Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T11:02:38.075Z Has data issue: false hasContentIssue false

13 - Spasticity

Published online by Cambridge University Press:  28 July 2009

Daniel Truong
Affiliation:
Orange Coast Memorial Medical Center
Dirk Dressler
Affiliation:
Hannover Medical School, Hannover, Germany
Mark Hallett
Affiliation:
George Washington University School of Medicine and Health Sciences, Washington, DC
Get access

Summary

Introduction

Spasticity is part of the upper motor neuron syndrome produced by conditions such as stroke, multiple sclerosis, traumatic brain injury, spinal cord injury, or cerebral palsy that affect upper motor neurons or their efferent pathways in the brain or spinal cord. It is characterized by increased muscle tone, exaggerated tendon reflexes, repetitive stretch reflex discharges (clonus), and released flexor reflexes (great toe extension; flexion at the ankle, knee, and hip) (Lance, 1981). Late sequelae may include contracture, pain, fibrosis, and muscle atrophy. Chemodenervation by intramuscular injection of botulinum toxin can reduce spastic muscle tone, normalize limb posture, ameliorate pain, and may improve motor function and prevent contractures.

Reduction of muscle tone, as measured by the Ashworth scale and by changes in range of motion after treatment with botulinum toxin, is best documented in the upper limbs (Brashear et al., 2002; Childers et al., 2004; Suputtitada & Suwanwela, 2005). In the lower limbs, muscle tone improvements are modest, with best results achieved from treatment below the knee.

Improvement of motor function has been noted in some studies, using measures such as the Barthel index, dressing, analyses of gait parameters such as walking speed, and the performance of other standardized tasks (Sheean, 2001; Brashear et al., 2002). In summary, motor function may be improved in a select subgroup of patients who retain selective motor control and some degree of dexterity in important distal muscles, require injection of relatively few target muscles, and especially if combined with other interventions such as physical therapy (Bhakta et al., 2000; Sheean, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berweck, S., Feldkamp, A., Francke, A., et al. (2002). Sonography-guided injection of botulinum toxin A in children with cerebral palsy. Neuropediatrics, 33, 221–3.CrossRefGoogle ScholarPubMed
Bhakta, B. B., Cozens, J. A., Chamberlain, M. A. & Bamford, J. M. (2000). Impact of botulinum toxin type A on disability and carer burden due to arm spasticity after stroke: a randomised double blind placebo controlled trial. J Neurol Neurosurg Psychiatry, 69, 217–21.CrossRefGoogle ScholarPubMed
Brashear, A., Gordon, M. F., Elovic, E., et al. (2002). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. N Engl J Med, 347, 395–400.CrossRefGoogle Scholar
Brashear, A., McAfee, A. L., Kuhn, E. R. & Ambrosius, W. T. (2003). Treatment with botulinum toxin type B for upper-limb spasticity. Arch Phys Med Rehabil, 84, 103–7.CrossRefGoogle ScholarPubMed
Brashear, A., McAfee, A. L., Kuhn, E. R. & Fyffe, J. (2004). Botulinum toxin type B in upper-limb poststroke spasticity: a double-blind, placebo-controlled trial. Arch Phys Med Rehabil, 85, 705–9.CrossRefGoogle ScholarPubMed
Childers, M. K. (2003). The importance of electromyographic guidance and electrical stimulation for injection of botulinum toxin. Phys Med Rehabil Clin N Am, 14, 781–92.CrossRefGoogle ScholarPubMed
Childers, M. K., Brashear, A., Jozefczyk, P., et al. (2004). Dose-dependent response to intramuscular botulinum toxin type A for upper-limb spasticity in patients after a stroke. Arch Phys Med Rehabil, 85, 1063–9.CrossRefGoogle Scholar
Chin, T. Y., Nattrass, G. R., Selber, P. & Graham, H. K. (2005). Accuracy of intramuscular injection of botulinum toxin A in juvenile cerebral palsy: a comparison between manual needle placement and placement guided by electrical stimulation. J Pediatr Orthop, 25, 286–91.CrossRefGoogle ScholarPubMed
Dressler, D. & Benecke, R. (2003). Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol, 49, 34–8.CrossRefGoogle ScholarPubMed
Francisco, G. E. (2004). Botulinum toxin: dosing and dilution. Am J Phys Med Rehabil, 83, S30–7.CrossRefGoogle ScholarPubMed
Hesse, S., Jahnke, M. T., Luecke, D. & Mauritz, K. H. (1995). Short-term electrical stimulation enhances the effectiveness of Botulinum toxin in the treatment of lower limb spasticity in hemiparetic patients. Neurosci Lett, 201, 37–40.CrossRefGoogle ScholarPubMed
Hyman, N., Barnes, M., Bhakta, B., et al. (2000). Botulinum toxin (Dysport) treatment of hip adductor spasticity in multiple sclerosis: a prospective, randomised, double blind, placebo controlled, dose ranging study. J Neurol Neurosurg Psychiatry, 68, 707–12.CrossRefGoogle ScholarPubMed
Lance, J. W. (1981). Disordered muscle tone and movement. Clin Exp Neurol, 18, 27–35.Google ScholarPubMed
Mayer, N. H., Esquenazi, A. & Childers, M. K. (2002). Common patterns of clinical motor dysfunction. In Mayer, N. H. & Simpson, D. M., eds., Spasticity: Etiology, Evaluation, Management and the Role of Botulinum Toxin. New York: WE MOVE, pp. 16–26.Google Scholar
Monnier, G., Parratte, B., Tatu, L., et al. (2003). [EMG support in botulinum toxin treatment]. Ann Readapt Med Phys, 46, 380–5.CrossRefGoogle Scholar
O'Brien, C. F. (1997). Injection techniques for botulinum toxin using electromyography and electrical stimulation. Muscle Nerve Suppl, 6, S176–80.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Pathak, M. S., Nguyen, H. T., Graham, H. K. & Moore, A. P. (2006). Management of spasticity in adults: practical application of botulinum toxin. Eur J Neurol, 13(Suppl 1), 42–50.CrossRefGoogle ScholarPubMed
Raj, P. P. E. (2004). Treatment algorithm overview: BoNT therapy for pain. Pain Pract, 4, S60–4.CrossRefGoogle ScholarPubMed
Sheean, G. L. (2001). Botulinum treatment of spasticity: why is it so difficult to show a functional benefit?Curr Opin Neurol, 14, 771–6.CrossRefGoogle ScholarPubMed
Suputtitada, A. & Suwanwela, N. C. (2005). The lowest effective dose of botulinum A toxin in adult patients with upper limb spasticity. Disabil Rehabil, 27, 176–84.CrossRefGoogle ScholarPubMed
Traba Lopez, A. & Esteban, A. (2001). Botulinum toxin in motor disorders: practical considerations with emphasis on interventional neurophysiology. Neurophysiol Clin, 31, 220–9.CrossRefGoogle ScholarPubMed
,WE MOVE Spasticity Study Group. (2005a). BTX-A Adult Dosing Guidelines. WE MOVE. www.mdvu.org/library/dosingtables/btxa_adg.html.
,WE MOVE Spasticity Study Group. (2005b). BTX-B Adult Dosing Guidelines. WE MOVE. www.mdvu.org/library/dosingtables/btxb_adg.html.
Westhoff, B., Seller, K., Wild, A., Jaeger, M. & Krauspe, R. (2003). Ultrasound-guided botulinum toxin injection technique for the iliopsoas muscle. Dev Med Child Neurol, 45, 829–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×