Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T09:47:16.837Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

9 - Laminate materials

Graeme W. Milton
Affiliation:
University of Utah
Get access

Summary

The history of laminates and why they are important

The simplest conceivable composite is a stratified material, such as the one illustrated in figure 9.1 on the next page, where the material properties vary only in one direction, called the direction of lamination, represented by a unit vector n. Of course lamination in direction n is equivalent to lamination in direction –n. This chapter is devoted to obtaining formulas for the effective tensors of such laminates (called simple or rank-1 laminates), and also laminates of laminates (called multiple-rank laminates) where there is a large difference in the length scales of the successive laminations and the subsequent laminations are in different directions; see figure 9.2 on the following page. Laminates of laminates were introduced by Max well (1873), who provided a formula for the effective conductivity tensor of certain third-rank laminates, and later by Bruggeman (1930) for estimating the elastic moduli of polycrystalline aggregates. Beginning with the work of Schulgasser (1976), the effective tensors of appropriately designed multiple-rank laminates were found to attain many bounds on effective tensors. Numerous examples of such optimal laminate microstructures will be given in the latter part of this book. When one is trying to get some idea of the range of properties that composite materials can exhibit as the microstructure is varied, it is usually best to first examine the range of properties that multiple-rank laminate materials can exhibit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Laminate materials
  • Graeme W. Milton, University of Utah
  • Book: The Theory of Composites
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511613357.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Laminate materials
  • Graeme W. Milton, University of Utah
  • Book: The Theory of Composites
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511613357.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Laminate materials
  • Graeme W. Milton, University of Utah
  • Book: The Theory of Composites
  • Online publication: 07 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511613357.010
Available formats
×