Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T13:49:28.567Z Has data issue: false hasContentIssue false

12 - Computer-aided drug design: a practical guide to protein-structure-based modeling

from PART III - APPLICATIONS TO DRUG DISCOVERY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

The role of computation in drug discovery has grown steadily since the late 1960s. In the early days emphasis was on statistical and extrathermodynamic approaches aimed at quantifying the relationship of chemical structure to biological properties. From these early efforts the field has grown enormously as evidenced by the chapters in this book. In addition, recent computational approaches place a greater focus on the three-dimensional structure of the ligand and/or protein. Modeling has become a critical tool in the drug discovery process.

The growth in protein-structure-based approaches has mirrored the exponential growth in available protein structures, as evidenced by the number of structures deposited in the Research Collaboratory for Structural Bioinformatics (RCSB). Whereas in the late 1980s only a few protein structures were available, we now have tens of thousands across many classes of therapeutically relevant proteins. This trend shows no sign of abating. To the contrary, new target classes that have been resistant to structure determination are beginning to become available, including G-protein-coupled receptors (GPCRs) and ion channels. This wealth of structures provides a good starting point for modeling protein/ligand interactions, and the application of computer models to identify improved ligands for these targets (Figure 12.1).

CHALLENGES

There are many obstacles that stand in the way of successful modeling of protein/ligand interactions. First is the high degree of computational accuracy required to predict significant changes in binding affinity.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 181 - 196
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clark, D. E.What has computer-aided molecular design ever done for drug discovery?Exp. Opin. Drug Discov. 2006, 1(2), 103–110.Google Scholar
Jorgensen, W. L.The many roles of computation in drug discovery. Science 2004, 303(5665), 1813–1818.Google Scholar
Richon, A. B.An early history of the molecular modeling industry. Drug Discov. Today 2008, 13, 659–664.Google Scholar
Hansch, C.; Leo, A.Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington, D.C., 1995.
Hansch, C.; Fukunaga, J.Designing biologically active materials. ChemTech 1977, 7(2), 120–8.Google Scholar
Hansch, C.Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 1969, 2(8), 232–239.Google Scholar
www.rcsb.org.
Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H.-J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C.; Takeda, S.; Kadowaki, S.; Haga, T.; Takaesu, H.; Mitaku, S.; Fredriksson, R.; Lagerstrom, M. C.; Lundin, L. G.; Schioth, H. B.; Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J.; Lefkowitz, R. J.; Shenoy, S. K.; Rosenbaum, D. M.High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 2007, 318, (5854), 1258–1265.Google Scholar
Jiang, Y.; Lee, A.; Chen, J.; Cadene, M.; Chait, B. T.; MacKinnon, R.The open pore conformation of potassium channels. Nature 2002, 417(6888), 523–526.Google Scholar
Jiang, Y.; Lee, A.; Chen, J.; Ruta, V.; Cadene, M.; Chait, B. T.; MacKinnon, R.X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423(6935), 33–41.Google Scholar
Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M.Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289(5480), 739–745.Google Scholar
Rasmussen, S. G. F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, B. K.Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 2007, 450(7168), 383–387.Google Scholar
Zhou, Y., Morals-Cabral, J. H.; Kaufman, A.; MacKinnon, R.Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0.ANG. resolution. Nature 2001, 414(6859), 43–48.Google Scholar
Coulson, C. A. Coulson is credited with using this analogy to describe the accuracy required to compute the energy of interaction between two molecules.
Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A.A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117(19), 5179–5197.Google Scholar
Weiner, P. K.; Kollman, P. A.AMBER: assisted model building with energy refinement: a general program for modeling molecules and their interactions. J. Comput. Chem. 1981, 2(3), 287–303.Google Scholar
MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M.All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102(18), 3586–3616.Google Scholar
Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M.CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4(2), 187–217.Google Scholar
Jorgensen, W. L.; Tirado-Rives, J.The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110(6), 1657–66.Google Scholar
Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A.Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J. Chem. Phys. 2001, 114(1), 108–117.Google Scholar
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109(18), 7764–7776.Google Scholar
Karplus, M.Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers 2003, 68(3), 350–358.Google Scholar
Guimaraes, C. R. W.; Boger, D. L.; Jorgensen, W. L.Elucidation of fatty acid amide hydrolase inhibition by potent a-ketoheterocycle derivatives from monte carlo simulations. J. Am. Chem. Soc. 2005, 127(49), 17377–17384.Google Scholar
Ulmschneider, J. P.; Jorgensen, W. L.Monte Carlo backbone sampling for polypeptides with variable bond angles and dihedral angles using concerted rotations and a Gaussian bias. J. Chem. Phys. 2003, 118(9), 4261–4271.Google Scholar
Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107(13), 3902–3909.Google Scholar
Dewar, M. J. S.; Thiel, W.Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 1977, 99(15), 4907–4917.Google Scholar
Fersht, A.Enzyme Structure and Mechanism, 2nd ed. New York: Freeman & Co.; 1985.
Davis, A. M.; Teague, S. J.; Kleywegt, G. J.Application and limitations of X-ray crystallographic data in structure-based ligand and drug design. Angew. Chem. Int. Ed. Engl. 2003, 42(24), 2718–2736.Google Scholar
Davis, A. M.; St. Gallay, S. A.; Gerard, J. K.Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today 2008, 13, 831–841.Google Scholar
Yu, N.; Hayik, S. A.; Wang, B.; Liao, N.; Reynolds, C. H.; Merz, K. M.Assigning the protonation states of the key aspartates in β-secretase using QM/MM x-ray structure refinement. J. Chem. Theor. Comput. 2006, 2(4), 1057–1069.Google Scholar
Rajamani, R.; Reynolds, C. H.Modeling the protonation states of the catalytic aspartates in b-secretase. J. Med. Chem. 2004, 47(21), 5159–5166.Google Scholar
Piana, S.; Sebastiani, D.; Carloni, P.; Parrinello, M.Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease clevage site. J. Am. Chem. Soc. 2001, 123, 8730–8737.Google Scholar
Smith, R.; Brereton, I. M.; Chai, R. Y.; Kent, S. B. H.Ionization states of the catalytic residues in HIV-1 protease. Nature Struct. Biol. 1996, 3, 946–950.Google Scholar
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A. K.; Zhang, X. C.; Tang, J.Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 2000, 290, 150–153.Google Scholar
Harte, W. E.; Beveridge, D. L.Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexed via molecular dynamics simulation. J. Am. Chem. Soc. 1993, 115, 3883–3886.Google Scholar
Piana, S.; Carloni, P.Conformational flexibility of the catalytic asp dyad in HIV-1 protease: an ab initio study on the free enzyme. Proteins 2000, 39, 26–36.Google Scholar
Wang, Y.; Freedberg, D. I.; Yamazaki, T.; Wingfield, P. T.; Stahl, S. J.; Kaufman, J. D.; Kiso, Y.; Torchia, D. A.Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the assymetric drug KNI-272. Biochemistry 1996, 35, 9945–9950.Google Scholar
Yamazaki, T.; Nicholson, L. K.; Torchia, D. A., Wingfield, P.; Stahl, S. J.; Kaufman, J. D.; Eyermann, C. J.; Hedge, C. N.; Lam, P. Y. S.; R u, Y.; Jadhav, P. K.; Chang, C.; Webers, P. C.NMR and x-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Am. Chem. Soc. 1994, 116, 10791–10792.Google Scholar
Kleywegt, G. J.Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2007, D63(1), 94–100.Google Scholar
Kleywegt, G. J.; Henrick, K.; Dodson, E. J.; Aalten, D. M. F.Pound-wise but penny-foolish: how well do micromolecules fare in macromolecular refinement?Structure 2003, 11(9), 1051–1059.Google Scholar
Hong, L.; Turner, R. T.; Koelsch, G.; Shin, D.; Ghosh, A. K.; Tang, J.Crystal structure of memapsin 2 (β-secretase) in complex with an inhibitor OM00-3. Biochemistry 2002, 41, 10963–10967.Google Scholar
Patel, S.; Vuillard, L.; Cleasby, A.; Murray, C. W.; Yon, J.Apo and inhibitor complex structures of BACE (β-secretase). J. Mol. Biol. 2004, 343(2), 407–416.Google Scholar
Cummings, M. D.; DesJarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P.Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 2005, 48(4), 962–976.Google Scholar
Perola, E.; Walters, W. P.; Charifson, P. S.A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004, 56(2), 235–249.Google Scholar
McGaughey, G. B.; Sheridan, R. P.; Bayly, C. I.; Culberson, J. C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.-F.; Cornell, W. D.Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model. 2007, 47(4), 1504–1519.Google Scholar
Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S.A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49(20), 5912–5931.Google Scholar
DesJarlais, R. L.; Cummings, M. D.; Gibbs, A. C.Virtual docking: how are we doing and how can we improve?Front. Drug Des. Discov. 2007, 3, 81–103.Google Scholar
Gilson, M. K.; Zhou, H.-X.Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21–42.Google Scholar
Zeevaart, J. G.; Wang, L.; Thakur, V. V.; Leung, C. S.; Tirado-Rives, J.; Bailey, C. M.; Domaoal, R. A.; Anderson, K. S.; Jorgensen, W. L.Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations. J. Am. Chem. Soc. 2008, 130(29), 9492–9499.Google Scholar
Aqvist, J.; Marelius, J.The linear interaction energy method for predicting ligand binding free energies. Comb. Chem. High Throughput Screen. 2001, 4(8), 613–626.Google Scholar
Hansson, T.; Marelius, J.; Aqvist, J.Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des. 1998, 12(1), 27–35.Google Scholar
Wesolowski, S. S.; Jorgensen, W. L.Estimation of binding affinities for celecoxib analogues with COX-2 via Monte Carlo-extended linear response. Bioorg. Med. Chem. Lett. 2002, 12(3), 267–270.Google Scholar
Lamb, M. L.; Tirado-Rives, J.; Jorgensen, W. L.Estimation of the binding affinities of FKBP12 inhibitors using a linear response method. Bioorg. Med. Chem. 1999, 7(5), 851–860.Google Scholar
Smith, R. H.; Jorgensen, W. L.; Tirado-Rives, J.; Lamb, M. L.; Janssen, P. A. J.; Michejda, C. J., Smith, M. B. K.Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method. J. Med. Chem. 1998, 41(26), 5272–5286.Google Scholar
Holloway, M. K.A priori prediction of ligand affinity by energy minimization. Perspectives in Drug Discovery and Design. 3D QSAR in Drug Design: Ligand/Protein Interactions and Molecular Similarity. New York: Springer-Verlag; 1998, 63–84.
Tounge, B. A.; Rajamani, R.; Baxter, E. W.; Reitz, A. B.; Reynolds, C. H.Linear interaction energy models for β-secretase (BACE) inhibitors: role of van der Waals, electrostatic, and continuum-solvation terms. J. Mol. Graph. Model. 2006, 24(6), 475–484.Google Scholar
Kuhn, B.; Donini, O.; Huo, S.; Wang, J.; Kollman, P. A.MM-PBSA applied to computer-assisted ligand design. In: Free Energy Calculations in Rational Drug Design, Rami Reddy, R.; Erion, M. D.; Eds. New York: Kluwer Academic/Plenum; 2001, 243–251.
Wang, J.; Morin, P.; Wang, W.; Kollman, P. A.Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123(22), 5221–5230.Google Scholar
Tounge, B. A.; Reynolds, C. H.Calculation of the binding affinity of β-secretase inhibitors using the linear interaction energy method. J. Med. Chem. 2003, 46, 2074–2082.Google Scholar
Rajamani, R.; Reynolds, C. H.Modeling the binding affinities of β-secretase inhibitors: application to subsite specificity. Bioorg. Med. Chem. Lett. 2004, 14(19), 4843–4846.Google Scholar
Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C.The GB/SA continuum model for solvation: a fast analytical method for the calculation of approximate born radii. J. Phys. Chem. A 1997, 101(16), 3005–3014.Google Scholar
Ghosh, A. K.; Bilcer, G.; Harwood, C.; Kawahama, R.; Shin, D.; Hussain, K. A.; Hong, L.; Loy, J. A.; Nguyen, C.; Koelsch, G.; Ermolieff, J.; Tang, J.Structure-based design: potent inhibitors of human brain memapsin 2 (β-secretase). J. Med. Chem. 2001, 44(18), 2865–2868.Google Scholar
Baxter, E. W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; Winter, H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang, Y.; Braeken, M.; Pieters, S. M. A.; Berthelot, D. J. C.; Masure, S.; Bruinzeel, W. D.; Jordan, A. D.; Parker, M. H.; Boyd, R. E.; Qu, J.; Alexander, R. S.; Brenneman, D. E.; Reitz, A. B.2-amino-3,4-dihydroquinazolines as inhibitors of BACE-1 (β-site APP cleaving enzyme): use of structure based design to convert a micromolar hit into a nanomolar lead. J. Med. Chem. 2007, 50(18), 4261–4264.Google Scholar
Park, H.; Lee, S.Determination of the active site protonation state of b-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J. Am. Chem. Soc. 2003, 125, 16416–16422.Google Scholar
Schechter, I.; Berger, A.On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162.Google Scholar
Tobias, D. J.; Sneddon, S. F.; Brooks, C. L.Stability of a model β-sheet in water. J. Mol. Biol. 1992, 227(4), 1244–1252.Google Scholar
Frey, J. A.; Leutwyler, S.An ab initio benchmark study of hydrogen bonded formamide dimers. J. Phys. Chem. A 2006, 110(45), 12512–12518.Google Scholar
Kangas, E.; Tidor, B.Optimizing electrostatic affinity in ligand-receptor binding: theory, computation, and ligand properties. J. Chem. Phys. 1998, 109(17), 7522–7545.Google Scholar
Ghosh, A. K.; Krishnan, K.; Walters, D. E.; Cho, W.; Cho, H.; Koo, Y.; Trevino, J.; Holland, L.; Buthod, J.Structure based design: novel spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors. Bioorg. Med. Chem. Lett. 1998, 8(8), 979–982.Google Scholar
Graham, S. L.; Ghosh, A. K.; Huff, J. R.; Scholz, T. H.HIV protease inhibitors with n-terminal polyether substituents. Eur. Pat. Appl. 1993.Google Scholar
Pearlstein, R.; Vaz, R.; Rampe, D.Understanding the structure-activity relationship of the human ether-a-go-go-related gene cardiac K+ channel: a model for bad behavior. J. Med. Chem. 2003, 46(11), 2017–2022.Google Scholar
Vandenberg, J. I.; Walker, B. D.; Campbell, T. J.HERG K+ channels: friend and foe. Trends Pharmacol. Sci. 2001, 22(5), 240–246.Google Scholar
Rajamani, R.; Tounge, B. A.; Li, J.; Reynolds, C. H.A two-state homology model of the hERG K+ channel: application to ligand binding. Bioorg. Med. Chem. Lett. 2005, 15(6), 1737–1741.Google Scholar
Sanchez-Chapula, J. A.; Navarro-Polanco, R. A.; Culberson, C.; Chen, J.; Sanguinetti, M. C.Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block. J. Biol. Chem. 2002, 277(26), 23587–23595.Google Scholar
Cavalli, A.; Poluzzi, E.; Ponti, F.; Recanatini, M.Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K+ channel blockers. J. Med. Chem. 2002, 45(18), 3844–3853.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×