and Rommer, S. 1995. Thermodynamic limit of density-matrix renormalization. Phys. Rev. Lett., 75, 3557.Google Scholar
Otsuki, J., Kusunose, H., Werner, P., and Kuramoto, Y. 2007. Continuous-time quantum Monte Carlo method for the Coqblin–Schrieffer model. J. Phys. Soc. Japan, 76, 114707.Google Scholar
Paramekanti, A., Randeria, M., and Trivedi, N. 2001. Projected wave functions and high temperature superconductivity. Phys. Rev. Lett., 87, 217002.Google Scholar
Parisi, G. 1988. Statistical Field Theory. Frontiers in Physics, vol. 66. New York: Addison Wesley.
Peskun, P. H. 1973. Optimum Monte Carlo sampling using Markov chains. Biometrika, 60, 607.Google Scholar
Pollock, E. L., and Ceperley, D. M. 1987. Path-integral computation of superfluid densities. Phys. Rev. B, 36, 8343.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2007. Numerical Recipes: The Art of Scientific Computing, third edition. Cambridge University Press.
Prokof'ev, N., and Svistunov, B. 2001. Worm algorithms for classical statistical models. Phys. Rev. Lett., 87, 160601.Google Scholar
Prokov'ev, N. V., Svistunov, B. V., and Tupitsyn, I. S. 1998. Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems. Sov. Phys. JETP, 87, 310.Google Scholar
Purwanto, W., and Zhang, S. 2004. Quantum Monte Carlo for the ground state of many bosons. Phys. Rev. B, 70, 056702.Google Scholar
Renyi, A. 1960. On measures of entropy and information. Page 547 of: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press.
Reynolds, P. J., Ceperley, D. M., Alder, B. J., and Lester, W. A. 1982. Fixed-node Monte Carlo for molecules. J. Chem. Phys., 77, 5593.Google Scholar
Rieger, H., and Kawashima, N. 1999. Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet. Eur. Phys. J. B, 9, 233.Google Scholar
Rombouts, S., Heyde, K., and Jachowicz, N. 1999a. A discrete Hubbard-Stratonovich decomposition for general, fermionic two-body interactions.Phys. Lett., 82, 4155.Google Scholar
Rombouts, S. M. A., Heyde, K., and Jachowicz, N. 1999b. Quantum Monte Carlo method for fermions, free of discretization errors. Phys. Rev. Lett., 82, 4155.Google Scholar
Rosenbluth, M. 1953. Proof of validity of Monte Carlo method for canonical averaging. Tech. rept. LADC-1567 (AECU-2773). Los Alamos National Laboratory.
Rosenbluth, M. N. “Genesis of the Monte Carlo algorithm for statisitcal mechanics,” in The Monte Carlo Method in the Physical Sciences:Celebrating the 50th Anniversary of the Metropolis Algorithm, ed. J. E., Gubernatis, AIP Conference Proceedings, 690, 22 (2003). New York: American Institute of Physics.
Rubenstein, B. M., Gubernatis, J. E., and Doll, J. D. 2010. Comparative Monte Carlo efficiency by Monte Carlo analysis. Phys. Rev. E, 82, 36701.Google Scholar
Rubtsov, A. N., Savkin, V. V., and Lichtenstein, A. I. 2005. Continuous-time quantum Monte Carlo method for fermions. Phys. Rev. B, 72, 035122.Google Scholar
Sachdev, S. 1999. Quantum Phase Transitions. New York: Cambridge University Press.
Samson, J. H. 1993. Quantum Monte Carlo computation: the sign problem as a Berry phase. Phys. Rev. Lett., 47, 3408.Google Scholar
Samson, J. H. 1995. Auxiliary fields and the sign problem. Int. J. Modern Phys. C, 6, 427.Google Scholar
Sandvik, A. 2008. Scale-renormalized matrix-product states for correlated quantum systems.Phys. Rev. Lett., 101, 140603.Google Scholar
Sandvik, A. W. 1992. A generalization of Handscomb's quantum Monte Carlo schemeapplication to the 1D Hubbard mode. J. Phys. A: Math. Gen., 25, 3667.Google Scholar
Sandvik, A. W. 1999. Stochastic series expansion method with operator-loop update. Phys. Rev. B, 59, 14157.
Sandvik, A. W., and Evertz, H. G. 2010. Loop updates and projector quantum Monte Carlo in the valence bond basis. Phys. Rev. B, 82, 024407.Google Scholar
Sandvik, A.W., and Kurkijärvi, J. 1991. Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B, 43, 5950.
Sandvik, A. W., and Vidal, G. 2007. Variational Monte Carlo simulations with tensornetwork states.Phys. Rev. Lett., 99, 220602.Google Scholar
Sarsa, A., Fatoni, S., Schmidt, K. E., and Pederiva, F. 2003. Neutron matter at zero temperature with the auxiliary-field diffusion Monte Carlo method. Phys. Rev. C, 68, 024308.Google Scholar
Scalapino, D. J., and Sugar, R. L. 1981. Method for performing Monte Carlo calculations for systems with fermions. Phys. Rev. Lett., 46, 519.Google Scholar
Scalettar, R. T., Scalapino, D. J., Sugar, R. L., and Toussaint, D. 1987. Hybrid Monte Carlo for the numerical simulation of many-electron systems. Phys. Rev. B, 36, 8632.Google Scholar
Scalettar, R. T., Noack, R. M., and Singh, R. P. 1991. Ergodicity at large couplings with the determinant Monte Carlo algorithm. Phys. Rev. B, 44, 10502.Google Scholar
Schautz, F., and Filippi, C. 2004. Optimized Jastrow-Slater wave functions for ground and excited states: application to the lowest states of ethene. J. Chem. Phys., 120, 10931.Google Scholar
Schmidt, K. E., and Fantoni, S. 1999. A quantum Monte Carlo method for nucleon systems. Phys. Lett., B446, 99.Google Scholar
Schmidt, K. E., Sarsa, A., and Fatoni, S. 2001. A constrained path Monte Carlo for nucleon systems. Int. J. Mod. Phys. B, 15, 1510.Google Scholar
Schmidt, K. E., Fatoni, S., and Sarsa, A. 2003. Constrained path calculation of the 4He and 16O nuclei. Eur. J. Phys., A17, 469.Google Scholar
Schollwöck, U. 2005. The density matrix renormalization group. Rev. Mod. Phys., 77, 259.Google Scholar
Schrödinger, E. 1952. Statistical Thermodynamics. Cambridge University Press.
Sfondrini, A., Cerrillo, J., Schuch, N., and Cirac, J. I. 2010. Simulating two- and threedimensional frustrated quantum systems with string-bond states. Phys. Rev. B, 81, 214426.Google Scholar
Schuch, N., Wolf, M. M., Verstraete, F., and Cirac, J. I. 2008. Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. Phys. Rev. Lett., 100, 40501.Google Scholar
Shi, H., and Zhang, S. 2013. Symmetry in auxiliary-field quantum Monte Carlo calculations. Phys. Rev. B, 88, 125132.Google Scholar
Shiba, H. 1986. Properties of strongly correlated Fermi liquid in valence fluctuation system – a variational Monte Carlo study. J. Phys. Soc. Japan, 55, 2765.Google Scholar
Shiba, H., and Fazekas, P. 1990. Correlated Fermi-liquid state formed with overlapping Kondo clouds. Prog. Theor. Phys. Suppl., 101, 403.Google Scholar
Shore, J. E., and Johnson, R. W. 1980. Axiomatic derivation of the principle of maximum entropy and of minimum cross-entropy. IEEE Trans. Inform. Theory, IT-26, 26.Google Scholar
Shore, J. E., and Johnson, R. W. 1983. Comments on and corrections to “Axiomatic derivation of the principle of maximum entropy and of minimum cross-entropy.” IEEE Trans. Inform. Theory, IT-29, 942.Google Scholar
Sivia, D. S., and Skilling, J. 2006. Data Analysis: A Bayesian Tutorial. Oxford University Press.
Skilling, J. 1998. Massive inference and maximum entropy. In: Fischer, R., Preuss, R., and von Toussaint, U. (eds.), Maximum Entropy and Bayesian Methods. Dordrecht: Kluwer.
Sorella, S. 1998. Green function Monte Carlo with stochastic reconfiguration. Phys. Rev. Lett., 80, 4558.Google Scholar
Sorella, S. 2000. Green function Monte Carlo with stochastic reconfiguration: an effective remedy for the sign problem. Phys. Rev. B, 61, 2599.Google Scholar
Sorella, S. 2005. Wave function optimization in the variational Monte Carlo method. Phys. Rev. B, 71, 241103.Google Scholar
Sorella, S., Baroni, S., Car, R., and Parrinello, M. 1989. A novel technique for the simulation of interacting fermion systems. Eurphys. Lett., 8, 663.Google Scholar
Sorella, S., Martins, G. B., Becca, F., Gazza, C., Capriotti, L., Parola, A., and Dagotto, E. 2002. Superconductivity in the two-dimensional tJ model. Phys. Rev. Lett., 88, 117002.Google Scholar
Spanier, J., and Gelbard, E. M. 1969. Monte Carlo Principles and Neutron Transport Problems. Reading, MA: Addison-Wesley.
Stewart, G. W. 2001a. Matrix Algorithms I: Basic Decompositions. Philadelphia: SIAM.
Stewart, G. W. 2001b. Matrix Algorithms II: Eigensystems. Philadelphia: SIAM.
Sugiyama, G., and Koonin, S. E. 1986. Auxiliary field Monte Carlo for quantum manybody ground states. Ann. Phys., 168, 1.Google Scholar
Surer, B., Troyer, M., Werner, P., Wehling, T. O., Läuchli, A. M., Wilhelm, A., and Lichtenstein, A. I. 2012. Multiorbital Kondo physics of Co in Cu hosts. Phys. Rev.B, 85, 085114.Google Scholar
Suzuki, M. 1976a. Generalized Trotter's formula and systematic approximants of exponential operators and inner derivatives with applications to many-body problems.Comm. Math. Phys., 51, 183.Google Scholar
Suzuki, M. 1976b. Relationship between d-dimensional quantal spin systems and (d + 1)- dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. of Theor. Phys., 56, 1454.CrossRefGoogle Scholar
Swendsen, R. H., and Wang, J.-S. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58, 86.Google Scholar
Sylju°asen, O. F. 2008. Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations. Phys. Rev. B, 78, 174429.Google Scholar
Sylju°asen, O. F., and Sandvik, A. W. 2002. Quantum Monte Carlo with directed loops. Phys. Rev. E, 66, 046701.Google Scholar
Tahara, D., and Imada, M. 2008. Variational Monte Carlo method with quantum number projection and multi-variable optimization. J. Phys. Soc. Japan, 77, 114701.Google Scholar
Takasaki, H., Hikihara, T., and Nishino, T. 1999. Fixed point of the finite system DMRG. J. Phys. Soc. Japan, 68, 1537.Google Scholar
ten Haaf, D. F. B., Bemmel, H. J. M., van Leeuwen, J. M. J., van Saarlos, W., and Ceperley, D. 1995. Proof of upper bound in fixed-node Monte Carlo for lattice fermions. Phys. Rev. B, 51, 13039.Google Scholar
Thompson, C. P. 1972. Mathematical Statistical Mechanics. Princeton, NJ: Princeton University Press.
Thouless, D. J. 1961. The Quantum Mechanics of Many-Body Systems. New York: Academic.
Todo, S., and Kato, K. 2001. Cluster algorithms for general-S quantum spin systems. Phys. Rev. Lett., 87, 047203.Google Scholar
Todo, S., Matsuo, H., and Shitara, H. 2012. Private communication.
Toulouse, J., and Umrigar, C. J. 2007. Optimization of quantum many-body wave function by energy minimization.J. Chem. Phys., 126, 84102.Google Scholar
Toulouse, J., and Umrigar, C. J. 2008. Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic atoms. J. Chem. Phys., 128, 174101.Google Scholar
Trotzky, S., Pollet, L., Gerbier, F., Schnorrberger, U., Bloch, I., Prokof'ev, N. V., Svistunov, B., and Troyer, M. 2010. Suppression of the critical temperature for superfluidity near the Mott transition. Nature Physics, 6, 998.Google Scholar
Troyer, M., Wessel, S., and Alet, F. 2003. Flat histogram methods for quantum systems: algorithms to overcome tunneling problems and calculate the free energy. Phys. Rev. Lett., 90, 120201.Google Scholar
Umrigar, C. J., and Filippi, C. 2005. Energy and variance optimization of many-body wave functions. Phys. Rev. Lett., 94, 150201.Google Scholar
Umrigar, C. J., Wilson, K. G., and Wilkins, J. W. 1988. Optimized trial wave functions for quantum Monte Carlo calculations. Phys. Rev. Lett., 60, 1719.Google Scholar
Umrigar, C. J., Toulouse, J., Filippi, C., Sorella, S., and Hennig, R. G. 2007. Alleviation of the fermion-sign problem by optimization of many-body wave functions. Phys. Rev. Lett., 98, 110202.Google Scholar
van Hove, L. 1950. Sur l'integrale de configuration pour les systemémes de particules á une dimension. Physica, XVI, 137.Google Scholar
Verstraete, F., Murg, V., and Cirac, J. I. 2008. Matrix product states, projected entangled pair state, and variational renormalization group methods for quantum spin systems. Adv. Phys., 37, 143.Google Scholar
Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw., 3, 253.Google Scholar
Wang, F., and Landau, D. P. 2001. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 86, 2050.Google Scholar
Wang, J.-S., Tay, T. K., and Swendsen, R. H. 1999. Transition matrix Monte Carlo reweighting and dynamics. Phys. Rev. Lett., 82, 476.Google Scholar
Wang, L., Pizorn, I., and Verstraete, F. 2011a. Monte Carlo simulation with tensor network states. Phys. Rev. B, 2011, 134421.Google Scholar
Wang, L., Kao, Y.-J., and Sandvik, A. W. 2011b. Plaquette renormalization scheme for tensor network states. Phys. Rev. E 83, 056703 (2011).Google Scholar
Wang, L., Iazzi, M., Corboz, P., and Troyer, M. 2015. Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions. Phys. Rev. B 91, 235151 (2015).Google Scholar
Watanabe, H., and Ogata, M. 2009. Fermi surface reconstruction in the periodic Anderson model. J. Phys. Soc. Japan, 78, 024715.Google Scholar
Watanabe, T., Yokoyama, H., Tanaka, Y., and Inoue, J. I. 2006. Superconductivity and a Mott transition in a Hubbard model on an anisotropic triangular lattice. J. Phys. Soc. Japan, 75, 074707.Google Scholar
Weber, C., Läuchli, A.,Mila, F., and Giamarchi, T. 2006. Magnetism and superconductivity of strongly correlated electrons on the triangular lattice. Phys. Rev. B, 73, 014519.Google Scholar
Werner, P., and Millis, A. J. 2006. Hybridization expansion impurity solver: general formulation and application to Kondo lattice and two-orbital models. Phys. Rev. B, 74, 155107.CrossRefGoogle Scholar
Werner, P., and Millis, A. J. 2007. High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems. Phys. Rev. Lett., 99, 126405.Google Scholar
Werner, P., Comanac, A., de' Medici, L., Troyer, M., and Millis, A. J. 2006. Continuoustime solver for quantum impurity models. Phys. Rev. Lett., 97, 076405.Google Scholar
White, S. R. 1992. Density-matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69, 2863.Google Scholar
Wilson, K. G. 1975. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773.Google Scholar
Wolff, U. 1989. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62, 361.Google Scholar
Wood, W.W., and Parker, F. R. 1957. Monte Carlo equation of state of molecules interacting with the Lennard-Jones potential. I. A supercritical isotherm at about twice the critical temperature. J. Chem. Phys., 27, 720.CrossRefGoogle Scholar
Wu, C. J., and Zhang, S. C. 2005. Sufficient condition for absence of the sign problem in the fermionic quantum Monte Carlo algorithm.Phys. Rev. B, 71, 155115.Google Scholar
Yamaguchi, C., and Kawashima, N. 2002. Combination of improved multibondic method and the Wang-Landau method.Phys. Rev. E., 65, 056710.Google Scholar
Yamaguchi, C., Kawashima, N., and Okabe, Y. 2002. Broad histogram relation for the bond number and its applications. Phys. Rev. E., 66, 036704.Google Scholar
Yanagisawa, T. 1999. Wave functions of correlated electron state in the periodic Anderson model.J. Phys. Soc. Japan, 1999, 893.Google Scholar
Yang, H.-Y., Yang, F., Jiang, Y.-J., and Li, T. 2007. On the origin of the tunneling asymmetry in the cuprate superconductors: a variational perspective.J. Phys.: Condens. Matter, 19, 016217.Google Scholar
Yokoyama, H., and Shiba, H. 1987a. Variational Monte Carlo studies of the Hubbard model. I. J. Phys. Soc. Japan, 56, 1490.Google Scholar
Yokoyama, H., and Shiba, H. 1987b. Variational Monte Carlo studies of the Hubbard model. II. J. Phys. Soc. Japan, 56, 3582.Google Scholar
Yokoyama, H., and Shiba, H. 1988. Variational Monte Carlo studies of superconductivity in strongly correlated electron systems.H. Yokoyama and H. Shiba, 57, 2482.Google Scholar
Yoo, J., Chandrasekharan, S., Kaul, R. K., Ullmo, D., and Baranger, H. U. 2005. On the sign problem in the Hirsch-Fye algorithm for impurity problems. J. Phys. A: Math. Gen., 38, 10307.Google Scholar
Yunoki, S., Dagotto, E., and Sorella, S. 2005. Role of strong correlation in the recent angleresolved photoemission spectroscopy experiments on cuprate superconductors. Phys. Rev. Lett., 94, 037001.Google Scholar
Zhang, S. 2013. Auxiliary-field quantum Monte Carlo for correlated electron systems. In: Pavarini, E., Kock, E., and Schollwöck, U. (eds.), Emergent Phenomena in Correlated Matter Modeling and Simulation, vol. ö. http://hdl.handle.net/2128/5389: Open source.
Zhang, S., and Kalos, M. H. 1991. Exact Monte Carlo for few electron systems. Phys. Rev. Lett., 67, 3074.Google Scholar
Zhang, S., and Krakauer, H. 2003. Quantum Monte Carlo using phase-free random walks with Slater determinants.Phys. Rev. Lett., 90, 136401.Google Scholar
Zhang, S., Carlson, J., and Gubernatis, J. E. 1995. Constrained path Monte Carlo for fermion ground states. Phys. Rev. Lett., 74, 3652.Google Scholar
Zhang, S., Carlson, J., and Gubernatis, J. E. 1997. Constrained path Monte Carlo method for fermion ground states. Phys. Rev. B, 55, 7464.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • James Gubernatis, Los Alamos National Laboratory, Naoki Kawashima, University of Tokyo, Philipp Werner, Université de Fribourg, Switzerland
  • Book: Quantum Monte Carlo Methods
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902581.030
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • James Gubernatis, Los Alamos National Laboratory, Naoki Kawashima, University of Tokyo, Philipp Werner, Université de Fribourg, Switzerland
  • Book: Quantum Monte Carlo Methods
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902581.030
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • James Gubernatis, Los Alamos National Laboratory, Naoki Kawashima, University of Tokyo, Philipp Werner, Université de Fribourg, Switzerland
  • Book: Quantum Monte Carlo Methods
  • Online publication: 05 May 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902581.030
Available formats
×