Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T03:02:49.903Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 May 2016

James Gubernatis
Affiliation:
Los Alamos National Laboratory
Naoki Kawashima
Affiliation:
University of Tokyo
Philipp Werner
Affiliation:
Université de Fribourg, Switzerland
J. E. Gubernatis
Affiliation:
Los Alamos National Laboratory
N. Kawashima
Affiliation:
University of Tokyo
P. Werner
Affiliation:
University of Fribourg
Get access

Summary

Fast computers enable the solution of quantum many-body problems by Monte Carlo methods. As computing power increased dramatically over the years, similarly impressive advances occurred at the level of the algorithms, so that we are now in a position to perform accurate simulations of large systems of interacting quantum spins, Bosons, and (to a lesser extent) Fermions. The purpose of this book is to present and explain the quantum Monte Carlo algorithms being used today to simulate the ground states and thermodynamic equilibrium states of quantum models defined on a lattice. Our intent is not to review all relevant algorithms – there are too many variants to do so comprehensively – but rather to focus on a core set of important algorithms, explaining what they are and how and why they work.

Our focus on lattice models, such as Heisenberg and Hubbard models, has at least two implications. The first is obviously that we are not considering models in the continuum where extensive use of quantum Monte Carlo methods traditionally has focused on producing highly accurate ab initio calculations of the ground states of nuclei, atoms, molecules, and solids. Quantum Monte Carlo algorithms for simulating the ground states of continuum and lattice models, however, are very similar. In fact, the lattice algorithms are in many cases derived from the continuum methods. With fewer degrees of freedom, lattice models are compact and insightful representations of the physics in the continuum.

The second implication is a focus on both zero and finite temperature algorithms. On a lattice, it is natural to study phase transitions. In particular, the recent dramatic advances in quantum Monte Carlo lattice methods for the simulation of quantum spin models were prompted by a need for more efficient and effective ways to study finite-temperature transitions. While quantum Monte Carlo is profitably used to study zero temperature phase transitions (quantum critical phenomena), some ground state algorithms have no finite temperature analogs and vice versa. In many respects, the lattice is where the current algorithmic action is.

The book is divided into four parts. The first part is a self-contained, more advanced than average, discussion of the Monte Carlo method, its use, and its foundations.

Type
Chapter
Information
Quantum Monte Carlo Methods
Algorithms for Lattice Models
, pp. xi - xiv
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×