Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T03:23:23.478Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

27 - Bounds using the analytic method

Graeme W. Milton
Affiliation:
University of Utah
Get access

Summary

A brief history of bounds derived using the analytic method

Bergman (1978) recognized that the analytic properties discussed in chapter 18 on page 369 provide a powerful tool for deriving bounds. He rederived the Hashin-Shtrikman bounds and obtained new bounds correlating different properties of composites. A major success of the approach was that it lead to tight bounds on the complex dielectric constant of a two-phase composite (Milton 1979, 1980, 1981a; Bergman 1980, 1982). These bounds are illustrated in figure 27.1 on the next page. [The first available bounds on complex dielectric constants were those of Schulgasser and Hashin (1976), but they were limited to materials with low-loss constituents, that is, with permittivities having small imaginary parts.] These complex dielectric constant bounds have been directly compared with experimental measurements: Niklasson and Granqvist (1984) applied them to bounding the optical properties of composite films; Korringa and LaTorraca (1986) applied them to bounding the complex electrical permittivity of rocks; Golden (1995) applied them to bounding the complex permittivity of sea ice; and Mantese, Micheli, Dungan, Geyer, Baker-Jarvis, and Grosvenor (1996) applied them to bounding the complex dielectric constant and magnetic permeability of composites of Barium Titanate and ferrite. In most cases the experimental measurements were consistent with the bounds. However, it is important to recognize that these bounds apply only in the quasistatic limit where the wavelength of the radiation is much larger than the inhomogeneities of the microstructure; see Aspnes (1982). McPhedran, McKenzie, and Milton (1982); McPhedran and Milton (1990); and Cherkaeva and Golden (1998) applied the bounds in an inverse fashion to obtain quite tight bounds on the volume fraction from measurements of the complex dielectric constant.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×