Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T15:17:35.416Z Has data issue: false hasContentIssue false

9 - Flame retardancy of polyamide/clay nanocomposites

from Part II - Flame retardancy

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

Polymer/clay nanocomposites have received considerable attention during the past decade, both in industry and in academia, because of their attractive improvement of material properties relative to pure polymers and conventional polymer composites. The improvements include mechanical, thermal, flame retardant, and gas barrier performance. It is believed that the improvements are mainly attributable to the nanometric size dispersion of the clay and the specific interfacial interaction between the polymer matrix and clay layers.

The structure and properties of clays

The clays commonly used in polymer nanocomposites belong to the family of 2:1 layered silicates or phyllosilicates. The crystal structure of the clay layers is made up of two tetrahedrally coordinated silicon atoms, which are fused to an edge-shared octahedral sheet of either aluminum or magnesium hydroxide. The layer thickness is about 1 nm and the lateral dimension of the layers may vary from 30 nm to several micrometers or even larger, depending on the particular silicate. There is a van der Waals gap between the layers, usually called a gallery or interlayer. Isomorphic substitution within the crystal structure of the layer (for example, Al3+ replaced by Mg2+ or by Fe2+, or Mg2+ replaced by Li+) generates negative charges that are counterbalanced by alkali and alkaline earth cations situated inside the interlayer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, J. G.Wilkie, C. A.Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene unitsPolymer 47 2006 5736CrossRefGoogle Scholar
Gilman, J. W.Awad, W. H.Davis, R. D.Shields, J.Harris, R. H.Davis, C.Morgan, A. B.Sutto, T. E.Callahan, J.Trulove, P. C.DeLong, H. C.Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorilloniteChemistry of Materials 14 2002 3776CrossRefGoogle Scholar
Beyer, G.Flame retardancy of nanocomposites – from research to reality – ReviewPolymers and Polymer Composites 13 2005Google Scholar
Gilman, J. W.Harris, R. H.Shields, J. R.Kashiwagi, T.Morgan, A. B.A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: Layered silicate reinforced carbonaceous charPolymers for Advanced Technologies 17 2006 263CrossRefGoogle Scholar
Jang, B. N.Costache, M.Wilkie, C. A.The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocompositesPolymer 46 2005 10CrossRefGoogle Scholar
Lei, S.Yuan, H.Lin, Z. H.Xuan, S. Y.Wang, S. F.Chen, Z. Y.Fan, W. C.Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocompositePolymer Degradation and Stability 86 2004 535Google Scholar
Fermeglia, M.Ferrone, M.Pricl, S.Computer simulation of nylon-6/organoclay nanocomposites: Prediction of the binding energyFluid Phase Equilibria 212 2003 315CrossRefGoogle Scholar
Brus, J.Urbanova, M.Kelnar, I.Kotek, J.A solid-state NMR study of structure and segmental dynamics of semicrystalline elastomer-toughened nanocompositesMacromolecules 39 2006 5400CrossRefGoogle Scholar
Sikdar, D.Katti, D. R.Katti, K. S.A molecular model for epsilon-caprolactam-based intercalated polymer clay nanocomposite: Integrating modeling and experimentsLangmuir 22 2006 7738CrossRefGoogle ScholarPubMed
Garcia-Lopez, D.Gobernado-Mitre, I.Fernandez, J. F.Merino, J. C.Pastor, J. M.Influence of clay modification process in PA6-layered silicate nanocomposite propertiesPolymer 46 2005 2758CrossRefGoogle Scholar
Erdmann, E.Dias, M. L.Pita, V.Monasterio, F.Acosta, D.Destefanis, H. A.Effect of the Organoclay Preparation on the Extent of the Intercalation/Exfoliation and the Barrier Properties in Polyamide-6/Montmorillonite NanocompositesDos Santos, D. S.Rio de JaneiroTrans Tech Publications Ltd 2006 78Google Scholar
Akelah, A.Rehab, A.Agag, T.Betiha, M.Polystyrene nanocomposite materials by in situ polymerization into montmorillonite-vinyl monomer interlayersJournal of Applied Polymer Science 103 2007 3739CrossRefGoogle Scholar
Ray, S. S.Okamoto, M.Polymer/layered silicate nanocomposites: A review from preparation to processingProgress in Polymer Science 28 2003 1539Google Scholar
Levchik, S. V.Weil, E. D.Combustion and fire retardancy of aliphatic nylonsPolymer International 49 2000 10333.0.CO;2-I>CrossRefGoogle Scholar
BP Amoco CorporationFlame Retardant Anti-drip Polyamide CompositionsUnited States Patent Application 2001Google Scholar
DSM IP ASSETS BVFlame Retardant Polyamide CompositionEuropean Patent application 2004Google Scholar
Dsm, N.V.Heerlen, NLFlame Retardant Polyamide CompositionUnited States Patent Application 2000Google Scholar
Braun, U.Schartel, B.Fichera, M. A.Jager, C.Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6Polymer Degradation and Stability 92 2007 1528CrossRefGoogle Scholar
Dsm, NVHalogen-Free Flame-Retardant Thermoplastic Polyester or Polyamide CompositionEuropean Patent Application 2000Google Scholar
Koo, J. H.Lao, S.-C.Yong, W.Wu, C.Tower, C.Wissler, G. E.Pilato, L. A.Luo, Z.Material Characterization of Intumescent Flame Retardant Polyamide 11 NanocompositesAmerican Institute of Aeronautics and Astronautics Inc. 2008CrossRefGoogle Scholar
Usuki, A.Kojima, Y.Kawasumi, M.Okada, A.Fukushima, Y.Kurauchi, T.Kamigaito, O.Synthesis of nylon 6-clay hybridJournal of Materials Research 8 1993 1179CrossRefGoogle Scholar
Kojima, Y.Usuki, A.Kawasumi, M.Okada, A.Kurauchi, T.Kamigaito, O.Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with epsilon-caprolactamJournal of Polymer Science, Part A: Polymer Chemistry 31 1993 983CrossRefGoogle Scholar
Kyu, T.Zhou, Z. L.Zhu, G. C.Tajuddin, Y.Qutubuddin, S.Novel filled polymer composites prepared from in situ polymerization via a colloidal approach. 1. Kaolin/nylon-6 in situ compositesJournal of Polymer Science, Part B: Polymer Physics 34 1996 17613.0.CO;2-T>CrossRefGoogle Scholar
Deer, W. A.Howie, R. A.Zussman, J.An Introduction to the Rock-Forming MineralsHarlowLongman 1992Google Scholar
Liu, A. D.Xie, T. X.Yang, G. S.Synthesis of exfoliated monomer casting polyamide 6/Na+-montmorillonite nanocomposites by anionic ring opening polymerizationMacromolecular Chemistry and Physics 207 2006 701CrossRefGoogle Scholar
Liu, A. D.Xie, T. X.Yang, G. S.Comparison of polyamide-6 nanocomposites based on pristine and organic montmorillonite obtained via anionic ring-opening polymerizationMacromolecular Chemistry and Physics 207 2006 1174CrossRefGoogle Scholar
Song, L.Hu, Y.He, Q. L.You, F.Study on crystallization, thermal and flame retardant properties of nylon 66/organoclay nanocomposites by in situ polymerizationJournal of Fire Sciences 26 2008 475CrossRefGoogle Scholar
Tarameshlou, M.Jafari, S. H.Khonakdar, H. A.Farmahini-Farahani, M.Ahmadian, S.Synthesis of exfoliated polyamide 6,6/organically modified montmorillonite nanocomposites by in situ interfacial polymerizationPolymer Composites 28 2007 733CrossRefGoogle Scholar
Kalkan, Z. S.Goettler, L. A.In situ polymerization of polyamide 66 nanocomposites utilizing interfacial polycondensation. II. Sodium montmorillonite nanocompositesPolymer Engineering and Science 49 2009 1825CrossRefGoogle Scholar
Zhang, Q.Yu, M.Fu, Q.Crystal morphology and crystallization kinetics of polyamide-11/clay nanocompositesPolymer International 53 2004 1941CrossRefGoogle Scholar
Zhang, X. K.Yang, G. S.Lin, J. P.Synthesis, rheology, and morphology of nylon-11/layered silicate nanocompositeJournal of Polymer Science, Part B: Polymer Physics 44 2006 2161CrossRefGoogle Scholar
Aranda, P.Ruizhitzky, E.Poly(ethylene oxide)–silicate intercalation materialsChemistry of Materials 4 1992 1395CrossRefGoogle Scholar
Yu, Y. H.Lin, C. Y.Yeh, J. M.Lin, W. H.Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materialsPolymer 44 2003 3553CrossRefGoogle Scholar
Ma, J.Gao, D.Lu, B.Chu, Y.Dai, J.Study on PVP/C-MMT nanocomposite material via polymer solution-intercalation methodMaterials and Manufacturing Processes 34 2007 715Google Scholar
Jimenez, G.Ogata, N.Kawai, H.Ogihara, T.Structure and thermal/mechanical properties of poly(epsilon-caprolactone)–clay blendJournal of Applied Polymer Science 64 1997 22113.0.CO;2-6>CrossRefGoogle Scholar
Ogata, N.Jimenez, G.Kawai, H.Ogihara, T.Structure and thermal/mechanical properties of poly(l-lactide)–clay blendJournal of Polymer Science, Part B: Polymer Physics 35 1997 3893.0.CO;2-E>CrossRefGoogle Scholar
Jeon, H. G.Jung, H. T.Lee, S. W.Hudson, S. D.Morphology of polymer/silicate nanocomposites – High density polyethylene and a nitrile copolymerPolymer Bulletin 41 1998 107CrossRefGoogle Scholar
Ma, C. C. M.Kuo, C. T.Kuan, H. C.Chiang, C. L.Effects of swelling agents on the crystallization behavior and mechanical properties of polyamide 6/clay nanocompositesJournal of Applied Polymer Science 88 2003 1686CrossRefGoogle Scholar
Cai, Y.Huang, F.Wei, Q.Song, L.Hu, Y.Ye, Y.Xu, Y.Gao, W.Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibersPolymer Degradation and Stability 93 2008 2180CrossRefGoogle Scholar
Zulfiqar, S.Ahmad, Z.Sarvar, M. I.Preparation and properties of aramid/layered silicate nanocomposites by solution intercalation techniquePolymers for Advanced Technologies 19 2008 1720CrossRefGoogle Scholar
Zulfiqar, S.Kausar, A.Rizwan, M.Sarwar, M. I.Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocompositesApplied Surface Science 255 2008 2080CrossRefGoogle Scholar
Zulfiqar, S.Sarwar, M. I.Lieberwirth, I.Ahmad, Z.Morphology, mechanical, and thermal properties of aramid/layered silicate nanocomposite materialsJournal of Materials Research 23 2008 2296CrossRefGoogle Scholar
Zulfiqar, S.Ahmad, Z.Ishaq, M.Sarwar, M. I.Aromatic-aliphatic polyamide/montmorillonite clay nanocomposite materials: Synthesis, nanostructure and propertiesMaterials Science and Engineering A 525 2009 30CrossRefGoogle Scholar
Zulfiqar, S.Rafique, M.Shaukat, M. S.Ishaq, M.Sarwar, M. I.Influence of clay modification on the properties of aramid-layered silicate nanocompositesColloid and Polymer Science 287 2009 715CrossRefGoogle Scholar
Vaia, R. A.Giannelis, E. P.Lattice model of polymer melt intercalation in organically-modified layered silicatesMacromolecules 30 1997 7990CrossRefGoogle Scholar
Li, Y. Q.Ishida, H.Solution intercalation of polystyrene and the comparison with poly(ethyl methacrylate)Polymer 44 2003 6571CrossRefGoogle Scholar
Torre, L.Lelli, G.Kenny, J. M.Synthesis and characterization of sPS/montmorillonite nanocompositesJournal of Applied Polymer Science 100 2006 4957CrossRefGoogle Scholar
Bourbigot, S.Devaux, E.Flambard, X.Flammability of polyamide-6/clay hybrid nanocomposite textilesPolymer Degradation and Stability 75 2002 397CrossRefGoogle Scholar
Samyn, F.Bourbigot, S.Jama, C.Bellayer, S.Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphologyPolymer Degradation and Stability 93 2008 2019CrossRefGoogle Scholar
Garcia-Lopez, D.Gobernado-Mitre, I.Fernandez, J. F.Merino, J. C.Pastor, J. M.Properties of polyamide 6/clay nanocomposites processed by low cost bentonite and different organic modifiersPolymer Bulletin 62 2009 791CrossRefGoogle Scholar
Frache, A.Monticelli, O.Ceccia, S.Brucellaria, A.Casale, A.Preparation of nanocomposites based on PP and Pa6 by direct injection moldingPolymer Engineering and Science 48 2008 2373CrossRefGoogle Scholar
Hu, Y.Wang, S. F.Ling, Z. H.Zhuang, Y. L.Chen, Z. Y.Fan, W. C.Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocompositeMacromolecular Materials and Engineering 288 2003 272CrossRefGoogle Scholar
Liu, X.Wu, Q.Berglund, L. A.Polymorphism in polyamide 66/clay nanocompositesPolymer 43 2002 4967CrossRefGoogle Scholar
Yang, Q. Q.Guo, Z. X.Yu, J.Preparation and characterization of polyamide 66/montmorillonite nanocomposites with methyl methacrylate as cointercalation agentJournal of Applied Polymer Science 108 2008 1CrossRefGoogle Scholar
McNally, T.Murphy, W. R.Lew, C. Y.Turner, R. J.Brennan, G. P.Polyamide-12 layered silicate nanocomposites by melt blendingPolymer 44 2003 2761CrossRefGoogle Scholar
Hocine, N. A.Mederic, P.Aubry, T.Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structurePolymer Testing 27 2008 330CrossRefGoogle Scholar
Levchik, S. V.Weil, E. D.Lewin, M.Thermal decomposition of aliphatic nylonsPolymer International 48 1999 5323.0.CO;2-R>CrossRefGoogle Scholar
Bockhorn, H.Hornung, A.Hornung, U.Weichmann, J.Kinetic study on the non-catalysed and catalysed degradation of polyamide 6 with isothermal and dynamic methodsThermochimica Acta 337 1999 97CrossRefGoogle Scholar
Pramoda, K. P.Liu, T.Liu, Z.He, C.Sue, H.-J.Thermal degradation behavior of polyamide 6/clay nanocompositesPolymer Degradation and Stability 81 2003 47CrossRefGoogle Scholar
Kashiwagi, T.Harris, R. H.Zhang, X.Briber, R. M.Cipriano, B. H.Raghavan, S. R.Awad, W. H.Shields, J. R.Flame retardant mechanism of polyamide 6-clay nanocompositesPolymer 45 2004 881CrossRefGoogle Scholar
Varley, R. J.Groth, A. M.Leong, K. H.The role of nanodispersion on the fire performance of organoclay-polyamide nanocomposites5th Asian/ναισαλαρτσυA)5−6MΧΧA(σλαιρɛταM ɛτισοπμοΧ νο ɛχνɛρɛφοΧHong KongElsevier Science Ltd 2006 2882Google Scholar
Dabrowski, F.Bourbigot, S.Delobel, R.Le Bras, M.Kinetic modelling of the thermal degradation of polyamide-6 nanocompositeEuropean Polymer Journal 36 2000 273CrossRefGoogle Scholar
Jang, B. N.Wilkie, C. A.The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocompositesPolymer 46 2005 3264CrossRefGoogle Scholar
Wiloth, F.Zur thermischen Zersetzung von Nylon 6.6. III. Messungen zur Thermolyse von Nylon 6.6 und 6.10Makromolekulare Chemie 144 1971 283CrossRefGoogle Scholar
Hornsby, P. R.Wang, J.Rothon, R.Jackson, G.Wilkinson, G.Cossick, K.Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide fillerPolymer Degradation and Stability 51 1996 235CrossRefGoogle Scholar
Nagasawa, Y.Hotta, M.Ozawa, K.Fast thermolysis/FT-IR studies of fire-retardant melamine–cyanurate and melamine–cyanurate containing polymerJournal of Analytical and Applied Pyrolysis 33 1995 253CrossRefGoogle Scholar
Bahr, U.Luderwald, I.Muller, R.Schulten, H. R.Pyrolysis field desorption mass spectrometry of polymers. III. Aliphatic polyamidesAngewandte Makromolekulare Chemie 120 1984 163CrossRefGoogle Scholar
Luderwald, I.Mertz, F.Über den thermischen Abbau von Polyamiden der Nylon-ReiheAngewandte Makromolekulare Chemie 74 1978 165CrossRefGoogle Scholar
MacKerron, D. H.Gordon, R. P.Minor products from the pyrolysis of thin films of poly(hexamethylene adipamidePolymer Degradation and Stability 12 1985 277CrossRefGoogle Scholar
Andrews, J. M.Jones, F. R.Semlyen, J. A.Equilibrium ring concentrations and the statistical conformations of polymer chains: 12. Cyclics in molten and solid nylon-6Polymer 15 1974 420CrossRefGoogle Scholar
Song, L.Hu, Y.He, Q. L.You, F.Study of nylon 66-clay nanocomposites via condensation polymerizationColloid and Polymer Science 286 2008 721CrossRefGoogle Scholar
Qin, H. L.Su, Q. S.Zhang, S. M.Zhao, B.Yang, M. S.Thermal stability and flammability of polyamide 66/montmorillonite nanocompositesPolymer 44 2003 7533CrossRefGoogle Scholar
Babrauskas, V.Peacock, R. D.Heat release rate: The single most important variable in fire hazardFire Safety Journal 18 1992 255CrossRefGoogle Scholar
Su, S. P.Wilkie, C. A.Exfoliated poly(methyl methacrylate) and polystyrene nanocomposites occur when the clay cation contains a vinyl mononerJournal of Polymer Science, Part A: Polymer Chemistry 41 2003 1124CrossRefGoogle Scholar
Ma, H. Y.Xu, Z. B.Tong, L. F.Gu, A. G.Fang, Z. P.Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability propertiesPolymer Degradation and Stability 91 2006 2951CrossRefGoogle Scholar
Cai, Y. B.Hu, Y.Song, L.Liu, L.Wang, Z. Z.Chen, Z.Fan, W. H.Synthesis and characterization of thermoplastic polyurethane/montmorillonite nanocomposites produced by reactive extrusionJournal of Materials Science 42 2007 5785CrossRefGoogle Scholar
Gilman, J. W.Kashiwagi, T.Nyden, M.Brown, J. E. T.Jackson, C. L.Lomakin, S.Giannelis, E. P.Manias, E.Flammability studies of polymer layered silicate nanocomposites: Polyolefin, epoxy and vinyl ester resinsChemistry and Technology of Polymer AdditivesAl-Malaika, S.Golovoy, A.Wilkie, C. A.MaldenBlackwell Science 1999 249Google Scholar
Gilman, J. W.Flammability and thermal stability studies of polymer layered-silicate (clay) nanocompositesApplied Clay Science 15 1999 31CrossRefGoogle Scholar
Dasari, A.Yu, Z. Z.Mai, Y. W.Liu, S.Flame retardancy of highly filled polyamide 6/clay nanocompositesNanotechnology 18 2007CrossRefGoogle Scholar
Lewin, M.Surface barrier formation in the pyrolysis and combustion of nanocompositesRecent Advances in Flame Retardancy of Polymeric Materials 12 2002 84Google Scholar
Lewin, M.Some comments on the modes of action of nanocomposites in the flame retardancy of polymersFire and Materials 27 2003 1CrossRefGoogle Scholar
Lewin, M.Reflections on migration of clay and structural changes in nanocompositesPolymers for Advanced Technologies 17 2006 758CrossRefGoogle Scholar
Lewin, M.Mey-Marom, A.Frank, R.Surface free energies of polymeric materials, additives and mineralsPolymers for Advanced Technologies 16 2005CrossRefGoogle Scholar
Tang, Y.Lewin, M.Pearce, E. M.Effects of annealing on the migration behavior of PA6/clay nanocompositesMacromolecular Rapid Communications 27 2006 1545CrossRefGoogle Scholar
Zammarano, M.Gilman, J. W.Nyden, M.Pearce, E. M.Lewin, M.The role of oxidation in the migration mechanism of layered silicate in poly(propylene) nanocompositesMacromolecular Rapid Communications 27 2006 693CrossRefGoogle Scholar
Hao, J.Lewin, M.Wilkie, C. A.Wang, J.Additional evidence for the migration of clay upon heating of clay-polypropylene nanocomposites from X-ray photoelectron spectroscopy (XPS)Polymer Degradation and Stability 91 2006 2482CrossRefGoogle Scholar
Tang, Y.Lewin, M.Maleated polypropylene OMMT nanocomposite: Annealing, structural changes, exfoliated and migrationPolymer Degradation and Stability 92 2007 53CrossRefGoogle Scholar
Lewin, M.Reflections on migration of clay and structural changes in nanocompositesPolymers for Advanced Technologies 17 2006 758CrossRefGoogle Scholar
Isitman, N. A.Gunduz, H. O.Kaynak, C.Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6Polymer Degradation and Stability 94 2009 2241CrossRefGoogle Scholar
Lao, S. C.Wu, C.Moon, T. J.Koo, J. H.Morgan, A.Pilato, L.Wissler, G.Flame-retardant polyamide 11 and 12 nanocomposites: Thermal and flammability propertiesJournal of Composite Materials 43 2009 1803CrossRefGoogle Scholar
Ribeiro, S. P. S.Estevão, L. R. M.Pereira, C.Rodrigues, J.Nascimento, R. S. V.Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulationsPolymer Degradation and Stability 94 2009 421CrossRefGoogle Scholar
Wang, W. S.Chen, H. S.Wu, Y. W.Tsai, T. Y.Chen-Yang, Y. W.Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclayPolymer 49 2008 4826CrossRefGoogle Scholar
Zhang, Y.Hu, Y.Song, L.Wu, J.Fang, S. L.Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene–vinyl acetate copolymer/magnesium hydroxide) compositePolymers for Advanced Technologies 19 2008 960CrossRefGoogle Scholar
Schartel, B.Knoll, U.Hartwig, A.Putz, D.Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardantsPolymers for Advanced Technologies 17 2006 281CrossRefGoogle Scholar
Yang, L.Hu, Y.Lu, H. D.Song, L.Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocompositesJournal of Applied Polymer Science 99 2006 3275CrossRefGoogle Scholar
Modesti, M.Lorenzetti, A.Besco, S.Hreja, D.Semenzato, S.Bertani, R.Michelin, R. A.Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane–nanocomposite foamsPolymer Degradation and Stability 93 2008 2166CrossRefGoogle Scholar
Kashiwagi, T.1423http://www.fire.nist.gov/bfrlpubs/fire95/art104.html

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×