Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T12:10:08.124Z Has data issue: false hasContentIssue false

17 - The Role of Bryophyte Paleoecology in Quaternary Climate Reconstructions

Published online by Cambridge University Press:  05 October 2012

Gusztáv Jakab
Affiliation:
Szent István University, Hungary
Pál Sümegi
Affiliation:
University of Szeged, Hungary
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

The Quaternary covers the past 2.5 million years of Earth history. This unique period is well known for a record of oscillating climatic parameters. If one wishes to understand the trajectory of future climatic changes triggered by human activities, one should also have a clear picture of the climate of the past. Fluctuating climates are reflected in peat bog profiles. Paleoecological studies using plant macrofossils, like bryophyte remains, have an important role in the reconstruction of past hydrological changes in lakes and peat bogs. Plant macrofossil analysis has been used most frequently in the oceanic regions of Europe, where the moisture gradient is reflected clearly in different Sphagnum taxa. The method of bog surface wetness predictions has not been adapted to date for the characterization of continental peatbogs. Hungary is located along the southern limit of Sphagnum-dominated peat bogs, with peat bogs restricted to the moister regions of the country. Holocene climatic events, such as severe droughts, caused significant changes in mire development and as such are traceable in the paleoenvironmental record of these bogs.

Fossil mosses used as proxies for detecting past climatic changes

Detailed paleoecological investigations of fossil mosses enable us to accurately capture the prevailing conditions in some terrestrial ecosystems, mainly those in littoral parts of various catchment basins. There are two major directions for investigation and interpretation: one is restricted to the ecological needs of the individual taxa, whereas the other is based on the ecological requirements of ecological groups and communities in the reconstruction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B. (1976). Cyclic climatic variations in climate over the past 5,500 yrs reflected in raised bogs. Nature 263: 281–4.Google Scholar
Aaby, B. & Digerfeldt, G. (1986). Sampling techniques for lakes and bogs. In Handbook of Holocene Palaeoecology and Palaeohydrology ed. Berglund, B. E., pp. 181–94. New York: John Wiley and Sons.
Alley, R. B., Mayewski, P. A., Sowers, T. et al. (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25: 483–6.Google Scholar
Bacsó, N. (1959). Magyarország Éghajlata. Budapest: Akadémiai Kiadó.
Balogh, M. (2000a). A lápok rendszerezése. In Tőzegmohás Élőhelyek Magyarországon: Kutatás, Kezelés, Védelem, ed. Szurdoki, E., pp. 57–65. Miskolc: CEEWEB Munkacsoport.
Balogh, M. (2000b). Az úszólápi szukcesszió kérdései I. Kitaibelia 5: 9–16.Google Scholar
Barber, K. E. (2007). Peatland records of Holocene climate change. In Encyclopedia of Quaternary Science, ed. Elias, S. A., vol. 3, pp. 1883–94. London: Elsevier.CrossRef
Barber, K. E., Chambers, F. M., Maddy, D. & Brew, J. (1994). A sensitive high resolution record of the Holocene climatic change from a raised bog in northern England. The Holocene 4: 198–205.Google Scholar
Barber, K. E. & Charman, D. (2005). Holocene palaeoclimate records from peatlands. In Global Change in the Holocene, ed. Mackay, A., Battarbee, A., Birks, R. J. & Oldfield, F., pp. 210–26. London: Hodder Arnold.
Barber, K. E. & Langdon, P. G. (2001). Peat stratigraphy and climate change. In Handbook of Archaeological Sciences, ed. Brothwell, D. R. & Pollord, A. M., pp. 155–66. Chichester: Wiley.
Barber, K. E., Maddy, D., Rose, N.et al. (2000). Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnections. Quaternary Science Reviews 19: 481–7.Google Scholar
Bartholy, J., Pongrácz, R., Matyasovszky, I. & Schlanger, V. (2004). A XX. században bekövetkezett és a XXI. századra várható éghajlati tendenciák Magyarország területére. AGRO-21 Füzetek 33: 1–18.Google Scholar
Bartholy, J., Pongrácz, R., Torma, Cs. & Hunyady, A. (2006). Regional climate projections for the Carpathian Basin. In Conference Proceedings of the International Conference Climate Change: Impacts and Responses in Central and Eastern European Countries, ed. Láng, I., Faragó, T. & Iványi, Zs., pp. 55–62. Budapest: HAS – HMEW – RECCEE.
Bennett, K. D. (1992). PSIMPOLL. A quickBasic program that generates PostScript page description of pollen diagrams. INQUA Commission for the Study of the Holocene: Working Group on Data Handling Methods, Newsletter 8: 11–12.Google Scholar
Berglund, B. E. (2003). Human impact and climate changes – synchronous events and a causal link? Quaternary International 105: 7–12.Google Scholar
Birks, H. H. (1980). Plant macrofossils in Quaternary lake sediments. Archiv für Hydrobiologie Ergebnisse der Limnologie, Suppl. 15: 1–60.Google Scholar
Birks, H. J. B. (1982). Quaternary bryophyte paleo-ecology. In Bryophyte Ecology, ed. Smith, A. J. E, pp. 437–90. London & New York: Chapman and Hall.
Birks, H. J. B. & Birks, H. H. (1980). Quarternary Palaeoecology. Baltimore, MD: University Park Press.
Birks, H. H. & Birks, H. J. B. (2000). Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography 27: 31–5.Google Scholar
Blaauw, M., Geel, B. & Plicht, J. (2004). Solar forcing of climatic change during the mid-Holocene: indicators from raised bogs in The Netherlands. The Holocene 14: 35–44.Google Scholar
Bond, G., Showers, W., Cheseby, M.et al. (1997). A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science 278: 1257–66.Google Scholar
Borhidi, A. & Sánta, A. (eds.)(1999). Vörös Könyv Magyarország Növénytársulásairól 1–2. Budapest: Természetbúvár Alapítvány Kiadó.
Boros, Á. (1968). Bryogeographie und Bryoflora Ungarns. Budapest: Akadémiai Kiadó.
Bradley, R. S., Hughes, M. K., & Diaz, H. F. (2003). Climate in medieval times. Science 302: 404–5.Google Scholar
Campbell, I. D., Campbell, C., Yu, Z., Vitt, D. H. & Apps, M. J. (2000). Millenial-scale rhythms in peatlands in the western interior of Canada in the global carbon cycle. Quaternary Research 54: 155–8.Google Scholar
Charman, D. J. (2007). Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. The Holocene 17: 217–27.Google Scholar
Charman, D. J., Barber, K. E., Blaauw, M.et al. (2009). Climate drivers for peatland palaeoclimate records. Quaternary Science Reviews 28(19–20): 1811–19.Google Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S. P. & Prentice, I. C. (1997). The climate of Europe 6000 years ago. Climate Dynamics 13: 1–9.Google Scholar
Cserny, T. & Nagy-Bodor, E. (2000). Limnogeology of Lake Balaton (Hungary). In Lake Basins though Space and Time: AAPG Studies in Geology, ed. Gierlowski-Kordesch, E. H. & Kelts, K. R., 46: 605–18.
Davis, B. A. S., Brewer, S., Stevenson, A. C. & Guiot, J. (data contributors) (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22: 1701–16.Google Scholar
Dickson, J. H. (1973). Bryophytes of the Pleistocene. The British Record and its Chorological and Ecological Implications. London and New York: Cambridge University Press.
Dömsödi, J. (1988). Lápképződés, Lápmegsemmisülés. Budapest: MTA Földrajztudományi Kutató Intézet.
Gardner, A. R. (2002). Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry records. The Holocene 12: 521–53.Google Scholar
Gignac, D. L. & Vitt, D. H. (1990). Habitat limitations of Sphagnum along climatic, chemical and physical gradients in mires of western Canada. Bryologist 93: 7–22.Google Scholar
Grosse-Brauckmann, G. (1972). Über pflanzliche Makrofossilien mitteleuropäischer Torfe. I: Gewebereste krautiger Pfanzen und ihre Merkmale. Telma 2: 19–55.Google Scholar
Grosse-Brauckmann, G. (1986). Analysis of vegetative plant macrofossils. In Handbook of Holocene Palaeoecology and Palaeohydrology, ed. Berglund, B. E., pp. 591–618. New York: John Wiley and Sons Ltd.
Grosse-Brauckmann, G., Haussner, W. & Mohr, K. (1973). Über eine kleine Vermoorung im Odenwald, ihre Ablagerungen und ihre Entwicklung der umgebenden Kulturlandschaft. Zeitschrift für Kulturtechnik und Flurbereinigung 14: 132–43.Google Scholar
Győrffy, G Y. & Zólyomi, B. (1994). A Kárpát-medence és Etelköz képe egy évezred előtt. In Honfoglalás és Régészet, ed. Győrffy, G Y. & Kovács, L., pp. 13–37. Budapest: Balassi Kiadó.
Haas, J. N., Richoz, I., Tinner, W. & Wick, L. (1998). Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at the timberline in the Alps. The Holocene 8: 301–4.Google Scholar
Halsey, L. A., Vitt, D. H. & Bauer, I. E. (1998). Peatland initiation during the Holocene in continental western Canada. Climate Change 40: 315–42.Google Scholar
Hughes, P. D. M., Mauquoy, D., Barber, K. E. & Langdon, P. G. (2000). Mire development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. The Holocene 10: 465–79.Google Scholar
Iizuka, Y., Hondoh, T. & Fujii, Y. (2008). Antarctic sea ice extent during the Holocene reconstructed from inland ice core evidence. Journal of Geophysical Research 113. 113(D15), Citation D15114.doi: 10.1029/2007JD009326.CrossRefGoogle Scholar
Jakab, G. & Sümegi, P. (2004). A lágyszárú növények tőzegben található maradványainak határozója mikroszkópikus bélyegek alapján. Kitaibelia 9: 93–129.Google Scholar
Jakab, G. & Sümegi, P. (2005). The evolution of Nádas-tó at Nagybárkány in the light of the macrofossil finds. In Environmental History of North-Eastern Hungary, ed. Gál, E., Juhász, I. E., & Sümegi, P.. Varia Archaeologica Hungarica19: 67–77.
Jakab, G. & Sümegi, P. (2007). The vegetation history of Baláta-tó. In Environmental History of Transdanubia, ed. Juhász, I. E., Zatykó, C s. & Sümegi, P.. Varia Archaeologica Hungarica20: 251–4.
Jakab, G., Sümegi, P. & Magyari, E. (2004). A new paleobotanical method for the description of Late Quaternary organic sediments (Mire-development pathways and palaeoclimatic records from S Hungary). Acta Geologica Hungarica 47: 1–37.Google Scholar
Jakab, G., Sümegi, P. & Szántó, Zs. (2005). Késő-glaciális és holocén vízszintingadozások a Szigligeti-öbölben (Balaton) makrofosszília vizsgálatok eredményei alapján. Földtani Közlöny 135: 405–31.Google Scholar
Jakab, G., Majkut, P., Juhász, I.et al. (2009). Palaeoclimatic signals and anthropogenic disturbances from the peatbog at Nagybárkány (N Hungary). Hydrobiologia 631: 87–106.Google Scholar
Janssens, J. A. P. (1983a). A quantitative method for stratigraphic analysis of bryophytes in Holocene peat. Journal of Ecology 71: 189–96.Google Scholar
Janssens, J. A. P. (1983b). Past and extant distribution of Drepanocladus in North America, with notes on the differentiation of fossil fragments. Journal of the Hattori Botanical Laboratory 54: 251–98.Google Scholar
Janssens, J. A. P. (1987). Ecology of peatland bryophytes and palaeoenvironmental reconstruction of peatlands using fossil bryophytes. Manual for Bryological Methods Workshop. Satellite Conference of the XIV. Intenational Botanical Conference. Mainz: International Association of Bryologists.
Janssens, J. A. P. (1990). Methods in Quarternary Ecology 11. Bryophytes. Geoscience Canada 17: 13–24.Google Scholar
Jessen, K. (1949). Studies in the Late Quaternary deposits and flora history of Ireland. Proceedings of the Royal Irish Academy 52(B): 85–290.Google Scholar
Jessen, K. & Milthers, V. (1928). Stratigraphical and paleontological studies of interglacial fresh-water deposits in Jutland and northwest Germany. Danmarks Geologiske Undersogelse Series 11, 48: 1–378.Google Scholar
Joerin, U. E., Nicolussi, K., Fischer, A., Stocker, T. F. & Schlüchter, C. (2008). Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews 27: 337–50.Google Scholar
Kiss, A. (2000). Weather events during the first Tartar invasion in Hungary (1241–42). Acta Geographica Szegediensis 37: 149–56.Google Scholar
Kooijman, A. M. (1993). On the ecological amplitude of four mire bryophytes: a reciprocal transplant experiment. Lindbergia 18: 19–24.Google Scholar
Korhola, A. (1995). Holocene climatic variations in southern Finland reconstructed from peat-initiation data. The Holocene 5: 43–57.Google Scholar
Magny, M. (1998). Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. In Palaeohydrology as Reflected in Lake-level Changes as Climatic Evidence for Holocene Times, ed. Harrison, S. P., Frenzel, B., Huckried, U., & Weiss, M.. Paläoklimaforschung25: 67–85.
Magny, M. & Schoellammer, P. (1999). Lake-level fluctuations at Le Locle, Swiss Jura, from the Younger Dryas to the Mid-Holocene: a high-resolution record of climate oscillations during the final deglaciation. Géographie Physique et Quaternaire 53: 183–97.Google Scholar
Magny, M., Miramont, C. & Sivan, O. (2002). Assessment of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of palaeohydrological records. Palaeogeography, Palaeoclimatology, Palaeoecology 186: 47–59.Google Scholar
Magny, M., Leuzinger, U., Bortenschlager, S. & Haas, J. N. (2006). Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research 65: 3–19.Google Scholar
Magyari, E., Buczkó, K., Jakab, G.et al. (2006). Holocene palaeohydrology and environmental history in the South Harghita Mountains, Romania. Földtani Közlöny 136: 249–84.Google Scholar
Magyari, E. K., Buczkó, K., Jakab, G.et al. (2009). Palaeolimnology of the last Eastern Carpathian crater lake – a multiproxy study of Holocene hydrological changes. Hydrobiologia 631: 29–63.Google Scholar
Máthé, I. & Kovács, M. (1958). A Mátra tőzegmohás lápja. Botanikai Közlemények 47(3–4): 323–31.Google Scholar
Mauquoy, D. & Barber, K. (1999). A replicated 3000 yr proxy-climate record from Coom Rigg Moss and Felicia Moss, The Border Mires, northern England. Journal of Quaternary Science 14: 263–75.Google Scholar
Mauquoy, D. & Geel, B. (2007). Mire and peat macros. In Encyclopedia of Quaternary Science, ed. Elias, S. A., vol. 3, pp. 2315–36. London: Elsevier.CrossRef
Mauquoy, D., Geel, B., Blaauw, M. & Plicht, J. (2002). Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holocene 12: 1–6.Google Scholar
Mitsch, W. J. & Gosselink, J. G. (1993). Wetlands. New York: Van Nostrand Reinhold.
Moore, P. D. & Bellamy, D. J. (1974). Peatlands. London: Elek Science.CrossRef
Nesje, A. & Dahl, S. O. (2001). The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16: 155–66.Google Scholar
Odgaard, B. V. (1980). Ecology, distribution and late Quaternary history of Polytrichastrum alpinum (Hedw.) Smith, G. L. in Denmark. Lindbergia6: 155–8.
Osvald, H. (1925). Die Hochmoortypen Europas. Veröffentlichungen Geobotanisches Institut Rubel, Zürich 3: 707–23.Google Scholar
Pakarinen, P. (1995). Classification of boreal mires in Finland and Scandinavia: a review. Vegetatio 118: 29–38.Google Scholar
Pfister, C. (1999). Wetternachhersage: 500 Jahre Klimvariationen und Naturkatastrophen (1496–1995). Bern: Haupt.
Pfister, C. & Brázdil, R. (1999). Climatic variability in sixteenth-century Europe and its social dimension: a synthesis. Climatic Change 43: 5–53.CrossRefGoogle Scholar
Podani, J. (1993). SYN-TAX 5.0: computer programs for multivariate data analysis in ecology and systematics. Abstracta Botanica 17: 289–302.Google Scholar
Rácz, L. (2001). Magyarország Éghajlattörténete az Újkor Idején. Szeged: JGYF Kiadó.
Rybníček, K. (1973). A comparison of the present and past mire communities of Central Europe. In Quaternary Plant Ecology, ed. Birks, H. J. B. & West, R. G., pp. 237–61. Oxford: Blackwell.
Rybníček, K. & Rybníčková, E. (1974). The origin and development of waterlogged meadows in the central part of the Sumava Foothills. Folia Geobotanica et Phytotaxonomica 9: 45–70.Google Scholar
Rydin, H. (1993). Interspecific competition between Sphagnum mosses on a raised bog. Oikos 66: 413–23.Google Scholar
Schnitchen, C., Magyari, E., Tóthmérész, B., Grigorszky, I. & Braun, M. (2003). Micropaleontological observations on a Sphagnum bog in East Carpathian region – testate amoebae (Rhizopoda: Testacea) and their potential use for reconstruction of micro- and macroclimatic changes. Hydrobiologia 506–509: 45–9.Google Scholar
Schoning, K., Charman, D. J. & Wastegard, S. (2005). Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data. The Holocene 15: 111–18.Google Scholar
Slack, N. G. (1994). Can one tell the mire type from the bryophytes alone? Journal of the Hattori Botanical Laboratory 75: 149–59.Google Scholar
Smith, L. C., MacDonald, G. M., Velichko, A. A.et al. (2004). Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303: 353–6.Google Scholar
Szlávik, L., Mika, J. & Bálint, G. (2002). Review of climate change induced modification of hydrological extremes in Hungary. Proceedings of International Conference on Drought Mitigation and Prevention of Land Desertification, Bled, Slovenia, 21–25 April 2002.
Szurdoki, E. & Nagy, J. (2002). Sphagnum dominated mires and Sphagnum occurrences of North-Hungary. Folia Historico-Naturalia Musei Matraensis 26: 67–84.Google Scholar
Troels-Smith, J. (1955). Karakterisering af lose jordater. Danmarks Geologiske Undersogelse 4: 10.Google Scholar
Vitt, D. H. & Chee, W.-L. (1990). The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89: 87–106.Google Scholar
Wasylikowa, K. (1996). Analysis of fossil fruits and seeds. In Handbook of Holocene Palaeoecology and Palaeohydrology, ed. Berglund, B. E., pp. 571–90. New York: John Wiley and Sons.
Yu, Z., Campbell, I. D., Campbell, C.et al. (2003). Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene 13: 801–8.Google Scholar
Zoltai, S. C. & Vitt, D. H. (1990). Holocene climatic change and the distribution of peatlands in western interior Canada. Quaternary Research 33: 231–40.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×