Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-29T18:14:35.336Z Has data issue: false hasContentIssue false

10 - Lillie's Paradox – Or, Some Hazards of Cellular Geography

Published online by Cambridge University Press:  05 June 2012

Richard Burian
Affiliation:
Virginia Polytechnic Institute and State University
Get access

Summary

This chapter was written for a broad audience, including biologists, historians of science, philosophers of science, and sociologists. The topic offers something of interest to specialists in each of these fields, for it provides materials for case studies of conflicts with interacting conceptual, disciplinary, and institutional components among embryologists, geneticists, and workers in allied disciplines over the course of about 75 years.

THE PARADOX

I happily take the blame for the somewhat obscure label “Lillie's Paradox,” which I first heard used by Jane Maienschein. The paradox, widely known in various versions since about 1900, came to stand for a central failure of the research programs of Mendelian genetics, especially for embryologists. The failure endured from the 1920s forward into at least the 1950s. Indeed, some of the difficulties involved are, arguably, not yet fully resolved.

This term honors Frank Rattray Lillie, a slightly younger contemporary and friend of Thomas Hunt Morgan. Lillie, as we shall see, provided a pithy formulation of the paradox and argued that it meant that Morgan's theory of inheritance would be unable to provide a viable account of ontogenesis (i.e., the development of an organism from a fertilized egg to an adult).

The paradox is easily understood. It turns on the fact that in virtually all multicellular organisms, virtually all cells have an entire complement of chromosomes and, thus, if you believe the chromosome theory, virtually all cells of a higher organism have the same genes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. E. 1974. “Opposition to the Mendelian Chromosome Theory: The Physiological and Developmental Genetics of Richard Goldschmidt.” Journal of the History of Biology 7: 49–92CrossRef
Allen, G. E. 1983. “T. H. Morgan and the split between embryology and genetics, 1920–1926.” In British Society for Developmental Biology. Annual Meeting, Mottingham
Benson, K. R., J. Maienschein, and R. Rainger, eds. 1991. The Expansion of American Biology. New Brunswick, NJ: Rutgers University Press
Boveri, T. 1887. “Die Bildung der Richtungskorper bei Ascaris megalocephala und Ascaris lumbricoides.” Jenaische Zeitschrift für Naturwissenschaft 21: 423–515Google Scholar
Boveri, T. 1892. “Über die Entstehung des Gegensatzes zwischen den Geschlechtszellen und die somatischen Zellen bei Ascaris megalocephela.” Sitzungsberichte der Gesellschaft für Morphologie und Physiologie 8: 114–25Google Scholar
Boveri, T. 1902. “Die Befruchtung und Teilung des Eies von Ascaris megalocephala.” Jenaische Zeitschrift für Naturwissenschaft 22: 685–882Google Scholar
Boveri, T. 1910. “Über die Teilung centrifugierter Eier von Ascaris megalocephala.” Wilhelm Roux Archiv für Entwicklungsmechanik der Organismen XXX: 101CrossRefGoogle Scholar
Burian, R. M., and Gayon, J.. 1999. “The French school of genetics: From physiological and population genetics to regulatory molecular genetics.” Annual Review of Genetics 33: 313–49CrossRefGoogle ScholarPubMed
Burian, R. M., Gayon, J., and Zallen, D. T.. 1988. “The singular fate of genetics in the history of French biology, 1900–1940.” Journal of the History of Biology 21: 357–402CrossRefGoogle ScholarPubMed
Burian, R. M., J. Gayon, and D. T. Zallen. 1991. “Boris Ephrussi and the synthesis of genetics and embryology.” In A Conceptual History of Embryology, ed. S. Gilbert. New York: Plenum, 207–27
Conklin, E. G. 1908. “The mechanism of heredity.” Science 27: 89–99CrossRefGoogle ScholarPubMed
Darlington, C. D. 1939. The Evolution of Genetic Systems. Cambridge: Cambridge University Press
Darlington, C. D. 1944. “Heredity, development, and infection.” Nature 154: 164–9CrossRefGoogle Scholar
Driesch, H. 1894. Analytische Theorie der organischen Entwicklung. Leipzig: Wilhelm Engelmann
Ephrussi, B. 1958. “The cytoplasm and somatic cell variation.” Journal of Cellular and Comparative Physiology 52, suppl. 1: 35–53CrossRefGoogle ScholarPubMed
Gayon, J., and Burian, R. M.. 2000. “France in the era of Mendelism (1900–1930).” Comptes rendus de l'Académie des Sciences, Paris. Série III, Sciences de la Vie/Life Sciences 323, no. 12: 1097–107Google Scholar
Gilbert, S. F. 1988. “Cellular politics: Ernest Everett Just, Richard B. Goldschmidt, and the attempt to reconcile embryology and genetics.” In The American Development of Biology, eds. R. Rainger, K. R. Benson, and J. Maienschein. Philadelphia: University of Pennsylvania Press, 311–46
Gilbert, S. F. 1991. “Induction and the origins of developmental genetics.” In A Conceptual History of Modern Embryology, ed. S. F. Gilbert. New York: Plenum, 181–206
Hamburger, V. 1980. “Embryology and the modern synthesis in evolutionary theory.” In The Evolutionary Synthesis, eds. E. Mayr and W. Provine. Cambridge: Harvard University Press, 97–111
Harrison, R. G. 1937. “Embryology and its relations.” Science 85: 369–74CrossRefGoogle ScholarPubMed
Harrison, R. G. 1940. “Cellular differentiation and internal environment.” In The Cell and Protoplasm, ed. F. G. Moulton. Washington: The Science Press, 77–97
Hertwig, P. 1934. “Probleme der heutigen Vererbungslehre.” Die Naturwissenschaften 25: 425–30CrossRefGoogle Scholar
Just, E. E. 1939. The Biology of the Cell Surface. Philadelphia: P. Blakiston's Son and Co.
Lillie, F. R. 1927. “The gene and the ontogenetic process.” Science 64: 361–8CrossRefGoogle Scholar
Maienschein, J. 1981. “Shifting assumptions in American biology: Embryology, 1890–1910.” Journal of the History of Biology 14: 89–113Google ScholarPubMed
Maienschein, J. 1983. “Experimental biology in transition: Harrison's embryology, 1895–1910.” Studies in History of Biology 6: 107–27Google Scholar
Maienschein, J. 1986. “Preformation or new formation – or neither or both?” In A History of Embryology, eds. T. J. Horder, J. A. Witkowski, and C. C. Wylie. Cambridge: Cambridge University Press, 73–108
Maienschein, J. 1987. “Heredity/development in the United States, circa 1900.” History and Philosophy of the Life Sciences 9: 79–93Google ScholarPubMed
Maienschein, J. 1990. “Cell theory and development.” In Companion to the History of Modern Science, eds. R. C. Olby, G. N. Cantor, J. R. R. Christie, and M. J. S. Hodge. London: Routledge, 357–73
Maienschein, J. 1991. Transforming Traditions in American Biology, 1880–1915. Baltimore and London: The Johns Hopkins University Press
Morgan, T. H. 1910. “Chromosomes and heredity.” American Naturalist 44: 449–96CrossRefGoogle Scholar
Morgan, T. H. 1917. “The Theory of the Gene.” American Naturalist 51: 513–44CrossRefGoogle Scholar
Morgan, T. H. 1926. The Theory of the Gene. New Haven: Yale University Press
Morgan, T. H. 1932. “The rise of genetics.” Science 76: 261–7, 285–9CrossRefGoogle ScholarPubMed
Morgan, T. H. 1934. Embryology and Genetics. New York: Columbia University Press
Morgan, T. H. 1935. “The relation of genetics to physiology and medicine (Nobel Lecture, Stockholm, June 4, 1934).” Scientific Monthly 41: 5–18Google Scholar
Morgan, T. H., A. H. Sturtevant, H. J. Muller, and C. B. Bridges. 1915. The Mechanism of Mendelian Heredity. New York: Henry Holt and Co.
Nanney, D. L. 1958. “Epigenetic control systems.” Proceedings of the National Academy of Sciences, USA 44: 712–17CrossRefGoogle ScholarPubMed
Olby, R. C. 1990. “The emergence of genetics.” In Companion to the History of Science, eds. R. C. Olby et al. London: Routledge, 521–36
Rainger, R., K. R. Benson, and J. Maienschein, eds. 1988. The American Development of Biology. Philadelphia: University of Pennsylvania Press
Roux, W. 1883. “Über die Bedeutung der Kerntheilungsfiguren: Eine hypothetische Erörterung.” Leipzig: Engelmann
Roux, W. 1991. “On the significance of the figures of nuclear division: A hypothetical exposition, translated and introduced by Richard M. Burian and Marjorie Grene.” Evolutionary Biology 25: 427–44Google Scholar
Sander, K. 1986. “The role of genes in ontogenesis – evolving concepts from 1883–1983 as perceived by an insect embryologist.” In A History of Embryology, eds. T. J. Horder, J. A. Witkowski, and C. C. Wylie. Cambridge: Cambridge University Press, 363–95
Sapp, J. 1983. “The struggle for authority in the field of heredity, 1900–1932: New perspectives on the rise of genetics.” Journal of the History of Biology 16: 311–42CrossRefGoogle ScholarPubMed
Sapp, J. 1986. “Inside the cell: Genetic methodology and the case of the cytoplasm.” In The Politics and Rhetoric of Scientific Method, eds. J. A. Schuster and R. R. Yeo. Dordrecht, Holland: D. Reidel, 167–202
Sapp, J. 1987. Beyond the Gene: Cytoplasmic Inheritance and the Struggle for Authority in Genetics. New York: Oxford University Press
Stern, C. 1954. “Two or three bristles.” American Scientist 42: 213–47Google Scholar
Beneden, E., and Neyt, A.. 1887. “Nouvelles recherches sur la fécondation et la division mitosique chez l'Ascaride mégalocéphale.” Bulletin de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 14: 215–95, Pl. I–VIGoogle Scholar
Weismann, A. 1892. Das Keimplasma. Eine Theorie der Vererbung. Jena: Fischer
Weismann, A. 1893. The Germ-Plasm: A Theory of Heredity. New York: The Macmillan Co.
Wilson, E. B. 1896. The Cell in Development and Inheritance. New York: The Macmillan Co.
Wollman, E. 1928. “Bactériophagie et processus similaires: Hérédité ou infection?” Bulletin de l'Institut Pasteur 26: 1–14Google Scholar
Wollman, E., and Wollman, E.. 1925. “Sur la transmission ‘parahéréditaire’ de caractères chez les bactéries.” Comptes Rendus de la Société de Biologie 93: 1568–9Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×