Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T08:48:55.872Z Has data issue: false hasContentIssue false

16 - Biologically constrained action selection improves cognitive control in a model of the Stroop task

from Part II - Computational neuroscience models

Published online by Cambridge University Press:  05 November 2011

Anil K. Seth
Affiliation:
University of Sussex
Tony J. Prescott
Affiliation:
University of Sheffield
Joanna J. Bryson
Affiliation:
University of Bath
Get access

Summary

Summary

The Stroop task is a paradigmatic psychological task for investigating stimulus conflict and the effect this has on response selection. The model of Cohen et al. (1990) has hitherto provided the best account of performance in the Stroop task, but there remains certain key data that it fails to match. We show that this failure is due to the mechanism used to perform final response selection – one based on the diffusion model of choice behaviour (Ratcliff, 1978). We adapt the model to use a selection mechanism which is based on the putative human locus of final response selection, the basal ganglia/thalamo-cortical complex (Redgrave et al., 1999). This improves the match to the core human data and, additionally, makes it possible for the model to accommodate, in a principled way, additional mechanisms of cognitive control that enable better fits to the data. This work prompts a critique of the diffusion model as a mechanism of response selection, and the features that any response mechanism must possess to provide adaptive action selection. We conclude that the consideration of biologically constrained solutions to the action selection problem is vital to the understanding and improvement of cognitive models of response selection.

Introduction

The Stroop task provides a thoroughly explored experimental framework for investigating cognitive aspects of selection. In this task, subjects have to name the ink colour of word-strings which can themselves spell out the name of a colour. When the ink-colour and the word-name contradict each other response selection is slowed and is more prone to error (compared to conditions where the word-name is neutral or is congruent with respect to the ink-colour). This is ‘the Stroop Effect’. A simple reversal of the task, that of reading the word-name and ignoring the ink-colour, does not produce an opposite effect (a ‘reverse Stroop’ effect).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, R. L.Young, A. B.Penney, J. B. 1989 The functional anatomy of basal ganglia disordersTrends Neurosci 12 366CrossRefGoogle ScholarPubMed
Alexander, G. E.Crutcher, M. D. 1990 Functional architecture of basal ganglia circuits: neural substrates of parallel processingTrends Neurosci. 13 266CrossRefGoogle ScholarPubMed
Alexander, G. E.Delong, M. R.Strick, P. L. 1986 Parallel organization of functionally segregated circuits linking basal ganglia and cortexAnnu. Rev. Neurosci. 9 357CrossRefGoogle ScholarPubMed
Arbib, M. 1995 Introducing the neuronThe Handbook of Brain Theory and Neural NetworksArbib, M.Cambridge, MAMIT Press266Google Scholar
Balleine, B. W.Lijeholm, M.Ostlund, S. B. 2009 The integrative function of the basal ganglia in instrumental conditioningBehav. Brain Res. 199 43CrossRefGoogle ScholarPubMed
Besner, D.Stolz, J. 1999 Context dependency in Stroop's paradigm: when are words treated as nonlinguistic objectsCan. J. Exp. Psychol 53 374CrossRefGoogle ScholarPubMed
Besner, D.Stolz, J. A.Boutilier, C. 1997 The Stroop effect and the myth of automaticityPsychon. Bull. Rev. 4 221CrossRefGoogle ScholarPubMed
Blais, C.Besner, D. 2007 A reverse Stroop effect without translation or reading difficultyPsychon. Bull. Rev. 14 466CrossRefGoogle ScholarPubMed
Bogacz, R.Brown, E.Moehlis, J.Holmes, P.Cohen, J. D. 2006 The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasksPsychol. Rev. 113 700CrossRefGoogle ScholarPubMed
Bogacz, R.Gurney, K. 2007 The basal ganglia and cortex implement optimal decision making between alternative actionsNeural Comput. 19 442CrossRefGoogle ScholarPubMed
Botvinick, M. M 2007 Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate functionCogn. Aff. Behav. Neurosci. 7 356CrossRefGoogle ScholarPubMed
Botvinick, M. M.Braver, T. S.Barch, D. M.Carter, C. S.Cohen, J. D. 2001 Conflict monitoring and cognitive controlPsychol. Rev. 108 624CrossRefGoogle ScholarPubMed
Botvinick, M. M.Cohen, J. D.Carter, C. S. 2004 Conflict monitoring and anterior cingulate cortex: an updateTrends Cogn. Sci. 8 539CrossRefGoogle ScholarPubMed
Brown, L. L.Schneider, J. S.Lidsky, T. I. 1997 Sensory and cognitive functions of the basal gangliaCurr. Opin. Neurobiol. 7 157CrossRefGoogle ScholarPubMed
Chelazzi, L.Duncan, J.Miller, E. K.Desimone, R. 1998 Responses of neurons in inferior temporal cortex during memory-guided visual searchJ. Neurophysiol. 80 2918CrossRefGoogle ScholarPubMed
Chevalier, G.Deniau, J. 1990 Disinhibition as a basic process in the expression of striatal functionsTrends Neurosci. 13 277CrossRefGoogle ScholarPubMed
Cohen, J. D.Dunbar, K.McClelland, J. L. 1990 On the control of automatic processes: a parallel distributed-processing account of the Stroop effectPsychol. Rev 97 332CrossRefGoogle ScholarPubMed
Cohen, J. D.Huston, T. A. 1994 Progress in the use of interactive models for understanding attention and performanceAttention and Performance 15 453Google Scholar
Dishon-Berkovits, M.Algom, D. 2000 The Stroop effect: it is not the robust phenomenon that you have thought it to beMem. Cogn. 28 1437CrossRefGoogle Scholar
Dunbar, K.MacLeod, C. M. 1984 A horse race of a different color: Stroop interference patterns with transformed wordsJ. Exp. Psychol. Human 10 623CrossRefGoogle ScholarPubMed
Durgin, F. H. 2000 The reverse Stroop effectPsychon. Bull. Rev. 7 121CrossRefGoogle ScholarPubMed
Ellis, R.Humphreys, G. 1999 Connectionist Psychology: A Text with ReadingsHove, UKPsychology Press LtdGoogle Scholar
Gerfen, C. R.Engber, T. M.Mahan, L. C. 1990 D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neuronsScience 250 1429CrossRefGoogle ScholarPubMed
Gerfen, C. R.Young, W. S. 1988 Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing studyBrain Res. 460 161CrossRefGoogle Scholar
Girard, B.Cuzin, V.Guillot, A.Gurney, K. N.Prescott, T. J. 2003 A basal ganglia inspired model of action selection evaluated in a robotic survival taskJ. Integr. Neurosci 2 179CrossRefGoogle Scholar
Glaser, M. O.Glaser, W. R. 1982 Time course analysis of the Stroop phenomenonJ. Exp. Psychol. Human 8 875CrossRefGoogle ScholarPubMed
Gold, J. I.Shadlen, M. N. 2000 Representation of a perceptual decision in developing oculomotor commandsNature 404 390CrossRefGoogle ScholarPubMed
Gold, J. I.Shadlen, M. N. 2007 The neural basis of decision makingAnnu. Rev. Neurosci. 30CrossRefGoogle ScholarPubMed
Gurney, K.Prescott, T. J.Redgrave, P. 2001 A computational model of action selection in the basal ganglia I: a new functional anatomyBiol. Cybern. 85 401CrossRefGoogle Scholar
Gurney, K.Prescott, T. J.Redgrave, P. 2001 A computational model of action selection in the basal ganglia: II: analysis and simulation of behaviourBiol. Cybern. 85 411CrossRefGoogle Scholar
Herd, S. A.Banich, M. T.O’Reilly, R. C. 2006 Neural mechanisms of cognitive control: an integrative model of Stroop task performance and fMRI dataJ. Cogn. Neurosci 18 22CrossRefGoogle ScholarPubMed
Hoover, J. E.Strick, P. L. 1993 Multiple output channels in the basal gangliaScience 259 819CrossRefGoogle ScholarPubMed
Humphries, M. D.Gurney, K. N. 2002 The role of intra-thalamic and thalamocortical circuits in action selectionNetwork-Comp. Neural 13 131CrossRefGoogle ScholarPubMed
Kha, H. T.Finkelstein, D. I.Tomas, D. 2001 Projections from the substantia nigra pars reticulata to the motor thalamus of the rat: single axon reconstructions and immunohistochemical studyJ. Comp. Neurol. 440 20CrossRefGoogle ScholarPubMed
Logan, G. 1988 Toward an instance theory of automatizationPsychol. Rev 95 492CrossRefGoogle Scholar
Luce, R. 1986 Response Times: Their Role in Inferring Elementary Mental OrganisationNew YorkClarendon PressGoogle Scholar
MacLeod, C. 1991 Half a century of research on the Stroop effect: an integrative reviewPsychol. Bull. 109 163CrossRefGoogle Scholar
MacLeod, C.MacDonald, P. 2000 Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attentionTrends Cogn. Sci 4 383CrossRefGoogle Scholar
May, C. P.Kane, M. J.Hasher, L. 1995 Determinants of negative primingPsychol. Bull. 118 35CrossRefGoogle ScholarPubMed
McHaffie, J. G.Stanford, T. R.Stein, B. E.Coizet, V.Redgrave, P. 2005 Subcortical loops through the basal gangliaTrends Neurosci. 28 401CrossRefGoogle ScholarPubMed
Middleton, F. A.Strick, P. L. 2002 Basal-ganglia ‘projections’ to the prefrontal cortex of the primateCereb. Cortex 12 926CrossRefGoogle ScholarPubMed
Mink, J. W. 1996 The basal ganglia: focused selection and inhibition of competing motor programsProg. Neurobiol. 50 381CrossRefGoogle ScholarPubMed
Mink, J. W.Thach, W. T. 1993 Basal ganglia intrinsic circuits and their role in behaviorCurr. Opin. Neurobiol. 3 950CrossRefGoogle ScholarPubMed
Opris, I.Bruce, C. J. 2005 Neural circuitry of judgment and decision mechanismsBrain Res. Rev. 48 509CrossRefGoogle ScholarPubMed
O’Reilly, R. C.Munakata, Y. 2000 Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the BrainCambridge, MAMIT PressGoogle Scholar
Parent, A.Hazrati, L. N. 1993 Anatomical aspects of information processing in primate basal gangliaTrends Neurosci. 16 111CrossRefGoogle ScholarPubMed
Parent, A.Hazrati, L. N. 1995 Functional anatomy of the basal ganglia. 1. the cortico-basal ganglia-thalamo-cortical loopBrain Res. Rev. 20 91CrossRefGoogle ScholarPubMed
Phaf, R. H.Vanderheijden, A. H. C.Hudson, P. T. W. 1990 Slam: a connectionist model for attention in visual selection tasksCogn. Psychol. 22 273CrossRefGoogle ScholarPubMed
Platt, M. 2002 Neural correlates of decisionsCurr. Opin. Neurobiol. 12 141CrossRefGoogle ScholarPubMed
Posner, M.Snyder, C. 1975 Attention and cognitive controlInformation Processing and CognitionSolso, R.Hillsdale, NJErlbaum55Google Scholar
Prescott, T. J.Montes Gonzalez, F. M.Gurney, K.Humphries, M. D.Redgrave, P. 2006 A robot model of the basal ganglia: behavior and intrinsic processingNeural Networks 19 31CrossRefGoogle ScholarPubMed
Prescott, T. J.Redgrave, P.Gurney, K. 1999 Layered control architectures in robots and vertebratesAdapt. Behav. 7 99CrossRefGoogle Scholar
Price, J. 1995 ThalamusThe Rat Nervous SystemPaxinos, G.New YorkAcademic629Google Scholar
Ratcliff, R. 1978 A theory of memory retrievalPsychol. Rev. 85 59CrossRefGoogle Scholar
Ratcliff, R.Cherian, A.Segraves, M. 2003 A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisionsJ. Neurophysiol. 90 1392CrossRefGoogle ScholarPubMed
Ratcliff, R.McKoon, G. 2008 The diffusion decision model: theory and data for two-choice decision tasksNeural Comput. 20 873CrossRefGoogle ScholarPubMed
Ratcliff, R.Smith, P. 2004 A comparison of sequential sampling models for two-choice reaction timePsychol. Rev. 111 333CrossRefGoogle ScholarPubMed
Reddi, B.Asrress, K.Carpenter, R. 2003 Accuracy, information, and response time in a saccadic decision taskJ. Neurophysiol. 90 3538CrossRefGoogle Scholar
Redgrave, P.Prescott, T. J.Gurney, K. 1999 The basal ganglia: a vertebrate solution to the selection problemNeuroscience 89 1009CrossRefGoogle ScholarPubMed
Sharkey, A.Sharkey, N. 1995 Cognitive modeling: psychology and connectionismThe Handbook of Brain Theory and Neural NetworksArbib, M.Cambridge, MAMIT Press200Google Scholar
Smith, Y.Bevan, M. D.Shink, E.Bolam, J. P. 1998 Microcircuitry of the direct and indirect pathways of the basal gangliaNeuroscience 86 353Google ScholarPubMed
Smith, P.Ratcliff, R. 2004 Psychology and neurobiology of simple decisionsTrends Neurosci. 27 161CrossRefGoogle ScholarPubMed
Stafford, T. 2003 http://www.abrg.group.shef.ac.uk/
Stafford, T.Gurney, K. 2004 The role of response mechanisms in determining reaction time performance: Piéron's law revisitedPsychon. Bull. Rev. 11 975CrossRefGoogle ScholarPubMed
Stafford, T.Gurney, K. 2007 Biologically constrained action selection improves cognitive control in a model of the Stroop taskPhil. Trans. Roy. Soc. B. 362 1671CrossRefGoogle Scholar
Usher, M.McClelland, J. L. 2001 The time course of perceptual choice: the leaky, competing accumulator modelPsychol. Rev. 108 550CrossRefGoogle ScholarPubMed
Yehene, E.Meiran, N.Soroker, N. 2008 Basal ganglia play a unique role in task switching within the frontal-subcortical circuits: evidence from patients with focal lesionsJ. Cogn. Neurosci. 20 1079CrossRefGoogle ScholarPubMed
Zhang, H. Z. H.Zhang, J.Kornblum, S. 1999 A parallel distributed processing model of stimulus–stimulus and stimulus–response compatibilityCogn. Psychol. 38 386CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×