Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T18:56:26.278Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

Our goal in producing this book is to provide a broad overview of the most important approaches used in protein- and ligand-structure-based drug design. Beyond this we aim to illustrate how these approaches are currently being applied in drug discovery efforts. We hope this book will be a useful resource to practitioners in the field, as well as a good introduction for researchers or students who are new to the field. We believe it provides a snapshot of the most important trends and capabilities in the application of modeling and structural data in drug discovery.

Since the 1990s the role of structure and modeling in drug discovery has grown enormously. There have been remarkable scientific advances in both the experimental and computational fields that are the underpinnings of modern drug design. For example, x-ray capabilities have improved to the point that protein structures are now routinely available for a wide range of protein targets. One only need look at the exponential growth of the Protein Databank (RCSB) for evidence. Tremendous strides have been made in all aspects of protein structure determination, including crystallization, data acquisition, and structure refinement. Modeling has made similar gains. Recent years have brought more realistic force fields, new and more robust free-energy methods, computational models for absorption/distribution/metabolism/excretion (ADME)-toxicity, faster and better docking algorithms, automated 3D pharmacophore detection and searching, and very-large-scale quantum calculations.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. ix - x
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×