Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T21:23:48.029Z Has data issue: false hasContentIssue false

10 - Botulinum toxin applications in ophthalmology

Published online by Cambridge University Press:  28 July 2009

Daniel Truong
Affiliation:
Orange Coast Memorial Medical Center
Dirk Dressler
Affiliation:
Hannover Medical School, Hannover, Germany
Mark Hallett
Affiliation:
George Washington University School of Medicine and Health Sciences, Washington, DC
Get access

Summary

Introduction

Justinus Kerner, a German medical doctor and poet, was the first to describe botulism in detail. He recognized the disease to be related to the consumption of poison in sausages, and described how these were improperly prepared. His description of the disease (Kerner1822), including the paralysis of muscles and reduction of glandular function, was as accurate and complete as any today. He extracted the toxin, applied it in animals and considered the therapeutic value of the extracted poison, especially in motor overexcitability (for instance in chorea minor). However, it took around 150 years until botulinum toxin (BoNT) was first used for therapeutic measures. This was done by a coauthor of this chapter, who examined a number of chemical substances in order to find one which could lengthen an extrinsic eye muscle in order to have an alternative to squint operation. In animal tests BoNT proved to be the only substance that showed the desired paralytic effect and was locally and systemically well tolerated in a very low dose (Scott et al., 1973). The first patients were treated in 1978 (Scott, 1980). Meanwhile, it is evident that this method is safe but cannot replace surgery for most strabismus cases, because the long-term effect is not stable in many patients (Figure 10.1).

Besides strabismus – as you see in this book – BoNT has emerged as an important or even first-line treatment for many medical disorders as well as for cosmetic indications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, G. G., Kirkness, C. M. & Lee, J. P. (1987). Botulinum toxin A induced protective ptosis. Eye, 1, 603–8.CrossRefGoogle ScholarPubMed
Clarke, J. R. & Spalton, D. J. (1988). Treatment of senile entropion with botulinum toxin. Br J Ophthalmol, 72, 361–2.CrossRefGoogle ScholarPubMed
Kerner, J. (1822). Das Fettgift oder die Fettsäure und ihre Wirkungen auf den thierischen Organismus, ein Beytrag zur Untersuchung des in verdorbenen Würsten giftig wirkenden Stoffes. Stuttgart, Tübingen: Cotta.Google Scholar
McNeer, K. W., Magoon, E. H. & Scott, A. B. (1999). Chemodenervation therapy. In Rosenbaum, A. L. & Santiago, A. P., eds., Clinical Strabismus Management. Philadelphia: WB Saunders Co, pp. 423–32.Google Scholar
Meyer, M. (1995). Krokodilstraenen und gustatorisches Schwitzen. In Botulinum-Toxin-Forum 1995. Hamburg: Wissenschaftsverlag Wellingsbuettel.Google ScholarPubMed
Naik, M. N., Gangopadhyay, N., Fernandes, M., Murthy, R. & Honavar, S. G. (2007). Anterior chemodenervation of levator palpebrae superioris with botulinum toxin type-A (Botox®) to induce temporary ptosis for corneal protection. Eye, 2007 May 18 [Epub ahead of print].
Nuessgens, Z. & Roggenkaemper, P. (1993). Botulinum toxin as a tool for testing the risk of postoperative diplopia. Strabismus, 1, 181–6.CrossRefGoogle Scholar
Riemann, R., Pfennigsdorf, S., Riemann, E. & Naumann, M. (1999). Successful treatment of crocodile tears by injection of botulinum toxin into the lacrimal gland: a case report. Ophthalmology, 106, 2322–4.CrossRefGoogle ScholarPubMed
Scott, A. B. (1980). Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. J Pediatr Ophthalmol Strabismus 7, 21–5.Google Scholar
Scott, A. B. (1994). Change of eye muscle sarcomeres according to eye position. J Pediatr Ophthalmol Strabismus, 31, 85–8.Google ScholarPubMed
Scott, A. B., Rosenbaum, A. L. & Collins, C. C. (1973). Pharmacologic weakening of extraocular muscles. Invest Ophthalmol, 112, 924–7.Google Scholar
Uddin, J. M. & Davies, P. D. (2002). Treatment of upper eyelid retraction associated with thyroid eye disease with subconjunctival botulinum toxin injection. Ophthalmology, 109, 1183–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×