Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-01T09:05:24.781Z Has data issue: false hasContentIssue false

On the Role of Rotation of the Internal Core Relative to the Mantle

Published online by Cambridge University Press:  11 May 2010

M. R. E. Proctor
Affiliation:
University of Cambridge
P. C. Matthews
Affiliation:
University of Cambridge
A. M. Rucklidge
Affiliation:
University of Cambridge
Get access

Summary

The outer fluid core of the Earth can be considered as a fluid between two hard spheres (the internal core and the rock mantle) rotating with different but close angular velocities. In the incompressible, nonconducting almost inviscid limit a singular cylindrical surface having the radius of the internal sphere appears (the Proudman solution). A shear layer forming around this surface in the non-ideal fluid may have important implications for the geodynamo.

INTRODUCTION

The aim of this short paper is to attract attention to one feature in the Earth's fluid core. The feature is an internal shear layer induced by a relative rotation of the inner core. Large gradients of the velocity around this layer may be important for the geodynamo. Note, in particular, that in the geodynamo model-Z without an account of the inner core rotation one of the basic sources (the α-effect) is assumed to be concentrated near the core-mantle boundary (Braginsky 1993).

The inner core of the Earth can be considered as a hard iron ball of radius approximately 0.2R, where R is the Earth's radius. The rest of the planet is occupied by the outer liquid core and the rock mantle in the form of spherical shells of almost equal width, 0.4R. The other iron-rock planets (Mercury, Mars), except probably Venus, also have inner cores (Stevenson 1983). As the source of compositional convection (Loper & Roberts 1983) the inner core is apparently a necessary part of the planetary dynamo.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×