Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T18:01:28.475Z Has data issue: false hasContentIssue false

21 - Modeling the Distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a Signal of Climatic Changes in Europe

Published online by Cambridge University Press:  05 October 2012

Cecília Sérgio
Affiliation:
Universidade de Lisboa, Portugal
Rui Figueira
Affiliation:
Instituto de Investigação Científica Tropical, Portugal
Rui Menezes
Affiliation:
Instituto Superior Técnico, Portugal
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

Attention to climate change has significantly increased in the past 20 years, both on global and on regional scales. A great deal of research has been carried out relative to global warming based on alteration of species distributions. Examples are a study supported by a large number of African vascular plant species (McClean et al. 2005), another using amphibian and reptile distribution (Araújo et al. 2006), and also, on a European scale, diadromous fish distribution (Lassalle et al. 2008). In a more narrow range, we can cite research using alpine plants in the Swiss Alps (Guisan & Theurillat 2000), on the effects on rare lichens in the UK (Binder & Ellis 2008), or identifying the dynamic in snowbed bryophytes related to the duration of snow-lie in Scotland (Woolgrove & Woodin 1994).

Bryophytes are important ecologically; they constitute an important component of biodiversity and are recognized as keystone species of ecosystem monitoring. Many bryophyte species have been adversely affected by human activities, principally because of deterioration in essential habitats (Bates & Farmer 1992) or water quality (Vanderpoorten & Klein 1999), as well as increased nitrate (Lee et al. 1998) and air pollution (Zechmeister et al. 2007). These adverse effects have been widely cited as to why some bryophytes are now considered endangered.

Bryophyte species have, in general, tolerance to wide ranges of temperature. This attribute is largely due to their water relations, since they can survive better at higher temperature extremes when dry than when wet.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, M. B. & Guisan, A. (2006). Five (or so) challenges for species distribution modeling. Journal of Biogeography 33: 1677–88.Google Scholar
Araújo, M. B., Thuiller, W. & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33: 1712–28.Google Scholar
Baarda, P. (2006). Atlantic Oakwoods in Great Britain: factors influencing their definition, distribution and occurrence. Botanical Journal of Scotland 57(1+2): 1–20.Google Scholar
Bates, J. W. & Farmer, A. M. (eds.) (1992). Bryophytes and Lichens in a Changing Environment. Oxford: Clarendon Press.
Binder, M. D. & Ellis, C. J. (2008). Conservation of the rare British lichen Vulpicida pinastri: changing climate, habitat loss and strategies for mitigation. Lichenologist 40: 63–79.Google Scholar
Casa, J., Carvalho, P., Figueira, R., Sérgio, C. & Calaim, J. (2005). Brotero, Herbaria Information System, Version 1.0.1.2.,.NET C#. Lisbon: J. Casa and FFCUL. http://brotero.politecnica.ul.pt/broteroonline, March 2009.
Casas, C., Brugués, M., Cros, R. M. & Sérgio, C. (1985). Cartografia de Briòfits. Península Ibèrica i les Illes Balears, Canàries, Açores i Madeira. Barcelona: Institut d'Estudis Catalans.
Beer, D. & Arts, T. (2000). Sematophyllum substrumulosum (Musci, Sematophyllaceae), nieuw voor de Belgische Flora. Belgian Journal of Botany 133 (1–2): 15–20.Google Scholar
Zuttere, P. & Wattez, J. R. (2008). La présence méconnue de Sematophyllum substrumulosum (Hampe) E. Britton dans la région Carnacoise (Département du Morbihan, Bretagne méridionale, France). Sa répartition actuelle en Europe. Nowellia Bryologica 35: 2–13.Google Scholar
Een, G. (2004). Sematophyllum substrumulosum new to mainland Britain. Bulletin of the British Bryological Society 84: 6–7.Google Scholar
Ellis, C. J. & Coppins, B. J. (2007). Changing climate and historic-woodland structure interact to control species diversity of the Lobarion epiphyte community in Scotland. Journal of Vegetation Science 18: 725–34.Google Scholar
Frahm, J.-P. (2005). Bryophytes and global change. Bryological Times 115: 8–10.Google Scholar
Frahm, J.-P. & Klaus, D. (2001). Bryophytes as indicators of recent climatic fluctuations in Central Europe. Lindbergia 26: 97–104.Google Scholar
Garcia, C. (2006). Briófitos epífitos de ecossistemas florestais em Portugal. Biodiversidade e conservação. Unpublished Ph.D. thesis, Faculdade de Ciências da Universidade de Lisboa.
Gignac, L. D. (2001). Bryophytes as indicators of climate change. Bryologist 104: 410–20.Google Scholar
Guerra, J. & Gallego, M. T. (2005). An overview of Sematophyllum (Bryopsida, Sematophyllaceae) in the Iberian Peninsula. Cryptogamie, Bryologie 26: 173–82.Google Scholar
Guisan, A. & Theurillat, J.-P. (2000). Assessing alpine plant vulnerability to climate change: a modelling perspective. Integrated Assessment 1: 307–20.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–78.Google Scholar
Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83: 2027–36.Google Scholar
Holyoak, D. T. (1996). Sematophyllum substrumulosum (Hampe) Broth. in the Isles of Scilly: a moss new to Britain. Journal of Bryology 19: 341–5.Google Scholar
,IPCC (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, ed. Nakicenovic, N. & Swart, R.. Cambridge, UK and New York: Cambridge University Press.
,IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. Cambridge, UK, and New York: Cambridge University Press.
Lassalle, G., Béguer, M., Beaulaton, L. & Rochard, E. (2008). Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–18.Google Scholar
Lee, J. A., Caporn, S. J. M., Carroll, J.et al. (1998). Effects of ozone and atmospheric nitrogen deposition on bryophytes. In Bryology for the Twenty-First Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 331–41. Leeds: Maney Publishing and British Bryological Society.
Matcham, H. W., Porley, R. D. & O'Shea, B. J. (2005). Sematophyllum substrumulosum – an overlooked native? Field Bryology. Bulletin of the British Bryological Society 87: 5–8.Google Scholar
McClean, C. J., Lovett, J. C., Küper, W.et al. (2005). African plant diversity and climate change. Annals of the Missouri Botanical Garden 92: 139–52.Google Scholar
Muñoz, J., Felicísimo, A. M., Cabezas, F., Burgaz, A. R. & Martínez, I. (2004). Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304: 1144–7.Google Scholar
Pando, F., Lopez-Galán, J. & Dueñas, M. (2003–10). MA Cryptogamic collections online databases. www.rjb.csic.es/herbario/crypto/crypdb.htm (accessed via the GBIF portal, http://data.gbif.org/datasets/resource/235, 23 Sept 2010).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling 190 (3–4): 231–59.Google Scholar
Porley, R. & Hodgetts, N. (2005). Mosses and Liverworts. London: Collins.
Rivas-Martinez, S. (2005). Clasificación Bioclimática de la Tierra. http://www.ucm.es/info/cif/book/bioc/global_bioclimatics_2.htm. March 2009.
Sérgio, C., Figueira, R., Draper, D., Menezes, R. & Sousa, J. (2007). The use of herbarium data for the assessment of red list categories: modelling bryophyte distribution based on ecological information. Biological Conservation 135: 341–51.Google Scholar
Sérgio, C., Sim-Sim, M. & Santos-Silva, C. (1989). Briófitos epifíticos como indicadores dos domínios bioclimáticos en Portugal. Tratamento estatístico de áreas seleccionadas. Anales del Jardín Botánico de Madrid 46: 457–67.Google Scholar
Sim-Sim, M. & Sérgio, C. (1998). Distribution of some epiphytic bryophytes in Portugal. Evaluation and present status. Lindbergia 23: 50–4.Google Scholar
Söderström, L. & Herben, T. (1997). Dynamics of bryophyte metapopulations. Advances in Bryology 6: 205–40.Google Scholar
Herk, C. M., Aptroot, A. & Dobben, H. F. (2002). Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141–54.Google Scholar
Melick, H. M. H. (2003). Sematophyllum substrumulosum ook in Zuidoost-Brabant. Buxbaumiella 63: 14–15.Google Scholar
Zanten, B. O. (2003). Sematophyllum substrumulosum (Hampe) Britt. new to The Netherlands and first record of Lophocolea semiteres for the Prov. of Drenthe. Buxbaumiella 63: 7–14.Google Scholar
Vanderpoorten, A. & Klein, J. P. (1999). A comparative study of the hydrophyte flora from the Alpine Rhine to the Middle Rhine. Application to the conservation of the Upper Rhine aquatic ecosystems. Biological Conservation 87: 163–72.Google Scholar
Woolgrove, C. E. & Woodin, S. J. (1994). Relationships between the duration of snowlie and the distribution of bryophyte communities within snowbeds in Scotland. Journal of Bryology 18: 253–60.Google Scholar
Zechmeister, H. G., Dirnböck, T., Hülber, K. & Mirtl, M. (2007). Assessing airborne pollution effects on bryophytes – lessons learned through long-term integrated monitoring in Austria. Environmental Pollution 147: 696–705.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×