Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T21:04:37.446Z Has data issue: false hasContentIssue false

13 - Polymer/layered double hydroxide flame retardant nanocomposites

from Part II - Flame retardancy

Published online by Cambridge University Press:  05 August 2011

Baojun Qu
Affiliation:
aHefei University of Technology bUniversity of Science and Technology of China
Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

With their ease of processing and high performance, polymeric materials have become a common and important part of modern life. However, because almost all polymers are composed predominately of hydrocarbons, these materials are flammable and thus greatly increase fire hazard to human life and property. As estimated for the United States, there are approximately 400,000 residential fires each year, 20% involving electrical distribution and appliances, and 10% concerning upholstered furniture and mattresses. These fires kill about 4,000 people, injure 20,000 people, and result in property losses amounting to about US$4.5 billion. Flame retardants are additives that can make flammable materials more difficult to ignite and significantly reduce the spread of fire. Use of flame retardants plays a major role in fire safety, saving lives, and preventing injuries and property damage. For example, in 1974, the number of recorded television set fires in the United Kingdom was more than 2,300, whereas this number had decreased to 470 in 1989, despite the number of television sets in use increasing many times. This is because effective flame retardants were developed for television sets.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xie, R. C.Qu, B. J.Synergistic effects of expandable graphite with some halogen-free flame retardants in polyolefin blendsPolymer Degradation and Stability 71 2001 375CrossRefGoogle Scholar
Sen, A. K.Mukherjee, B.Bhattacharya, A. S.Sanghi, L. K.De, P. P.Bhowmick, A. K.Preparation and characterization of low-halogen and non-halogen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVCJournal of Applied Polymer Science 43 1991 1673CrossRefGoogle Scholar
Wang, Z. Z.Qu, B. J.Fan, W. C.Huang, P.Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergistsJournal of Applied Polymer Science 81 2001 206CrossRefGoogle Scholar
Gilman, J. W.Kashiwagi, T.Lichtenhan, J. D.Nanocomposites: A revolutionary new flame retardant approachSAMPE Journal 33 1997 40Google Scholar
Evans, D. G.Slade, C. T.Structural aspects of layered double hydroxidesStructure and Bonding 119 2006 1Google Scholar
Choudary, B. M.Bharathi, B.Reddy, C. V.Kantam, M. L.Raghavan, K. V.The first example of catalytic N-oxidation of tertiary amines by tungstate-exchanged Mg–Al layered double hydroxide in water: A green protocolChemical Communications 2001 1736CrossRefGoogle ScholarPubMed
Choy, J. H.Kwak, S. Y.Jeong, Y. J.Park, J. S.Inorganic layered double hydroxides as nonviral vectorsAngewandte Chemie International Edition 39 2000 4042Google ScholarPubMed
Desigaux, L.Ben, M.Richard, P.Cellier, J.Leone, P.Cario, L.Leroux, F.Taviot-Gueho, C.Pitard, B.Self-assembly and characterization of layered double hydroxide/DNA hybridsNano Letters 6 2006 199CrossRefGoogle ScholarPubMed
Du, L. C.Qu, B. J.Zhang, M.Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalationPolymer Degradation and Stability 92 2007 497CrossRefGoogle Scholar
Lakraimi, M.Legrouri, A.Barroug, A.de Roy, A.Besse, J. P.Removal of pesticides from water by anionic claysJ. Chim. Phys. Phys. – Chim. Biol 96 1999 470CrossRefGoogle Scholar
Yan, D.Lu, J.Wei, M.Ma, J.Evans, D. G.Duan, X.A combined study based on experiment and molecular dynamics: Perylene tetracarboxylate intercalated in a layered double hydroxide matrixPhysical Chemistry Chemical Physics 11 2009 9200CrossRefGoogle Scholar
Tian, Y.Wang, G.Li, F.Evans, D. G.Synthesis and thermo-optical stability of -methyl red-intercalated Ni–Fe layered double hydroxide materialMaterials Letters 61 2007 1662CrossRefGoogle Scholar
Lukashin, A. V.Vertegel, A. A.Eliseev, A. A.Nikiforov, M. P.Gornert, P.Tretyakov, Y. D.Chemical design of magnetic nanocomposites based on layered double hydroxidesJournal of Nanoparticle Research 5 2003 455CrossRefGoogle Scholar
Mohan, D.Pittman, C. U.Arsenic removal from water/wastewater using adsorbents – A critical reviewJournal of Hazardous Materials 142 2007 1CrossRefGoogle ScholarPubMed
Sugahar, YoshiyukiYokoyama, NorimasaKuroda, KazuyukiKato, ChuzoAlN formation from a hydrotalcite–polyacrylonitrile intercalation compound by carbothermal reductionCeramics International 14 1988 163CrossRefGoogle Scholar
Leroux, F.Besse, J. P.Polymer interleaved layered double hydroxide: A new emerging class of nanocompositesChemistry of Materials 13 2001 3507CrossRefGoogle Scholar
Moujahid, E. M.Besse, J. P.Leroux, F.Synthesis and characterization of a polystyrene sulfonate layered double hydroxide nanocomposite. In-situ polymerization vs. polymer incorporationJournal of Materials Chemistry 12 2002 3324CrossRefGoogle Scholar
Wilson, O. C.Olorunyolemi, T.Jaworski, A.Borum, L.Young, D.Siriwat, A.Dickens, E.Oriakhi, C.Lerner, M.Surface and interfacial properties of polymer-intercalated layered double hydroxide nanocompositesApplied Clay Science 15 1999 265CrossRefGoogle Scholar
Rey, S.Merida-Robles, J.Han, K. S.Guerlou-Demourgues, L.Delmas, C.Duguet, E.Acrylate intercalation and in situ polymerization in iron substituted nickel hydroxidesPolymer International 48 1999 2773.0.CO;2-2>CrossRefGoogle Scholar
Vaysse, C.Guerlou-Demourgues, L.Duguet, E.Delmas, C.Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxidesInorganic Chemistry 42 2003 4559CrossRefGoogle ScholarPubMed
Tanaka, M.Park, I. Y.Kuroda, K.Kato, C.Formation of hydrotalcite–acrylate intercalation compounds and their heat-treated productsBulletin of Chemical Society of Japan 62 1989 3442CrossRefGoogle Scholar
Oriakhi, C. O.Farr, I. V.Lerner, M. M.Incorporation of poly(acrylic acid), poly(vinylsulfonate) and poly(styrenesulfonate) within layered double hydroxidesJournal of Materials Chemistry 6 1996 103CrossRefGoogle Scholar
Messersmith, P. B.Stupp, S. I.Synthesis of nanocomposites – OrganoceramicsJournal of Materials Research 7 1992 2599CrossRefGoogle Scholar
Messersmith, P. B.Stupp, S. I.High-temperature chemical and microstructural transformations of a nanocomposite organoceramicChemistry of Materials 7 1995 454CrossRefGoogle Scholar
Yang, Q. Z.Sun, D. J.Zhang, C. G.Wang, X. J.Zhao, W. A.Synthesis and characterization of polyoxyethylene sulfate intercalated Mg–Al-nitrate layered double hydroxideLangmuir 19 2003 5570CrossRefGoogle Scholar
Whilton, N. T.Vickers, P. J.Mann, S.Bioinorganic clays: Synthesis and characterization of amino- and polyamino acid intercalated layered double hydroxidesJournal of Materials Chemistry 7 1997 1623CrossRefGoogle Scholar
Challier, T.Slade, C. T.Nanocomposite materials – Polyaniline-intercalated layered double hydroxidesJournal of Materials Chemistry 4 1994 367CrossRefGoogle Scholar
Hsueh, H. B.Chen, C. Y.Preparation and properties of LDHs/polyimide nanocompositesPolymer 44 2003 1151CrossRefGoogle Scholar
Chen, W.Qu, B. J.Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalationChemistry of Materials 15 2003 3208CrossRefGoogle Scholar
Chen, W.Qu, B. J.Synthesis and characterization of PE-g-MA/MgAl-LDH exfoliation nanocomposite via solution intercalationChinese Journal of Chemistry 21 2003 998Google Scholar
Chen, W.Qu, B. J.Feng, L.Synthesis of PMA/ZnAl-LDH intercalation nanocomposite by in situ polymerization and its morphology [in ChineseChemical Journal of Chinese Universities 24 2003 1920Google Scholar
Li, B. G.Hu, Y.Liu, J.Chen, Z. Y.Fan, W. C.Preparation of poly (methyl methacrylate)/LDH nanocomposite by exfoliation–adsorption processColloid and Polymer Science 281 2003 998CrossRefGoogle Scholar
Chen, W.Feng, L.Qu, B. J.Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE solutionChemistry of Materials 16 2004 368CrossRefGoogle Scholar
Chen, W.Qu, B. J.LLDPE/ZnAlLDH-exfoliated nanocomposites: Effects of nanolayers on thermal and mechanical propertiesJournal of Materials Chemistry 14 2004 1705CrossRefGoogle Scholar
Qiu, L. Z.Chen, W.Qu, B. J.Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocompositesPolymer 47 2006 922CrossRefGoogle Scholar
Costa, F. R.Abdel-Goad, M.Wagenknecht, U.Heinrich, G.Nanocomposites based on polyethylene and Mg–Al layered double hydroxide. I. Synthesis and characterizationPolymer 46 2005 4447CrossRefGoogle Scholar
Costa, F. R.Satapathy, B. K.Wagenknecht, U.Weidisch, R.Heinrich, G.Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocompositesEuropean Polymer Journal 42 2006 2140CrossRefGoogle Scholar
Costa, F. R.Wagenknecht, U.Heinrich, G.LDPE/Mg-Al layered double hydroxide nanocomposite: Thermal and flammability propertiesPolymer Degradation and Stability 92 2007 1813CrossRefGoogle Scholar
Costa, F. R.Wagenknecht, U.Jehnichen, D.Goad, M. A.Heinrich, G.Nanocomposites based on polyethylene and Mg–Al layered double hydroxide. Part II. Rheological characterizationPolymer 47 2006 1649CrossRefGoogle Scholar
Costa, F. R.Wagenknecht, U.Jehnichen, D.Heinrich, G.Nanocomposites based on polyethylene and Mg–Al layered double hydroxide: Characterisation of modified clay, morphological and rheological analysis of nanocompositesPlastics Rubber and Composites 35 2006 139CrossRefGoogle Scholar
Costantino, U.Gallipoli, A.Nocchetti, M.Camino, G.Bellucci, F.Frache, A.New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcitesPolymer Degradation and Stability 90 2005 586CrossRefGoogle Scholar
Schonhals, A.Goering, H.Costa, F. R.Wagenknecht, U.Heinrich, G.Dielectric properties of nanocomposites based on polyethylene and layered double hydroxideMacromolecules 42 2009 4165CrossRefGoogle Scholar
Du, L. C.Qu, B. J.Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocompositesJournal of Materials Chemistry 16 2006 1549CrossRefGoogle Scholar
Du, L. C.Qu, B. J.Preparation of LLDPE/MgAl-LDH exfoliation nanocomposites with enhanced thermal properties by melt intercalationChinese Journal of Chemistry 24 2006 1342CrossRefGoogle Scholar
Ding, P.Qu, B. J.Structure, thermal stability, and photocrosslinking characterization of HDPE/LDH nanocomposites synthesized by melt-intercalationJournal of Polymer Science, Part B: Polymer Physics 44 2006 3165CrossRefGoogle Scholar
Manzi-Nshuti, C.Hossenlopp, J. M.Wilkie, C. A.Comparative study on the flammability of polyethylene modified with commercial fire retardants and a zinc aluminum oleate layered double hydroxidePolymer Degradation and Stability 94 2009 782CrossRefGoogle Scholar
Manzi-Nshuti, C.Songtipya, P.Manias, E.Jimenez-Gasco, M. M.Hossenlopp, J. M.Wilkie, C. A.Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymersPolymer 50 2009 3564CrossRefGoogle Scholar
Nyambo, C.Wang, D.Wilkie, C. A.Will layered double hydroxides give nanocomposites with polar or non-polar polymersPolymers for Advanced Technologies 20 2009 332CrossRefGoogle Scholar
Saphiannikova, M.Costa, F. R.Wagenknecht, U.Heinrich, G.Nonlinear behavior of polyethylene/layered double hydroxide nanocomposites under shear flowPolymer Science Series A 50 2008 573CrossRefGoogle Scholar
Qiu, L. Z.Chen, W.Qu, B. J.Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalationPolymer Degradation and Stability 87 2005 433CrossRefGoogle Scholar
Qiu, L. Z.Chen, W.Qu, B. J.Exfoliation of layered double hydroxide in polystyrene by in-situ atom transfer radical polymerization using initiator-modified precursorColloid and Polymer Science 283 2005 1241CrossRefGoogle Scholar
Qiu, L. Z.Qu, B. J.Preparation and characterization of surfactant-free polystyrene/layered double hydroxide exfoliated nanocomposite via soap-free emulsion polymerizationJournal of Colloid and Interface Science 301 2006 347CrossRefGoogle ScholarPubMed
Ding, P.Qu, B. J.Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerizationJournal of Colloid and Interface Science 291 2005 13CrossRefGoogle ScholarPubMed
Ding, P.Qu, B. J.Synthesis and characterization of polystyrene/layered double-hydroxide nanocomposites via in situ emulsion and suspension polymerizationJournal of Applied Polymer Science 101 2006 3758CrossRefGoogle Scholar
Ding, P.Zhang, M.Gai, J.Qu, B. J.Homogeneous dispersion and enhanced thermal properties of polystyrene layered double hydroxide nanocomposites prepared by in situ reversible addition–fragmentation chain transfer (RAFT) polymerizationJournal of Materials Chemistry 17 2007 1117CrossRefGoogle Scholar
Manzi-Nshuti, C.Chen, D.Su, S. P.Wilkie, C. A.Structure–property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminumPolymer Degradation and Stability 94 2009 1290CrossRefGoogle Scholar
Wang, L. J.Su, S. P.Chen, D.Wilkie, C. A.Variation of anions in layered double hydroxides: Effects on dispersion and fire propertiesPolymer Degradation and Stability 94 2009 770CrossRefGoogle Scholar
Nyambo, C.Kandare, E.Wang, D. Y.Wilkie, C. A.Flame-retarded polystyrene: Investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxidePolymer Degradation and Stability 93 2008 1656CrossRefGoogle Scholar
Du, L. C.Qu, B. J.Meng, Y. Z.Zhu, Q.Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalationComposites Science and Technology 66 2006 913CrossRefGoogle Scholar
Wu, T. M.Hsu, S. F.Shih, Y. F.Liao, C. S.Thermal degradation kinetics of biodegradable poly (3-hydroxybutyrate)/layered double hydroxide nanocompositesJournal of Polymer Science, Part B: Polymer Physics 46 2008 1207CrossRefGoogle Scholar
Hsu, S. F.Wu, T. M.Liao, C. S.Isothermal crystallization kinetics of poly(3-hydroxybutyrate)/layered double hydroxide nanocompositesJournal of Polymer Science, Part B: Polymer Physics 44 2006 3337CrossRefGoogle Scholar
Hsu, S. F.Wu, T. M.Liao, C. S.Nonisothermal crystallization behavior and crystalline structure of poly(3-hydroxybutyrate)/layered double hydroxide nanocompositesJournal of Polymer Science, Part B: Polymer Physics 45 2007 995CrossRefGoogle Scholar
Liu, J.Chen, G. M.Yang, J. P.Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stabilityPolymer 49 2008 3923CrossRefGoogle Scholar
He, F. A.Zhang, L. M.Yang, F.Chen, L. S.Wu, Q.New nanocomposites based on syndiotactic polystyrene and organo-modified ZnAl layered double hydroxideJournal of Polymer Research 13 2006 483CrossRefGoogle Scholar
Kotal, M.Kuila, T.Srivastava, S. K.Bhowmick, A. K.Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocompositesJournal of Applied Polymer Science 114 2009 2691CrossRefGoogle Scholar
Dagnon, K. L.Chen, H. H.Innocenti-Mei, L. H.Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]/layered double hydroxide nanocompositesPolymer International 58 2009 133CrossRefGoogle Scholar
Ding, P.Qu, B. J.Synthesis of exfoliated PP/LDH nanocomposites via melt-intercalation: Structure, thermal properties, and photo-oxidative behavior in comparison with PP/MMT nanocompositesPolymer Engineering and Science 46 2006 1153CrossRefGoogle Scholar
Zhang, M.Ding, P.Qu, B. J.Flammable, thermal, and mechanical properties of intumescent flame retardant PP/LDH nanocomposites with different divalent cationsPolymer Composites 30 2009 1000CrossRefGoogle Scholar
Zhang, M.Ding, P.Qu, B. J.Guan, A. G.A new method to prepare flame retardant polymer compositesJournal of Materials Processing Technology 208 2008 342CrossRefGoogle Scholar
Manzi-Nshuti, C.Songtipya, P.Manias, E.Jimenez-Gasco, M. D.Hossenlopp, J. M.Wilkie, C. A.Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of the polymeric compatibilizer and of composition on the thermal and fire properties of PP/LDH nanocompositesPolymer Degradation and Stability 94 2009 2042CrossRefGoogle Scholar
Zammarano, M.Bellayer, S.Gilman, J. W.Franceschi, M.Beyer, F. L.Harris, R. H.Meriani, S.Delamination of organo-modified layered double hydroxides in polyamide 6 by melt processingPolymer 47 2006 652CrossRefGoogle Scholar
Zhu, Y. D.Allen, G. C.Adams, J. M.Gittins, D.Herrero, M.Benito, P.Heard, P. J.Dispersion characterization in layered double hydroxide/Nylon 66 nanocomposites using FIB imagingJournal of Applied Polymer Science 108 2008 4108CrossRefGoogle Scholar
Ye, L.Ding, P.Zhang, M.Qu, B. J.Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocompositesJournal of Applied Polymer Science 107 2008 3694CrossRefGoogle Scholar
Ye, L.Qu, B. J.Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blendsPolymer Degradation and Stability 93 2008 918CrossRefGoogle Scholar
Zhang, M.Ding, P.Du, L. C.Qu, B. J.Structural characterization and related properties of EVA/ZnAl-LDH nanocomposites prepared by melt and solution intercalationMaterials Chemistry and Physics 109 2008 206CrossRefGoogle Scholar
Nyambo, C.Kandare, E.Wilkie, C. A.Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acidPolymer Degradation and Stability 94 2009 513CrossRefGoogle Scholar
Nyambo, C.Wilkie, C. A.Layered double hydroxides intercalated with borate anions: Fire and thermal properties in ethylene vinyl acetate copolymerPolymer Degradation and Stability 94 2009 506CrossRefGoogle Scholar
Pan, P. J.Zhu, B.Dong, T.Inoue, Y.Poly(L-lactide)/layered double hydroxides nanocomposites: Preparation and crystallization behaviorJournal of Polymer Science, Part B: Polymer Physics 46 2008 2222CrossRefGoogle Scholar
Lee, W. D.Im, S. S.Lim, H. M.Kim, K. J.Preparation and properties of layered double hydroxide/poly(ethylene terephthalate) nanocomposites by direct melt compoundingPolymer 47 2006 1364CrossRefGoogle Scholar
Martinez-Gallegos, S.Herrero, M.Barriga, C.Labajos, F. M.Rives, V.Dispersion of layered double hydroxides in poly(ethylene terephthalate) by in situ polymerization and mechanical grindingApplied Clay Science 45 2009 44CrossRefGoogle Scholar
Sorrentino, A.Gorrasi, G.Tortora, M.Vittoria, V.Constantino, U.Marmottini, F.Padella, F.Incorporation of Mg–Al hydrotalcite into a biodegradable poly (epsilon, caprolactone) by high energy ball millingPolymer 46 2005 1601CrossRefGoogle Scholar
Zubitur, M.Gomez, M. A.Cortazar, M.Structural characterization and thermal decomposition of layered double hydroxide/poly(-dioxanone) nanocompositesPolymer Degradation and Stability 94 2009 804CrossRefGoogle Scholar
Li, B. G.Hu, Y.Zhang, R.Chen, Z. Y.Fan, W. C.Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocompositeMaterials Research Bulletin 38 2003 1567CrossRefGoogle Scholar
Wang, G. A.Wang, C. C.Chen, C. Y.Preparation and characterization of layered double hydroxides–PMMA nanocomposites by solution polymerizationJournal of Inorganic and Organometallic Polymers and Materials 15 2005 239CrossRefGoogle Scholar
Manzi-Nshuti, C.Hossenlopp, J. M.Wilkie, C. A.Fire retardancy of melamine and zinc aluminum layered double hydroxide in poly(methyl methacrylatePolymer Degradation and Stability 93 2008 1855CrossRefGoogle Scholar
Manzi-Nshuti, C.Wang, D. Y.Hossenlopp, J. M.Wilkie, C. A.Aluminum-containing layered double hydroxides: The thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylateJournal of Materials Chemistry 18 2008 3091CrossRefGoogle Scholar
Manzi-Nshuti, C.Wang, D. Y.Hossenlopp, J. M.Wilkie, C. A.The role of the trivalent metal in an LDH: Synthesis, characterization and fire properties of thermally stable PMMA/LDH systemsPolymer Degradation and Stability 94 2009 705CrossRefGoogle Scholar
Nyambo, C.Chen, D.Su, S. P.Wilkie, C. A.Variation of benzyl anions in MgAl-layered double hydroxides: Fire and thermal properties in PMMAPolymer Degradation and Stability 94 2009 496CrossRefGoogle Scholar
Nyambo, C.Chen, D.Su, S. P.Wilkie, C. A.Does organic modification of layered double hydroxides improve the fire performance of PMMAPolymer Degradation and Stability 94 2009 1298CrossRefGoogle Scholar
Nyambo, C.Songtipya, P.Manias, E.Jimenez-Gasco, M. M.Wilkie, C. A.Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PSJournal of Materials Chemistry 18 2008 4827CrossRefGoogle Scholar
Wang, G. A.Wang, C. C.Chen, C. Y.The disorderly exfoliated LDHs/PMMA nanocomposite synthesized by in situ bulk polymerizationPolymer 46 2005 5065CrossRefGoogle Scholar
Wang, L. J.Su, S. P.Chen, D.Wilkie, C. A.Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonitePolymer Degradation and Stability 94 2009 1110CrossRefGoogle Scholar
Ding, Y. Y.Gui, Z.Zhu, J. X.Hu, Y.Wang, Z. Z.Exfoliated poly(methyl methacrylate)/MgFe-layered double hydroxide nanocomposites with small inorganic loading and enhanced propertiesMaterials Research Bulletin 43 2008 3212CrossRefGoogle Scholar
O'Leary, S.O'Hare, D.Seeley, G.Delamination of layered double hydroxides in polar monomers: New LDH-acrylate nanocompositesChemical Communications 2002 1506CrossRefGoogle ScholarPubMed
Matusinovic, Z.Rogosic, M.Sipusic, J.Synthesis and characterization of poly(styrene-co-methyl methacrylate)/layered double hydroxide nanocomposites via in situ polymerizationPolymer Degradation and Stability 94 2009 95CrossRefGoogle Scholar
Hsueh, H. B.Chen, C. Y.Preparation and properties of LDHs/epoxy nanocompositesPolymer 44 2003 5275CrossRefGoogle Scholar
Chan, Y. N.Juang, T. Y.Liao, Y. L.Dai, S. A.Lin, J. J.Preparation of clay/epoxy nanocomposites by layered-double-hydroxide initiated self-polymerizationPolymer 49 2008 4796CrossRefGoogle Scholar
Zammarano, M.Franceschi, M.Bellayer, S.Gilman, J. W.Meriani, S.Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxidesPolymer 46 2005 9314CrossRefGoogle Scholar
Xie, R. C.Qu, B. J.Hu, K. L.Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blendsPolymer Degradation and Stability 72 2001 313CrossRefGoogle Scholar
Wu, Q.Qu, B. J.Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylenePolymer Degradation and Stability 74 2001 255CrossRefGoogle Scholar
Miyata, S.Hirose, T.Iizima, N. 1978
Gilman, J. W.Jackson, C. L.Morgan, A. B.Harris, R.Manias, E.Giannelis, E. P.Wuthenow, M.Hilton, D.Phillips, S. H.Flammability properties of polymer–layered-silicate nanocomposites. Polypropylene and polystyrene nanocompositesChemistry of Materials 12 2000 1866CrossRefGoogle Scholar
Zheng, X. X.Wilkie, C. A.Nanocomposites based on poly(epsilon-caprolactone)(PCL)/clay hybrid: Polystyrene, high impact polystyrene, ABS, polypropylene and polyethylenePolymer Degradation and Stability 82 2003 441CrossRefGoogle Scholar
Zanetti, M.Kashiwagi, T.Falqui, L.Camino, G.Cone calorimeter combustion and gasification studies of polymer layered silicate nanocompositesChemistry of Materials 14 2002 881CrossRefGoogle Scholar
Jiao, C. M.Wang, Z. Z.Chen, X. L.Hu, Y. A.Synthesis of a magnesium/aluminum/iron layered double hydroxide and its flammability characteristics in halogen-free, flame-retardant ethylene/vinyl acetate copolymer compositesJournal of Applied Polymer Science 107 2008 2626CrossRefGoogle Scholar
Gilman, J. W.Flammability and thermal stability studies of polymer layered-silicate (clay) nanocompositesApplied Clay Science 15 1999 31CrossRefGoogle Scholar
Qiu, L. Z.Xie, R. C.Ding, P.Qu, B. J.Preparation and characterization of Mg(OH)(2) nanoparticles and flame-retardant property of its nanocomposites with EVAComposite Structures 62 2003 391CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×