Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T14:19:54.409Z Has data issue: false hasContentIssue false

11 - Dissipative particle dynamics

Published online by Cambridge University Press:  05 June 2012

Herman J. C. Berendsen
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

In this chapter we consider how continuum dynamics, described by continuum equations that are themselves generalizations of systems of particles, can be described by particles again. The particle description in this case is not meant to be more precise than the continuum description and to represent the system in more detail, but is meant to provide an easier and more physically appealing way to solve the continuum equations. There is the additional advantage that multicomponent systems can be modeled, and by varying the relative repulsion between different kinds of particles, phenomena like mixing and spinodal decomposition can be simulated as well. The particles represent lumps of fluid, rather than specified clusters of real molecules, and their size depends primarily on the detail of the boundary conditions in the fluid dynamics problem at hand. The size may vary from superatomic or nanometer size, e.g., for colloidal systems, to macroscopic size. Since usually many (millions of) particles are needed to fill the required volume with sufficient detail, is it for efficiency reasons necessary that the interactions are described in a simple way and act over short distances only to keep the number of interactions low. Yet, the interactions should be sufficiently versatile to allow independent parametrization of the main properties of the fluid as density, compressibility and viscosity.

Type
Chapter
Information
Simulating the Physical World
Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
, pp. 305 - 312
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×