Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T01:38:30.171Z Has data issue: false hasContentIssue false

10 - Introduction

Published online by Cambridge University Press:  07 September 2010

Erik D. Demaine
Affiliation:
Massachusetts Institute of Technology
Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

This second part concerns various forms of paper folding, often called origami. We start in this chapter with a historical background of paper and paper folding (Section 10.1), and of its study from mathematical and computational points of view (Section 10.2). This history can safely be skipped by the uninterested reader. Then in Section 10.3 we define several basic pieces of terminology for describing origami, before providing an overview of Part II in Section 10.4.

HISTORY OF ORIGAMI

The word “origami” comes from Japanese; it is the combination of roots “oru,” which means “fold,” and “kami,” which means “paper.” While origami was originally popularized largely by Japanese culture, its origins are believed to be pre-Japanese, roughly coinciding with the invention of paper itself. Paper, in turn, is believed to have been invented by Ts'ai Lun, a Chinese court official, in 105 a.d. The invention of paper was motivated by the then-recent invention of the camel hair brush, from 250 b.c., which could be used for writing and calligraphy.

Paper, and presumably paper folding at the same time, spread throughout the world over a long period. Buddhist monks spread paper through Korea to Japan in the sixth century a.d. Arabs occupying Samarkand, Uzbekistan, from 751 a.d. brought paper to Egypt in the 900s, and from there continued west. The Moors brought paper (and at the same time, mathematics) to Spain during their invasion in the 700s. In the 1100s, paper making became established in Jativa, Spain.

Type
Chapter
Information
Geometric Folding Algorithms
Linkages, Origami, Polyhedra
, pp. 167 - 171
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Erik D. Demaine, Massachusetts Institute of Technology, Joseph O'Rourke, Smith College, Massachusetts
  • Book: Geometric Folding Algorithms
  • Online publication: 07 September 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511735172.012
Available formats
×