Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T03:50:58.534Z Has data issue: false hasContentIssue false

15 - Silhouettes and Gift Wrapping

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

Perhaps the simplest geometric formulation of origami design is to fold a desired 2D or 3D shape from a specified shape of paper (typically square). For example, we may be given the polygonal region shown in Figure 15.1(a) representing the silhouette of a horse, and our goal is to fold a square piece of paper into a flat origami with this silhouette. The origami literature provides countless examples of 2D and 3D shapes foldable from a square piece of paper. Folding a 3D shape can also be thought of as wrapping a general-shape gift.

The desired shape should be made of flat sides–polygonal (in 2D) or polyhedral (in 3D)–to be achievable by finitely many folds of a polygonal piece of paper, but other than this basic constraint, it is conceivable that any shape is foldable from a sufficiently large piece of paper. Although this problem is implicit throughout the origami literature, the problem was not formally posed until 1999 by Bern and Hayes (1996) and that too only in the 2D case. The 3D version–a kind of “gift-wrapping” for complex polyhedral gifts–was implicitly studied as early as 1960, for example, by Gardner(1990, 1995a), but the general problem appears not to have been formally posed in the literature.

A further variation on these problems, introduced by Demaine et al. (2000c), is to suppose that the original piece of paper is bicolored: a different color on each side.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 232 - 239
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×