Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T13:26:13.327Z Has data issue: false hasContentIssue false

8 - Stochastic dynamics: reducing degrees of freedom

Published online by Cambridge University Press:  05 June 2012

Herman J. C. Berendsen
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Distinguishing relevant degrees of freedom

Often the interest in the behavior of large molecular systems concerns global behavior on longer time scales rather than the short-time details of local dynamics. Unfortunately, the interesting time scales and system sizes are often (far) beyond what is attainable by detailed molecular dynamics simulations. In particular, macromolecular structural relaxation (crystallization from the melt, conformational changes, polyelectrolyte condensation, protein folding, microphase separation) easily extends into the seconds range and longer. It would be desirable to simplify dynamical simulations in such a way that the “interesting” behavior is well reproduced, and in a much more efficient manner, even if this goes at the expense of “uninteresting” details. Thus we would like to reduce the number of degrees of freedom that are explicitly treated in the dynamics, but in such a way that the accuracy of global and long-time behavior is retained as much as possible.

All approaches of this type fall under the heading of coarse graining, although this term is often used in a more specific sense for models that average over local details. The relevant degrees of freedom may then either be the cartesian coordinates of special particles that represent a spatial average (the superatom approach, treated in Section 8.4), or they may be densities on a grid, defined with a certain spatial resolution. The latter type of coarse graining is treated in Chapter 9 and leads to mesoscopic continuum dynamics, treated in Chapter 10.

Type
Chapter
Information
Simulating the Physical World
Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
, pp. 249 - 278
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×