Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T19:31:32.807Z Has data issue: false hasContentIssue false

Chapter 7 - Energy Resources and Potentials

Published online by Cambridge University Press:  05 September 2012

Hans-Holger Rogner
Affiliation:
International Atomic Energy Agency
Roberto F. Aguilera
Affiliation:
Curtin University
Cristina L. Archer
Affiliation:
California State University and Stanford University
Ruggero Bertani
Affiliation:
Enel Green Power S.p.A.
S.C. Bhattacharya
Affiliation:
International Energy Initiative
Maurice B. Dusseault
Affiliation:
University of Waterloo
Luc Gagnon
Affiliation:
HydroQuébec
Helmut Haberl
Affiliation:
Klagenfurt University
Monique Hoogwijk
Affiliation:
Ecofys
Arthur Johnson
Affiliation:
Hydrate Energy International
Mathis L. Rogner
Affiliation:
International Institute for Applied Systems Analysis
Horst Wagner
Affiliation:
Montan University Leoben
Vladimir Yakushev
Affiliation:
Gazprom
Doug J. Arent
Affiliation:
National Renewable Energy Laboratory
Ian Bryden
Affiliation:
University of Edinburgh
Fridolin Krausmann
Affiliation:
Klagenfurt University
Peter Odell
Affiliation:
Erasmus University Rotterdam
Christoph Schillings
Affiliation:
German Aerospace Center
Ali Shafiei
Affiliation:
University of Waterloo
Ji Zou
Affiliation:
Renmin University
Get access

Summary

Executive Summary

An energy resource is the first step in the chain that supplies energy services (for a definition of energy services, see Chapter 1). Energy services are largely ignorant of the particular resource that supplies them; however, often the infrastructures, technologies, and fuels along the delivery chain are highly dependent on a particular type of resource. The availability and costs of bringing energy resources to the market place are key determinants to affordable and accessible energy services.

Energy resources pose no inherent limitation to meeting the rapidly growing global energy demand as long as adequate upstream investment is forthcoming – for exhaustible resources in exploration, production technology, and capacity (mining and field development) and, by analogy, for renewables in conversion technologies.

Hydrocarbons and Nuclear

Occurrences of hydrocarbons and fissile materials in the Earth's crust are plentiful – yet they are finite. The extent of the ultimately recoverable oil, natural gas, coal, or uranium is the subject of numerous reviews, yet still the range of values in the literature is large (Table 7.1). For example, the range for conventional oil is between 4900 exajoules (EJ) for reserves to 13,700 EJ (reserves plus resources) – a range that sustains continued debate and controversy. The large range is the result of varying boundaries of what is included in the analysis of a finite stock of an exhaustible resource, e.g., conventional oil only or conventional oil plus unconventional occurrences, such as oil shale, tar sands, and extra-heavy oils.

Type
Chapter
Information
Global Energy Assessment
Toward a Sustainable Future
, pp. 425 - 512
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, B. K., S., Barrington and J., Martinez, 2006: Predicted growth of world urban food waste and methane production. Waste Management Resources, 24 (5): 421–433.Google ScholarPubMed
Aguilera, R. F., R. G., Eggert, G. C. C., Lagos and J. E., Tilton, 2009: Depletion and the Future Availability of Petroleum Resources. The Energy Journal, 30 (1): 141–174.CrossRefGoogle Scholar
Ahlbrandt, T. and T., Klett, 2005: Comparison of Methods Used to Estimate Conventional Undiscovered Petroleum Resources: World Examples. Natural Resources Research, 14 (3): 187–210.CrossRefGoogle Scholar
Aitken, C. M., D. M., Jones, and S. R., Larter, 2004: Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431 (7006): 291–294.Google Scholar
Aldhous, P., P., McKenna, and C., Stier, 2010: Gulf Leak: Biggest Spill may not be Biggest Disaster. New Scientist, 2764.Google Scholar
Aleklett, K., M., Höök, K., Jakobsson, M., Lardelli, S., Snowden, and B., Söderbergh, 2010: The Peak of the Oil Age – Analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38 (3): 1398–1414.CrossRefGoogle Scholar
Alfè, D., M. J., Gillan, and G. D., Price, 2002: Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data. Earth and Planetary Science Letters, 195 (1–2): 91–98.CrossRefGoogle Scholar
Allsema, E. and M., van Brummelen, 1993: Het Potentieel van PV-Systemen in OECD Landen. Utrecht University, Department of Science, Technology and Society: pp. 53.Google Scholar
Altun, N. E., C., Hicyilmaz, J.-Y., Hwang, A. S., Bagci, and M. V., Kok, 2006: Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale. A Scientific-Technical Journal (Estonian Academy Publishers), 23 (3): 211–227.Google Scholar
Ananenkov, D. G., 2007: Role of Gas in Development of Global and Russian Fuel and Energy Industry in XXI Century, Paper P-1. In Proceedings of the International Conference on World Gas Resources and Reserves and Advanced Development Technologies, VNIIGAZ, Moscow.Google Scholar
Antilla, P., T., Karjalainen, and A., Asikainen, 2009: Global Potential of Modern Firewood. Finnish Forest Institute, Vantaa. www.metla.fi/julkaisut/workingpapers/2009/mwp118.htm (accessed January 16, 2011).Google Scholar
Archer, C. L. and M. Z., Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110 (D12): D12110.CrossRefGoogle Scholar
Archer, C. L. and K., Caldeira, 2009: Global Assessment of High-Altitude Wind Power. Energies, 2 (2): 307–319.CrossRefGoogle Scholar
Arthur, J. D., B., Bohm, and M., Layne, 2008: Hydraulic Fracturing Considerations for Natural gas Wells of the Marcellus Shale. In The Ground Water Protection Council 2008 Annual Forum, Cincinnati, OH.Google Scholar
Asikainen, A., H., Liiri, S., Peltola, T., Karjalainen, and J., Laitila, 2008: Forest energy potential in Europe (EU 27). Finnish Forest Institute, Vantaa. www.metla.fi/julkaisut/workingpapers/2008/mwp069.htm (accessed November 25, 2010).Google Scholar
Atlas, R. M. and R., Bartha, 1992: Hydrocarbon Biodegradation and Oil Spill Bioremediation In Advances in Microbial Ecology. K. C., Marshall, (ed.), Plenum Press, London, 13, pp. 282–338.Google Scholar
,AUA (Australian Uranium Association), 2009: Uranium Stewardship – Best Practice Guidelines for Uranium Exploration Date Accessed: 2010, April, 10, www.aua.org.au/Content/ExplorationGuidelines.aspx.Google Scholar
Avery, W. H. and C., Wu, 1994: Renewable Energy From the Ocean—A Guide to OTEC, Johns Hopkins University Applied Physics Laboratory Series in Science and Engineering, J. R., Apel ed., Oxford University Press, NY.Google Scholar
,AWEA (American Wind Energy Association), 2010: Basic Principles of Wind Resource Evaluation. www.awea.org/faq/basicwr.html (accessed on: March 30, 2010).Google Scholar
Bentley, R. W. and M. R., Smith, 2004: World Oil Production Peak – A Supply-Side Perspective. International Association for Energy Economics Newsletters, 13 (Third Quarter): 25–28.Google Scholar
Berndes, G., M., Hoogwijk, and R., van den Broek, 2003: The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25 (1): 1–28.CrossRefGoogle Scholar
Berndes, G., 2008: Water demand for global bioenergy production: trends, risks and opportunities. In Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung, WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umwelt Veränderungen, Berlin.Google Scholar
Bertani, R., 2003: What is Geothermal Potential?IGA News, (53): 1–3.Google Scholar
Bertani, R., 2005: World geothermal power generation in the period 2001–2005. Geothermics, 34 (6): 651–690.CrossRefGoogle Scholar
Bertani, R., 2007: World Geothermal Power Generation in 2007. In Proceedings of the European Geothermal Congress. 30 May – 1 June, Unterhaching, Germany.Google Scholar
Bertani, R., 2009: Long-term Projections of Geothermal-electric Development in the World. GeoTHERM Expo & Congress. March 5–6, 2009, Offenburg, Germany.Google Scholar
Bertani, R., 2010: Geothermal Power Generation in the World: 2005–2010: Update Report. International Geothermal Association. Bochum, Germany.Google Scholar
,BGR, 2007: Reserves, Resources and Availability of Energy Resources 2006. Annual Report, Federal Institute for Geoscience and Natural Resources (BGR), Hannover, Germany.Google Scholar
,BGR, 2009: Energierohstoffe 2009 – Reserven, Ressourcen, Verfügbarkeit. Annual Report, Federal Institute for Geoscience and Natural Resources (BGR), Hannover, Germany.Google Scholar
,BGR, 2010: Reserves, Resources and Availability of Energy Resources. Annual Reports, Federal Institute for Geoscience and Natural Resources (BGR), Hannover, Germany.Google Scholar
Bhattacharya, S. C., 1991: Characterization of Selected Agro-forestry Residues. In Biocoal Technology and Economics, Bhattacharya, S.C. and R. M., Shrestha, (eds.), Regional Energy Resources Information Center (RERIC), Bangkok.Google Scholar
Bhattacharya, S. C., J. M., Thomas, and P. Abdul, Salam, 1997: Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia. Energy, 22 (11): 1079–1085.CrossRefGoogle Scholar
Biglarbigi, K., H., Mohan and J., Killen, 2009: USA, World Possess Rich Resource Base. Oil & Gas Journal, 107 (3): 56–61.Google Scholar
Binger, A., 2004: Potential and Future Prospects for Ocean Thermal Energy Conversion (OTEC) In Small Islands Developing States (SIDS). UNESCO (UN Education, Scientific and Cultural Organisation).Google Scholar
Boehlert, G. W., G. R., McMurray, and C. E., Tortorici, (eds.), 2008: Ecological Effects of Wave Energy in the Pacific Northwest. NOAA Technical Memo NMFS-F/SPO-92. US Department of Commerce, Washington, DC.
Boehlert, G. W. and A. B., Gill, 2010: Environmental and Ecological Effects of Ocean Renewable Energy Development. Oceanography, 23 (2): 68–81.CrossRefGoogle Scholar
,BP, 2010: Statistical Review of World Energy. BP, London.Google Scholar
Broesamle, H., H., Mannstein, C., Schillings, and F., Trieb, 2001: Assessment of solar electricity potentials in North Africa based on satellite data and a geographic information system. Solar Energy, 70 (1): 1–12.CrossRefGoogle Scholar
Bunn, M., S., Fetter, J. P., Holdren, and B., van der Zwaan, 2003: The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Project on Managing the Atom. DE-FG26–99FT4028, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, Cambridge, MA.CrossRefGoogle Scholar
Burton, T., D., Sharpe, N., Jenkins, and E., Bossanyi, 2001: Wind Energy Handbook. John Wiley & Sons, Hoboken, NJ.CrossRefGoogle Scholar
Butler, R. M. and D. J., Stephens, 1980: The Gravity Drainage of Steam-Heated Heavy Oil to Parallel Horizontal Wells; Paper CIM # 80–31–31. In Presented at the 31st Petroleum Society of CIM Annual Technical Meeting, 25–28 May, Calgary.Google Scholar
Butler, R. M. and D. J., Stephens, 1981: The Gravity Drainage of Steam-heated Heavy Oil to Parallel Horizontal Wells. Journal of Canadian Petroleum Technology, 2 (2): 90–96.Google Scholar
Campbell, C. J. and J. H., Laherrère, 1998: The End of Cheap Oil. Scientific American, 278 (3): 78–83.CrossRefGoogle Scholar
Campbell, J. E., D. B., Lobell, R. C., Genova, and C. B., Field, 2008: The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology, 42 (15): 5791–5794.CrossRefGoogle ScholarPubMed
Canale, M., L., Fagiano, and M., Milanese, 2007: Power Kites for Wind Energy Generation EEE Control Systems Magazine, pp. 25–38.Google Scholar
,CAPP (Canadian Association of Petroleum Producers), 2009: Crude Oil: Forecast Markets & Pipline Report. www.capp.ca/getdoc.aspx?DocId=173003 (accessed May 5, 2011).Google Scholar
Cataldi, R., 1999: Geothermal development in Europe to the year 2020: prospects or hopes?Technika Poszukiwań Geologicznych, 38 (4–5): 48–60.Google Scholar
Cedigaz, , 2009: Natural Gas in the World. A., Lecarpentier, (ed.) Institut Français du Pétrole, Rueil-Malmaison, France.Google Scholar
Charpentier, A. D., J. A., Bergerson, and H. L., MacLean, 2009: Understanding the Canadian oil sands industry's greenhouse gas emissions. Environmental Research Letters, 4 (1): 014005.CrossRefGoogle Scholar
Cherubini, F., N. D., Bird, A., Cowie, G., Jungmeier, B., Schlamadinger, and S., Woess-Gallasch, 2009: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resources, Conservation and Recycling, 53 (8): 434–447.CrossRefGoogle Scholar
Chitrakar, R., H., Kanoh, Y., Miyai, and K., Ooi, 2001: Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4. Industrial & Engineering Chemistry Research, 40 (9): 2054–2058.CrossRefGoogle Scholar
Chum, H., A., Faaij, J., Moreira, G., Berndes, P., Dhamija, H., Dong, B., Gabrielle, A. Goss, Eng, W., Lucht, M., Mapako, O. Masera, Cerutti, T., McIntyre, T., Minowa, K., Pingoud, 2011: Bioenergy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, O., Edenhofer, R., Pichs-Madruga, Y., Sokona, K., Seyboth, P., Matschoss, S., Kadner, T., Zwickel, P., Eickemeier, G., Hansen, S., Schlömer, C., von Stechow (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Clarke, G. M. and P. W., Harben, 2009: Lithium Availability Wall Map. www.lithium-alliance.org/about-lithium/lithium-sources/85-broad-based-lithium-reserves (accessed January 3, 2011).Google Scholar
Clemens, J., M., Triborn, P., Weiland, and B., Amon, 2005: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems & Environment, 112 (2–3): 171–177.Google Scholar
Collett, T. S., 2002: Energy Resource Potential of Natural Gas Hydrates. AAPG Bulletin, 86 (11): 1971–1992.Google Scholar
Collett, T. S., A., Johnson, C. C., Knapp, and R., Boswell, 2009: Natural Gas Hydrates – A Review. In Natural Gas Hydrates – Energy Resource Potential and Associated Geologic Hazards. T. S., Collett, A., Johnson, C. C., Knapp and R., Boswell, (eds.), American Association of Petroleum Geologists; Memoir 89, pp. 137.Google Scholar
Couch, G. R., 1988: Lignite Resources and Characteristics, IEACR/13. IEA Coal Research, London, UK.Google Scholar
Crawford, P. M., K., Biglarbigi, A. R., Dammer, and E., Knaus, 2008: Advances in World Oil Shale Production Technologies, SPE # 116570 In Presented at the 2008 Annual Technical Conference and Exhibition, 21–24 September, Denver, CO.Google Scholar
Crawford, P. M., K., Biglarbigi, E., Knaus, and J., Killen, 2009: New Approaches Overcome Past Technical Issues. Oil & Gas Journal, 107 (4): 44–49.Google Scholar
Curtis, R., J., Lund, B., Sanner, L., Rybach, and G., Hellström, 2005: Ground Source Heat Pumps – Geothermal Energy for Anyone, Anywhere: Current Worldwide Activity. In Proceedings of the World Geothermal Congress. April 24–29, Antalya.Google Scholar
Daul, J., 1995: Untersuchung über die Verteilung und Veränderung der Steinkohlevorräte im Ruhrgebiet und deren Ausnutzung. PhD-Thesis, Montanuniversität Leoben, Leoben.Google Scholar
de Vries, B. J. M., D. P., van Vuuren and M. M., Hoogwijk, 2007: Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy, 35 (4): 2590–2610.CrossRefGoogle Scholar
de Wit, M. and A., Faaij, 2010: European biomass resource potential and costs. Biomass and Bioenergy, 34 (2): 188–202.CrossRefGoogle Scholar
Denholm, P. and W., Short, 2006: Documentation of WinDS Base Case. Version AEO 2006 (1). National Renewable Energy Laboratory, Golden, CO.Google Scholar
,Deutsche Bank, 2009: The Cost of Producing Oil. FITT Research. Deutsche Bank A.G., London.Google Scholar
,DLR (Deutsches Zentrum für Luft- und Raumfahrt), 2009: Characterisation of Solar Electricity Import Corridors from MENA to Europe – Potential, Infrastructure and Cost. DLR, Stuttgart.Google Scholar
,DOE (US Department of Energy), 2010: Enhanced oil Recovery/CO2 Injection. http://fossil.energy.gov/programs/oilgas/eor/ (accessed March 20, 2011).Google Scholar
Dubreuil, A., G., Gaillard, and R., Müller-Wenk, 2007: Key Elements in a Framework for Land Use Impact Assessment Within LCA (11 pp). The International Journal of Life Cycle Assessment, 12 (1): 5–15.Google Scholar
Dusseault, M. B., 2002: New Oil Production Technologies. SPE Distinguished Lectures Series 2002–2003. Paper SPE # 101463 DLP.Google Scholar
Dusseault, M. B. and A., Shafiei, 2011: Tar Sands. In Ullmann's Encyclopedia of Chemical Engineering, Wiley, Hoboken, NJ.Google Scholar
Dyni, J. R., 2006: Geology and Resources of Some World Oil-Shale Deposits. Scientific Investigations Report 2005–5294, US Geological Survey, Reston, VA.Google Scholar
E4Tech, 2009: Biomass Supply Curves for the UK. E4Tech, London.
,Earth Policy Institute, 2007: Is World Oil Production Peaking?www.earth-policy.org/Updates/2007/Update67_printable.htm (accessed November 30, 2010).Google Scholar
,ECE (Economic Commission for Europe), 2010: United Nations International Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009. The ECE Energy Series, No. 39, Economic Commission for Europe, Geneva.Google Scholar
,EGEC (European Geothermal Energy Council), 2009: The Future of Geothermal Development. EGEC -Renewable Energy House, Brussels, Belgium.Google Scholar
Ekins, P., R., Vanner, and J., Firebrace, 2007: Zero emissions of oil in water from offshore oil and gas installations: economic and environmental implications. Journal of Cleaner Production, 15 (13–14): 1302–1315.CrossRefGoogle Scholar
,EPRI (Electric Power Research Institute), 1978: Geothermal energy prospects for the next 50 years. Special Report ER-611-SR. www.osti.gov/energycitations/servlets/purl/5027376-y14BJ4/ (accessed February 12, 2011).Google Scholar
Evans, R. K., 2008: An Abundance of Lithium. www.che.ncsu.edu/ILEET/phevs/lithium-availability/An_Abundance_of_Lithium.pdf (accessed April 20, 2010).Google Scholar
,EWG (Energy Watch Group), 2006. Uranium Resources and Nuclear Energy, EWG-Series No 1/2006. Zittel, W. And J., Schindler (eds.). Ludwig Bölkow Systemtechnik GmbH, Ottobrunn/Achen, Germany.Google Scholar
,EWG (Energy Watch Group), 2007: Crude Oil: The Supply Outlook Report to the Energy Watch Group. EWG-Series No 3/2007, Ludwig-Bölkow-Systemtechnik GmbH, Ottobrunn.Google Scholar
,EWG (Energy Watch Group), 2008: Zukunft der weltweiten Erdölversorgung. Ludwig-Bölkow-Systemtechnik GmbH, Ottobrunn.Google Scholar
Exxon, , 2008: Öldorado 2008. Jubiläum 50 Jahre, ExxonMobil, Hamburg.Google Scholar
,FAO, 2006a: World agriculture: towards 2015/2030 – Interim report. Prospects for food, nutrition, agriculture and major commodity groups. Food and Agricultural Organization (FAO), Rome.Google Scholar
,FAO, 2006b: World agriculture: towards 2030/2050 – Interim report. Prospects for food, nutrition, agriculture and major commodity groups. Food and Agricultural Organization (FAO), Rome.Google Scholar
,FAO, 2006c: Gridded Livestock of the World. Food and Agricultural Organization (FAO), Rome. http://www.fao.org/ag/AGAinfo/resources/en/glw/default.html (accessed September 21, 2010).Google Scholar
,FAO, 2009: FAOSTAT 2009. Food and Agricultural Organization (FAO), Rome. http://faostat.fao.org/site/573/default.aspx#ancor (accessed September 21, 2010).Google Scholar
Farrell, A. E., 2008: Energy Notes. News from the University of California Energy Institute. Vol. 6: p. 3.Google Scholar
Fettweis, G. B., 1976: Weltkohlenvorräte. Eine vergleichende Analyse ihrer Erfassung und Bewertung. Verlag Glückauf, Essen.Google Scholar
Fettweis, G. B., 1990: Der Produktionsfaktor Lagerstätte. In Bergwirtschaft. S. v., Wahl, (ed.), Verlag Glückauf, Essen.Google Scholar
Field, C. B., J. E., Campbell, and D. B., Lobell, 2008: Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution, 23 (2): 65–72.CrossRefGoogle ScholarPubMed
Firbank, L., 2008: Assessing the Ecological Impacts of Bioenergy Projects. BioEnergy Research, 1 (1): 12–19.CrossRefGoogle Scholar
Fischer, G., E., Hizsnyik, S., Prieler, and H., van Velthuizen, 2007: Assessment of biomass potentials for bio-fuel feedstock production in Europe: Methodology and results. REFUEL Project. International Institute for Applied Systems Analysis (IIASA), Laxenburg.Google Scholar
Florentinus, A., C., Hamelinck, S., de Lint, and S., van Iersel, 2008: Worldwide Potential of Aquatic Biomass Ecofys, Utrecht.Google Scholar
Foley, J. A., R., DeFries, G. P., Asner, C., Barford, G., Bonan, S. R., Carpenter, F. S., Chapin, M. T., Coe, G. C., Daily, H. K., Gibbs, J. H., Helkowski, T., Holloway, E. A., Howard, C. J., Kucharik, C., Monfreda, J. A., Patz, I. C., Prentice, N., Ramankutty, and P. K., Snyder, 2005: Global Consequences of Land Use. Science, 309 (5734): 570–574.
Fridleifsson, I. B., 1999: Worldwide Prospects for Geothermal Energy in the 21st Century. Technika Poszukiwa n Geologicznych, 38 (4–5): 28–34.Google Scholar
Fridleifsson, I. B., R., Bertani, E., Huenges, J., Lund, A., Ragnarsson, and L., Rybach, 2008: The Possible Role and Contribution of Geothermal Energy to the Mitigation of Climate Change. In IPCC Scoping Meeting on Renewable Energy Sources. 21–25 January, Lübeck.Google Scholar
Gawell, K., M., Reed, and P. M., Wright, 1999: Geothermal Energy: The Potential for Clean Power from the Earth. Geothermal Energy Association, Washington, DC.Google Scholar
,GEA (Geothermal Energy Association), 2005: Factors Affecting Costs of Geothermal Power Development. Report for the US Department of Energy, US Department of Energy, Washington, DC.Google Scholar
Gerbens-Leenes, W., A. Y., Hoekstra, and T. H., van der Meer, 2009: The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106 (25): 10219–10223.CrossRefGoogle ScholarPubMed
Gesamtverband, Steinkohle, 2007: Zahlen der Betribsstatistik. Annual Report, Gesamtverband Steinkohle, Essen.Google Scholar
Gibbs, H. K., M., Johnston, J. A., Foley, T., Holloway, C., Monfreda, N., Ramankutty, and D., Zaks, 2008: Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters, 3 (3): 034001.CrossRefGoogle Scholar
Gold, T. and S., Soter, 1980: The Deep-earth Gas hypothesis. Scientific American, 242 (6): 155–161.CrossRefGoogle Scholar
Gold, T. and S., Soter, 1982: Abiogenic Methane and the Origin of Petroleum. Energy Exploration & Exploitation, 1 (2): 89–104.CrossRefGoogle Scholar
Gold, T., 1988: Origin of Petroleum: Two Opposing Theories and a Test in Sweden. In The Methane Age. T. H., Linden, D. A., Dreyfus and T., Vasko, (eds.), Kluwer Academic Publishers, Dordrecht.Google Scholar
Gold, T., 1999: The Deep Hot Biosphere. Springer, New York.CrossRefGoogle Scholar
Goldstein, B. A., A. J., Hill, A., Long, A. R., Budd, F., Holgate, and M., Malavos, 2009: Hot Rock Geothermal Energy Plays in Australia. In Proceedings of the 34th Workshop on Geothermal Reservoir Engineering. 9–11 February, Stanford UniversityStanford, CA.Google Scholar
Graue, A., B., Kvamme, B. A., Baldwin, J., Stevens, J., Howard, G., Ersland, J., Husebo, and D. R., Zornes, 2006: Magnetic resonance imaging of methane – carbon dioxide hydrate reactions in sandstone pores. Paper Number SPE 102915. In Proceedings of the SPE Annual Technical Conference and Exhibition, 24–27 September, San Antonio, TX.CrossRefGoogle Scholar
,Green Cross International, 2009: Global Solar Report Cards. Green Cross International, Geneva.Google Scholar
Gruber, P. and P., Medina, 2010: Global Lithium Availability: A Constraint for Electric Vehicles? MSc Thesis, Department of Natural Resources and Environment, University of Michigan.Google Scholar
Gustavson, M. R., 1979: Limits to Wind Power Utilization. Science, 204 (4388): 13–17.CrossRefGoogle ScholarPubMed
Haberl, H., K.-H., Erb, F., Krausmann, W., Loibl, N., Schulz, and H., Weisz, 2001: Changes in ecosystem processes induced by land use: Human appropriation of aboveground NPP and its influence on standing crop in Austria. Global Biogeochem. Cycles, 15 (4): 929–942.CrossRefGoogle Scholar
Haberl, H., K. H., Erb, F., Krausmann, V., Gaube, A., Bondeau, C., Plutzar, S., Gingrich, W., Lucht, and M., Fischer-Kowalski, 2007a: Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104 (31): 12942–12947.CrossRefGoogle ScholarPubMed
Haberl, H., K. H., Erb, C., Plutzar, M., Fischer-Kowalski and F., Krausmann, 2007b: Human Appropriation of Net Primary Production (HANPP) as Indicator for pressures on Biodiversity. In Sustainability Indicators: A Scientific Assessment (SCOPE). T., Hak, B., Moldan and A. L., Dahl, (eds.), Island Press, Washington, DC.Google Scholar
Haberl, H., V., Gaube, R., Díaz-Delgado, K., Krauze, A., Neuner, J., Peterseil, C., Plutzar, S. J., Singh and A., Vadineanu, 2009: Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecological Economics, 68 (6): 1797–1812.CrossRefGoogle Scholar
Hakala, K., M., Kontturi and K., Pahkala, 2009: Field Biomass as Global Energy Source. Agricultural and Food Science, 18: 347–368.Google Scholar
Haq, Z. and J., Easterly, 2006: Agricultural residue availability in the United States. Applied Biochemistry and Biotechnology, 129 (1): 3–21.CrossRefGoogle ScholarPubMed
Harms, A. A., D. R., Kingdon, K. F., Schoepf, and G. H., Miley, 2000: Principles of Fusion Energy. World Scientific Publishing Company, London.CrossRefGoogle Scholar
,HDWA (Hydropower and Dams World Atlas), 2008: Hydropower and Dams World Atlas. The International Journal on Hydropower and Dams, Sutton: Aquamedia Publications, Surrey, UK.Google Scholar
Head, I. M., D. M., Jones, and S. R., Larter, 2003: Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426 (6964): 344–352.Google Scholar
Heinberg, R. and D., Fridley, 2010: The end of cheap coal. Nature, 468 (7322): 367–369.Google Scholar
Hirsch, R. L., 2005: Peaking of World Oil Production: Impacts, Mitigation, & Risk Management. Association for the Study of Peak Oil and Gas. National Energy Technology Laboratory.Google Scholar
Hoegh-Guldberg, O., P. J., Mumby, A. J., Hooten, R. S., Steneck, P., Greenfield, E., Gomez, C. D., Harvell, P. F., Sale, A. J., Edwards, K., Caldeira, N., Knowlton, C. M., Eakin, R., Iglesias-Prieto, N., Muthiga, R. H., Bradbury, A., Dubi, and M. E., Hatziolos, 2007: Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science, 318 (5857): 1737–1742.CrossRefGoogle ScholarPubMed
Hofman, Y., D., de Jager, E., Molenbroek, F., Schilig, and M., Voogt, 2002: The Potential Of Solar Electricity to Reduce CO2 Emissions. Ecofys, Utrecht.Google Scholar
Hoogwijk, M., 2004: On the global and regional potential of renewable energy sources. Universiteit Utrecht, Utrecht.Google Scholar
Hoogwijk, M., B., de Vries, and W., Turkenburg, 2004: Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Economics, 26 (5): 889–919.CrossRefGoogle Scholar
Hoogwijk, M., A., Faaij, B., de Vries, and W., Turkenburg, 2009: Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass and Bioenergy, 33 (1): 26–43.CrossRefGoogle Scholar
Hubbert, M. K., 1971: Energy Resources of the Earth. Scientific American, 224 (3): 60–70.Google Scholar
,IAASTD, 2009. Agriculture at a Crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), Global Report. Island Press, Washington, DC.Google Scholar
,IAEA (International Atomic Energy Agency), 2005: Thorium Fuel Cycle – Potential Benefits and Challenges. IAEA-TECDOC-1350, Vienna.Google Scholar
,IEA (International Energy Agency), 2000: Hydropower and the Environment: Present context and guidelines for future action. Subtask 5 Report, Volume II: Main Report, International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2001: Potential for building integrated photovoltaics. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2006a: World Energy Outlook 2006. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2006b: Energy Technology Perspectives 2006: Scenarios & Strategies to 2050. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2007a: Energy Balances of Non-OECD Countries, 2004–2005 – 2007 Edition. CD-ROM. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2007b: Energy Balances of OECD Countries, 2004–2005 – 2007 Edition. CD-ROM. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2008a: World Energy Outlook 2008. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2008b: Renewables Information 2008. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2009: World Energy Outlook 2009. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2010a: World Energy Outlook 2010. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2010b: Technology Roadmap: Concentrating Solar Power. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA, 2010c: Technology Roadmap: Solar Photovoltaic Energy. International Energy Agency of the Organisation of Economic Co-Operation and Development, Paris.Google Scholar
,IEA Coal, 1983: Concise Guide to World Coal fields. International Energy Agency Coal Research, London.Google Scholar
,IGC (International Geological Congress), 1913: The Coal Resources of the World. Enquiry made upon the initiative of the Executive Committee of the Twelfth International Geological Congress, Morang & Co., Toronto.Google Scholar
,IGU (International Gas Union), 1994: Report of IGU Committee A (Production, Treatment and Underground Storage of Natural Gas) 9.2 Production from Deep Fields. IGU/A-94. In Proceedings of the19th World Gas Conference, 20–23 June, Milan.Google Scholar
,IGU, 2003: Report of IGU Working Committee 1: Exploration, production and treatment of natural gas. In 22nd World Gas Conference, 1–5 June, Tokyo.Google Scholar
,IHS-CERA (Cambridge Energy Research Associates), 2006: Why the “Peak Oil” Theory Falls Down Myths, Legends, and the Future of Oil Resources. P., Jackson (ed.), CERA, Cambridge, MA.Google Scholar
,IHS-CERA, 2010: Oil Sands, Greenhouse Gases, and US Oil Supply. Special Report, IHS-CERA Inc., Cambridge, MA.Google Scholar
,IHS-CERA, 2011: Oil Sands Technology, Past, Present and Future. Special Report, IHS CERA Inc., Cambridge, MA.Google Scholar
,IPCC, 1996: Climate Change 1995. In Adaptations and Mitigation of Climate Change: Scientific-technical Analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). R. T., Watson, M. C., Zinyowera, and R. H., Moss, (eds.), Cambridge University Press, Cambridge, UK.Google Scholar
,IPCC, 2006: IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Japan.Google Scholar
,IPCC, 2007: Mitigation of Climate Change. Contribution of working group III to the Fourth Assessment report of the IPCC, B., Metz, O. R., Davidson, P. R., Bosch, R., Dave and L. A., Meyer, (eds.), Cambridge University Press, Cambridge, UK.Google Scholar
Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, New York.Google Scholar
Jaccard, M., 2006: Sustainable Fossil Fuels: the Unusual Suspect in the Quest for Clean and Enduring Energy. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Jacobson, M. Z. and G. M., Masters, 2001: Exploiting wind versus coal. Science, 293 (5534): 1438.CrossRefGoogle ScholarPubMed
Jaksula, B. W., 2008: US Geological Survey Minerals yearbook – 2007. US Geological Survey, Washington, DC.Google Scholar
Jeglic, F., 2004: Analysis of Ruptures and Trends on Major Canadian Pipeline Systems. National Energy Board of Canada, Calgary, AB.CrossRefGoogle Scholar
Jekayinfa, S. O. and V., Scholz, 2007: Assessment of availability and cost of energetically usable crop residues in Nigeria. In Conference on International Agricultural Research for Development. 9–11 October, University of Göttingen.Google Scholar
Johansson, T.B., Kelly, H., Reddy, A.K.N. and H., Williams, (eds), 1993: Renewable Energy: Sources for Fuels and Electricity. Washington, DC: Island Press.
'Johnston, M., J. A., Foley, T., Holloway, C. J., Kucharik and C., Monfreda, 2009: Resetting global expectations from agricultural biofuels. Environmental Research Letters, 4 (1): 01 4004.CrossRefGoogle Scholar
Junginger, M., R., Sikkema and A. P. C., Faaij, 2009: Analysis of the global pellet market. Including major driving forces and possible technical and non-technical barriers. Report for the Pellet@las project, Copernicus Institute, Utrecht.Google Scholar
Kato, T., K., Okugawa, Y., Sugihara, and T., Matsumura, 1999: Conceptual Design of Uranium Recovery Plant from Seawater. Journal of the Thermal and Nuclear Power Engineering Society, 50 (1): 71–77.Google Scholar
Kenney, J. F., 1996: Considerations about recent predictions of impending shortages of petroleum evaluated from the perspective of modern petroleum science. Special Edition on “The Future of Petroleum” in Energy World, British Institute of Petroleum, London.Google Scholar
Kenney, J. F., V. A., Kutcherov, N. A., Bendeliani, and V. A., Alekseev, 2002: The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen-carbon system: The genesis of hydrocarbons and the origin of petroleum. Proceedings of the National Academy of Sciences of the United States of America, 99 (17): 10976–10981.CrossRefGoogle ScholarPubMed
Kenney, J. F., V. I., Sozanksy, and P. M., Chepil, 2009: On the Spontaneous Renewal of Oil and Gas Fields. Energy Politics, XVII (Spring 2009).Google Scholar
Koopmans, A. and J., Koppejan, 1998: Agricultural and forest residues – generation, utilization and availability. In Regional Consultation on Modern Applications of Biomass Energy, 6–10 January, Kuala Lumpur.Google Scholar
Krajick, K., 2001: Defending Deadwood. Science, 293 (5535): 1579–1581.CrossRefGoogle ScholarPubMed
Krausmann, F., K.-H., Erb, S., Gingrich, C., Lauk, and H., Haberl, 2008: Global patterns of socioeconomic biomass? ows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65 (3): 471–487.CrossRefGoogle Scholar
Kudryavtsev, N. A., 1951: Against the Organic Hypothesis of Oil Origin. Oil Economy Journal, (9): 17–29.Google Scholar
Kundel, H., 1985: Face technology in German coal mines in 1984. In German Longwall Mining – Facts and Figures. In Glückauf Bergbau Handbuch Nr. 32., Verlag Glückauf, Essen.Google Scholar
Laherrère, J. H., 2004: Future of Natural Gas Supply. In Contribution to the 3rd International Workshop on Oil & Gas Depletion. 24–25 May, Berlin.Google Scholar
Laherrère, J. H., 2005: Review on Oil Shale Data. http://www.oilcrisis.com/laherrere/OilShaleReview200509.pdf.Google Scholar
Lal, R., 2004: Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems, 70 (2): 103–116.CrossRefGoogle Scholar
Lal, R., 2005: World crop residues production and implications of its use as a biofuel. Environment International, 31 (4): 575–584.CrossRefGoogle ScholarPubMed
Lal, R., 2006: Soil and Environmental Implications of Using Crop Residues as Biofuel Feedstock. International Sugar Journal, 108 (1287): 161–167.Google Scholar
Landsmann, H., 2009: Personal communication on soft brown coal mining cost ranges.Google Scholar
Lauk, C. and K.-H., Erb, 2009: Biomass consumed in anthropogenic vegetation fires: Global patterns and processes. Ecological Economics, 69 (2): 301–309.CrossRefGoogle Scholar
Ledru, P., D., Bruhn, P., Calcagno, A., Genter, E., Huenges, M., Kaltschmitt, C., Karytsas, T., Kohl, L., Le Bel, A., Lokhorst, A., Manzella, and S., Thorhalsson, 2007: Enhanced Geothermal Innovative Network for Europe: The State-of-the-Art. Geothermal Resources Council Bulletin, 36.Google Scholar
Lehner, B., G., Czisch, and S., Vassolo, 2001: Europe's Hydropower Potential Today and in the Future. EuroWasser, Center for Environmental Systems Research, University of Kassel, Kassel.Google Scholar
Lemperiere, F., 2006: The Role of Dams in the XXI Century: Achieving a Sustainable Development Target. International Journal on Hydropower & Dams, 13 (3): 98–108.Google Scholar
Lewandowski, I. and A. P. C., Faaij, 2006: Steps towards the development of a certification system for sustainable bio-energy trade. Biomass and Bioenergy, 30 (2): 83–104.CrossRefGoogle Scholar
Lewis, W. B., 1972: Energy in the Future: the Role of Nuclear Fission and Fusion. Proceedings of the Royal Society of Edinburgh, Sect. A.Google Scholar
Li, L., A. P., Ingersoll, X., Jiang, D., Feldman and Y. L., Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophysical Research Letters, 34 (16): L16813.CrossRefGoogle Scholar
Lindner, M., J., Meyer, T., Eggers and A., Moiseyev, 2005: Environmentally enhanced bioenergy potential from European forests. Report commission by the European Environmental Agency, European Forest Institute, Paris.Google Scholar
Lollar, B. S., T. D., Westgate, J. A., Ward, G. F., Slater, and G., Lacrampe-Couloume, 2002: Abiogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs. Nature, 416 (6880): 522–524.Google Scholar
Long, S. P., E. A., Ainsworth, A. D. B., Leakey, J., Nösberger, and D. R., Ort, 2006: Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science, 312 (5782): 1918–1921.CrossRefGoogle ScholarPubMed
Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. World Meteorological Organization, Geneva. eapsweb.mit.edu/research/Lorenz/publications.htm (accessed November 29, 2011).Google Scholar
Lund, J. W., D. H., Freeston and T. L., Boyd, 2005: Direct Application of Geothermal Energy: 2005 Worldwide Review. Geothermics, 34 (6): 691–727.CrossRefGoogle Scholar
Lund, J. W., 2010: Direct Utilization of Geothermal Energy. Energies, 3 (8): 1443–1471.CrossRefGoogle Scholar
Marika, E., F., Uriansrud, R., BIlak, and M. B., Dusseault, 2009: Acheiving Zero Discharge using Deep Well Disposal Paper 2009-WHOC09–350. In Proceeds of the World Heavy Oil Congress, Marguarita, Venezuela.Google Scholar
Mastuani, S. M. and P. K., Takahashi, 2000: Ocean Thermal Energy Conversion. In Encyclopedia of Electrical and Electronics Engineering. J. G., Webster (ed.), Wiley-Interscience, New York.Google Scholar
Max, M. D., A., Johnson, and W. P., Dillon, 2006: Economic Geology of Natural Gas Hydrate. Springer-Verlag, Berlin.Google Scholar
McKay, G., 2002: Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 86 (3): 343–368.CrossRefGoogle Scholar
McKelvey, V. E., 1967: Mineral Resource Estimates and Public Policy. American Scientist, (60): 32–40.Google Scholar
McKenzie-Brown, P., 2008: Colin Campbell and the Cracks of Doom. languageinstinct.blogspot.com/2008/03/colin-campbell-and-crack-of-doom.html (accessed January 17, 2009).Google Scholar
,MEA (Millennium Ecosystem Assessment), 2005: Ecosystems and Human Well-Being – Our Human Planet. Summary for Decision Makers, Island Press, Washington, DC.Google Scholar
Mendeleev, D., 1877: L'Origine du Petrole. Revue Scientifique, 2 (8): 409–416.Google Scholar
Meyer, R. F. and W. D., Dietzman, 1979: World Geography of Heavy Crude Oils. In UNITAR Future of Heavy Crude and Tar Sands Conference, 4–12 July, Edmonton, AB.Google Scholar
Meyer, R. F. and W. D., Dietzman, 1981: Future of Heavy Crude and Tar Sands. Inc The Future of Heavy Crude and Tar Sands. R. F., Meyer, C. T., Steele, and J. C., Olson, (eds.), McGraw HillNew York.Google Scholar
Meyer, R. F. and J. W., Duford, 1989: Resources of heavy oil and natural bitumen worldwide. In Fourth United Nations Institute for Training and Research/United Nations Development Program International Conference on Heavy Crude and Tar Sands, Edmonton.Google Scholar
Meyer, R. F. and E. D., Attanasi, 2004: Natural Bitumen and Extra Heavy Oil, Chapter 4. In World Energy Council – Survey of Energy ResourcesJ., Trinnaman and A., Clarke, (eds.), Elsevier, Amsterdam, pp. 93–117.Google Scholar
Meyer, R. F., E. D., Attanasi and P. A., Freeman, 2007: Heavy oil and natural bitumen resources in geological basins of the world. Open-File Report 2007–1084, US Geological Survey, Washington, DC. pubs.usgs.gov/of/2007/1084/ (accessed November 29, 2010).Google Scholar
Minchener, A., 2007: Coal Supply Challenges for China. CCC/127, IEA-Clean Coal Centre, London.Google Scholar
Monni, S., R., Pipatte, A., Lehtilä, I., Savolainen and S., Syri, 2006: Global climate change mitigation scenarios for solid waste management. Technical Research Centre of Finland (VTT), Epoo.Google Scholar
Moridis, G. J., T. S., Collett, R., Boswell, M., Kurihara, M. T., Reagan, E. D., Sloan and C., Koh, 2008: Toward production from gas hydrates: assessment of resources and technology and the role of numerical simulation. SPE 114163. In Proceedings of the 2008 SPE Unconventional Reservoirs Conference. 10–12 February, Keystone, CO.Google Scholar
Müller, C., A., Bondeau, H., Lotze-Campen, W., Cramer and W., Lucht, 2006: Comparative Impact of Climatic and Nonclimatic Factors On Global Terrestrial Carbon and Water Cycles. Global Biogeochemical Cycles, 20 (4): GB4015.CrossRefGoogle Scholar
Nasr, T. N. and O. R., Ayodele, 2005: Thermal Techniques for the Recovery of Heavy Oil and Bitumen. SPE# 97488. In the SPE International Improved Oil Recovery Conference in Asia Pacific. 5–6 December, Kuala Lumpur.CrossRefGoogle Scholar
,NEA (OECD Nuclear Energy Agency), 2006: Forty Years of Uranium Resources, Production and Demand in Perspective – The Red Book Perspective. NEA No.6096, OECD, Paris.Google Scholar
,NEA/IAEA, 2008: Uranium 2007: Resources, Production and Demand. NEA No.6098, OECD/IAEA (OECD Nuclear Energy Agency and International Atomic Energy Agency), Paris.Google Scholar
,NEA/IAEA, 2010: Uranium 2009: Resources, Production and Demand. OECD/IAEA (OECD Nuclear Energy Agency and International Atomic Energy Agency), Paris.Google Scholar
Nihous, G. C., 2005: An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources. Journal of Energy Resources Technology, 127 (4): 328–333.CrossRefGoogle Scholar
Nobukawa, H., M., Kitamura, S. A. M., Swylem, and K., Ishibashi, 1994: Development of a floating type system for uranium extraction from seawater using sea current and wave power. In Proceedings of the 4th International Offshore and Polar Engineering Conference. 10–15 April, Osaka.Google Scholar
Nord-Larsen, T. and B., Talbot, 2004: Assessment of forest-fuel resources in Denmark: technical and economic availability. Biomass and Bioenergy, 27 (2): 97–109.CrossRefGoogle Scholar
,NPC, 2007: Hard Truths – Facing the Hard Truths about Energy. NPC (National Petroleum Council), Washington, DC.Google Scholar
,NREL, 2011: What is Ocean Thermal Energy Conversion?National Renewable Energy Laboratories (NREL). www.nrel.gov/otec/what.html (accessed 29th December, 2011).Google Scholar
Odell, P., 2004: Why Carbon Fuels will Dominate the 21st Century's Global Energy Economy. Multi-Science Publishing Co. Ltd, Brentwood, UK.Google Scholar
Odell, P., 2010: Refereed Papers: The Long-Term Future for Energy Resources' Exploitation. Energy & Environment, 21 (7): 785–802.CrossRefGoogle Scholar
,OGJ (Oil & Gas Journal), 2007: Worldwide Look at Reserves and Production. Oil & Gas Journal, 105 (48).Google Scholar
,OGJ, 2010: Various articles between April and December 2010 related to the BP Macondo Well blow-out in the Gulf of Mexico. Various articles between July and December 2010 related to the Enbridge pipeline rupture in Michigan, USA.Google Scholar
Ongena, J. and G., van Oost, 2004: Energy for Future Centuries – Will Fusion be an Inexhaustible, Safe, and Clean Energy Source?Fusion Science and Technology, 45 (2T): 3–14.CrossRefGoogle Scholar
,OPEC (Organization of Petroleum Exporting Countries), 2008: Annual Statistical Bulletin 2007. OPEC, Vienna.Google Scholar
Pan, K., 2005: The depth distribution of Chinese coal resources. In Presentation at the School of Social Development and Public Policy. –Fudan University, Shanghai.Google Scholar
,PCA (The Parliament of the Commonwealth of Australia), 2006: Australia's uranium – Greenhouse friendly fuel for an energy hungry world. A case study into the strategic importance of Australia's uranium resources for the Inquiry into developing Australia's non-fossil fuel energy industry. House of Representatives, Standing Committee on Industry and Resources, Canberra.Google Scholar
Peixóto, , J., and A. H., Oort, 1984: Physics of Climate. Reviews of Modern Physics, 56 (3): 365–429.CrossRefGoogle Scholar
Pelc, R. and R. M., Fujita, 2002: Renewable energy from the ocean. Marine Policy, 26 (6): 471–479.CrossRefGoogle Scholar
Penney, T. R. and D., Bharathan, 1987: Power from the Sea, Sci. Am. 256 (1) 86–92.CrossRefGoogle Scholar
Pollack, H. N., S. J., Hurter, and J. R., Johnson, 1993: Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Rev. Geophys., 31 (3): 267–280.CrossRefGoogle Scholar
Pulleman, M. M., J., Bouma, E. A., van Essen, and E. W., Meijles, 2000: Soil Organic Matter Content as a Function of Different Land Use History. Soil Science Society of America Journal, 64 (2): 689–693.CrossRefGoogle Scholar
Rajabapaiah, P., S., Jayakumar, and A. K. N., Reddy, 1993: Biogas Electricity – the Pura Village Case Study. In Renewable Energy, Sources for Fuels and electricity. T. B., Johansson, H., Kelly, A. K. N., Reddy and R. H., Williams, (eds.), Island Press, Washington, DC.Google Scholar
Rempel, H., S., Schmidt, and U., Schwarz-Schampera, 2007: Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen – Jahresbericht 2006. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.Google Scholar
Repa, E. W., 2005: 2005 Tip Fee Survey. National Solid Wastes Management Association, Washington, DC.Google Scholar
Ritschel, W. and H.-W., Schiffer, 2007: Weltmarkt für Steinkohle. RWE-Rhein Braun A.G., Essen.Google Scholar
Roberts, B. W., D. H., Shepard, K., Caldeira, M. E., Cannon, D. G., Eccles, A. J., Grenier, and J. F., Freidin, 2007: Harnessing High-Altitude Wind Power. IEEE Transactions on Energy Conversion, 22 (1): 136–144.CrossRefGoogle Scholar
Rogner, H. H., 1997: An Assessment of World Hydrocarbon Resources. Annual Review of Energy and the Environment, 22 (1): 217–262.CrossRefGoogle Scholar
Rogner, H. H., F., Barthel, M., Cabrera, A. P. C., Faaij, M., Giroux, D. O., Hall, V., Kagramanian, S., Kononov, T., Lefevre, R., Moreira, R., Nötstaller, P., Odell and M., Taylor, 2000: Energy Resources. In World Energy Assessment J., Goldemberg, (ed.), United Nations Development Program, World Energy Council, New York, pp. 135–172.Google Scholar
Rühl, C., 2010: Statistical Review of World Energy 2010 – What's Inside. BP, London.Google Scholar
Sagar, A. D. and S., Kartha, 2007: Bioenergy and Sustainable Development?Annual Review of Environment and Resources, 32 (1): 131–167.CrossRefGoogle Scholar
San-Sebastiàn, M., B., Armstrong, J. A., Córdoba, and C., Stephens, 2001: Exposures and Cancer Incidence near Oil Fields in the Amazon Basin of Ecuador. Occupational and Environmental Medicine, 58 (8): 517–522.CrossRefGoogle ScholarPubMed
Schenk, C. J., T. A., Cook, R. R., Charpentier, R. M., Pollastro, T. R., Klett, M. E., Tennyson, M. A., Kirschbaum, M. E., Brownfield, and J. K., Pitman, 2009: An estimate of recoverable heavy oil resources of the Orinoco Oil Belt, Venezuela. US Geological Survey Fact Sheet 2009–3028.Google Scholar
Schimel, D. S., 1995: Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1 (1): 77–91.CrossRefGoogle Scholar
,Schlumberger Inc., 2010: Oilfield Glossary. www.glossary.oilfield.slb.com/Display.cfm?Term=enhanced%20oil%20recovery (accessed March 20, 2011).Google Scholar
Schneider, E.A. and W.C., Sailor, 2008: Long-Term Uranium Supply Estimates. Nuclear Technology, 162: 379–387.CrossRefGoogle Scholar
Searchinger, T., R., Heimlich, R. A., Houghton, F., Dong, A., Elobeid, J., Fabiosa, S., Tokgoz, D., Hayes, and T.-H., Yu, 2008: Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science, 319 (5867): 1238–1240.CrossRefGoogle ScholarPubMed
Shepherd, W., 2003: Energy Studies. Imperial College Press, World Scientific Publication Co., London.Google Scholar
Shifley, S. R., F. R., Thompson, W. D., Dijak, M. A., Larson, and J. J., Millspaugh, 2006: Simulated effects of forest management alternatives on landscape structure and habitat suitability in the Midwestern United States. Forest Ecology and Management, 229 (1–3): 361–377.CrossRefGoogle Scholar
Sigurdsson, H., 2000: Volcanic Episodes and the Rate of Volcanism. In Encyclopaedia of Volcanoes. J., Stix, (ed.) Academic Press, Burlington, MA.Google Scholar
Sitch, S., C., Huntingford, N., Gedney, P. E., Levy, M., Lomas, S. L., Piao, R., Betts, P., Ciais, P., Cox, P., Friedlingstein, C. D., Jones, I. C., Prentice and F. I., Woodward, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14 (9): 2015–2039.CrossRefGoogle Scholar
Smeets, E. and A., Faaij, 2007: Bioenergy potentials from forestry in 2050. Climatic Change, 81 (3): 353–390.CrossRefGoogle Scholar
Smeets, E. M. W., A. P. C., Faaij, I. M., Lewandowski, and W. C., Turkenburg, 2007: A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33 (1): 56–106.CrossRefGoogle Scholar
Smith, A., K., Brown, S., Ogilvie, K., Rushton and J., Bates, 2001: Waste Management Options and Climate Change. Final Report to the European Commission, Brussels.Google Scholar
Sørensen, B., 1979: Renewable Energy, Academic Press, London, UK.Google Scholar
Sørensen, B., 1999: Long Term Scenarios for Global Energy Demand and Supply. Four Global Greenhouse mitigation Scenarios. Roskilde University.Google Scholar
Sørensen, B., 2004: Renewable Energy: Its Physics, Engineering, Use, Environmental Impacts, Economy and Planning Aspects. Elsevier Academic Press, London.Google Scholar
,SPE (Society of Petroleum Engineers), 2005: Glossary of Terms Used in Petroleum Reserves/Resources Definitions, Richardson, Texas, USA.Google Scholar
,Statistics Canada, 2005: Human Activity and the Environment. Statistics Canada-Environment Accounts and Statistics Division, Ottawa.Google Scholar
,Statistik der Kohlenwirtschaft, 2009: Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2008 Statistik der Kohlenwirtschaft E.V., Essen-Köln.Google Scholar
Stefansson, V., 2005: World Geothermal Assessment. In Proceedings of the World Geothermal Congress 2005. 24–29 April, AntalyaGoogle Scholar
Stinner, W., K., Möller and G., Leithold, 2008: Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. European Journal of Agronomy, 29 (2–3): 125–134.CrossRefGoogle Scholar
Sugo, T., M., Tamada, S., Tadao, S., Takao, U., Masaki and K., Ryoichi, 2001: Recovery System for Uranium from Seawater with Fibrous Adsorbent and its Preliminary Cost Estimation. Journal of the Atomic Energy Society of japan, 43 (10): 1010–1016.CrossRefGoogle Scholar
Tahil, W., 2007: The Trouble with Lithium. Meridian International Research, Martainville, France.Google Scholar
Tamada, M., N., Seko, N., Kasai, and T., Shimizu, 2006: Cost Estimation of Uranium Recovery from Seawater with System of Braid Type Adsorbent. JAEA Takasaki Annual Report 2005, JAEA-Review 2006–042, Takasaki Advanced Radiation Research Institute, Japan.Google Scholar
Tamada, M., 2009: Current status of technology for collection of uranium from sea-water. In Erice Seminar. Erice, Italy.Google Scholar
,TERI (Tata Energy Research Institute), 1985: “Biogas Technology – an information package,” Tata Energy Documentation and Information Centre, Mumbai.Google Scholar
Tester, J. W., E. M., Drake, M. J., Driscoll, M. W., Golay and P. W., Peters, 2005: Sustainable Energy Choosing Among Options. MIT Press, Cambridge, MA.Google Scholar
Themelis, N. J. and L. N., Themelis, 2007: Trip of Nickolas Themelis to China. Waste-to-Energy Research and Technology Institute (WTERT), Chongqing. Columbia University, New York.Google Scholar
Trieb, F., C., Schillings, M., O'Sullivan, T., Pregger, and C., Hoyer-Klick, 2009: Global Potential of Concentrating Solar Power. In Solar Places Conference. Berlin.Google Scholar
Tsoutsos, T., N., Frantzeskaki and V., Gekas, 2005: Environmental impacts from the solar energy technologies. Energy Policy, 33 (3): 289–296.CrossRefGoogle Scholar
Tubiello, F. N., J.-F., Soussana, and S. M., Howden, 2007: Crop and pasture response to climate change. Proceedings of the National Academy of Sciences, 104 (50): 19686–19690.CrossRefGoogle ScholarPubMed
Turek, M., K., Skryzynksi and A., Smolinksi, 2008: Structure and Changes of Production Costs in 1998–2005 in the Polish Hard Coal Industry. Glückauf Essen.Google Scholar
,UNECE/FAO, 2009: Forest Products Annual Market Review, 2008–2009. United Nations Economic Commission for Europe and Food and Agriculture Organization of the United Nations (UNECE/FAO), New York/Geneva.Google Scholar
,UNEP, 2009: Assessing Biofuels – Towards Sustainable Production and Use of Resources. United Nations Environment Programme (UNEP), Division of Technology Industry and Economics, International Panel for Sustainable Resource Management, Paris.Google Scholar
,UNESC (United Nations Economic and Social Council), 1997: “United Nations International Framework Classification for Reserves/Resources.” Economic Commission for Europe, Geneva, Switzerland.Google Scholar
,United Nations Population Division, 2008: World Urbanization Prospects: The 2007 Revision Population Database. United Nations Economic & Social Affairs, New York. esa.un.org/unup/ (accessed March 23, 2011).Google Scholar
,UNWWAP, 2006: Water: A Shared Responsibility. New York: United Nations World Water Assessment Program (UNWWAP).Google Scholar
,US EIA, 2007: Methodology for allocating municipal solid wastes to biogenic energy. US Energy Information Administration (US EIA), US Department of Energy. Washington, DC.Google Scholar
,US EIA, 2008: International Energy Statistics. US Energy Information Administration (US EIA), US Department of Energy. (accessed May 1, 2011).Google Scholar
,US EIA, 2010: US Natural Gas Wellhead Price. US Energy Information Administration (US EIA), US Department of Energy. tonto.eia.gov/dnav/ng/hist/n9190us3m.htm (accessed May 1, 2011).Google Scholar
,USGS, 1980: Principles of a Resource/Reserve Classification for Minerals. US Geological Survey (USGS) Circular 831.Google Scholar
,USGS, 2000: World Petroleum Assessment. CD-ROM. Washington, DC, US Geological Survey (USGS).Google Scholar
,USGS, 2008: Circum-Arctic Resource Appraisal. Fact Sheet 2008–3049, US Geological Survey (USGS), Washington, DC.Google Scholar
,USGS, 2009: Chapter D: Availability, Coal Resource Recoverability and Economics Evaluation in the United States- A Summary. Professional Paper 1625 F. In The National Coal Resource Overview. B. S., Pierce and K. O., Donnen, (eds.), US Geological Survey (USGS), Washington, DC.Google Scholar
,USGS, 2010: Mineral commodity Summaries 2010 (Lithium). US Geological Survey (USGS), Washington, DC.Google Scholar
Van den Ende, K. and F., Groeman, 2007: Blue Energy. Leonardo Energy. www.leonardo-energy.org/drupal/book/export/html/2243 (accessed April 20, 2011).Google Scholar
Vega, L. A., 1995: Ocean Thermal Energy Conversion. In Encyclopedia of Energy Technology and the Environment. A., Bisio and S., Boots, (eds.), Wiley-Interscience, Hoboken, NJ.Google Scholar
Veil, J. A., K. P., Smith, D., Tomasko, D., Elcock, E. L., Blunt, and G. P., Williams, 1999: Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns. Contract W-31–109-Eng-38, U.S. Department of Energy Office of Fossil Energy, National Petroleum Technology Office, Washington, DC.Google Scholar
Veil, J. A. and J. J., Quinn, 2008: Water Issues Associated with Heavy Oil Production. Report ANL/EVS/R-08/4 Argonne National Laboratory for the U S. Department of Energy, National Petroleum Technology Office, Washington, DC.CrossRefGoogle Scholar
Wagner, H., 1998: Zur Frage der Wirtschaftlichen Nutzung von Vorkommen Mineralischer Rohstoffe. In Energievorräte und Mineralische Rohstoffe: Wie Lange Noch? J., Zemann, (ed.), Verlag der Österreichische Akademie der Wissenschaften, Vienna, 12, pp. 149–175.Google Scholar
Wagner, H. and G. B. L., Fettweis, 2001: About science and technology in the field of mining in the Western world at the beginning of the new century. Resources Policy, 27 (3): 157–168.CrossRefGoogle Scholar
Walsh, M. E., 2008: U.S. cellulosic biomass feedstock supplies and distribution. M & E Biomass, Oak Ridge, TN.Google Scholar
Watson, R. T., I. R., Noble, B., Bolin, N. H., Ravindranath, D. J., Verardo, and D. J., Dokken, 2000: Land Use, Land-Use Change, and Forestry. Special Report of the IPCC, Cambridge University Press, Cambridge, UK.Google Scholar
,WBGU, 2008: Welt im Wandel. Zukunftsfähige Bioenergie und nachhaltige Landnutzung. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin.Google Scholar
,WCI, 2008: The Coal Resource: A Comprehensive Overview of Coal. World Coal Institute (WCI), London.Google Scholar
,WEC, 1974: World Energy Conference Survey of Energy Resources 1974. 9th World Energy Conference, Detroit, September 1974. World Energy Council (WEC), US National Committee of the World Energy Conference, New York.Google Scholar
,WEC, 1994: New Renewable Energy Resources. World Energy Council (WEC), London.Google Scholar
,WEC, 1998: Survey of Energy Resources (18th Edition), World Energy Council (WEC), London.Google Scholar
,WEC, 2007: Survey of Energy Resources. World Energy Council (WEC), London.Google Scholar
,WEC, 2010: Survey of Energy Resources. World Energy Council (WEC), London.Google Scholar
Wellmer, F. W., 2008: Reserves and resources of the geosphere, terms so often misunderstood. Is the life index of reserves of natural resources a guide to the future?Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 159 (4): 575–590.CrossRefGoogle Scholar
Wilhelm, W. W., J., Johnson, D., Karlen, and D., Lightle, 2007: Corn Stover to Sustain Soil Organic Carbon Further Constrains Biomass Supply. Agronomy Journal, 99 (6): 1665–1667.CrossRefGoogle Scholar
Witze, A., 2007: Energy: That's oil folks…. Nature, 445: 14–17.Google Scholar
,WNA, 2009: Environmental Aspects of Uranium Mining. World Nuclear Association (WNA). www.world-nuclear.org/info/inf25.html (accessed April 20, 2010).Google Scholar
Wood, W. T. and W. Y., Jung, 2008: Modelling the Extend of the Earth's Marine Methane Hydrate Cryosphere. In Proceedings of the 6th International Conference on Gas Hydrates. July 6–10, Vancouver, BC.Google Scholar
,World Bank, 2008a: Global Purchasing Power Parities and Real Expenditures. The World Bank, Washington, DC.Google Scholar
,World Bank, 2008b: World Development Report 2008: Agriculture for Development. The World Bank, Washington, DC.Google Scholar
,WPC (World Power Conference), 1936: Statistical yearbook of the World Power Conference. No.1 1933–1934, Central Office of the World Power Conference, London.Google Scholar
Yaksic, A. and J. E., Tilton, 2009: Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34 (4): 185–194.CrossRefGoogle Scholar
Yang, B., Y., Lu, J., Sun, and S., Donghai, 2005: Potential for Cellulosic Ethanol Production in China. In International Symposium on Alcohol Fuels. San Diego, CA.Google Scholar
Yoshioka, T., K., Aruga, T., Nitami, H., Sakai, and H., Kobayashi, 2006: A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan. Biomass and Bioenergy, 30 (4): 342–348.CrossRefGoogle Scholar
Young, G. C., 2006: Zapping MSW with Plasma Arc: An economic evaluation of a new technology for municipal solid waste treatment facilities. Pollution Engineering, 38 (11): 26–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×