Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T14:23:16.894Z Has data issue: false hasContentIssue false

16 - Variational formulation of the Landau two-fluid equations

Published online by Cambridge University Press:  06 October 2009

Allan Griffin
Affiliation:
University of Toronto
Tetsuro Nikuni
Affiliation:
Tokyo University of Science
Eugene Zaremba
Affiliation:
Queen's University, Ontario
Get access

Summary

In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations reviewed in Chapter 14. In the case of trapped Bose gases, these are coupled differential equations with position-dependent coefficients associated with the local thermodynamic functions. Building on the approach initiated by Zaremba et al. (1999) for trapped atomic Bose gases, in this chapter we develop an alternative variational formulation of two-fluid hydrodynamics. This is based on the work of Zilsel (1950), originally developed to deal with superfluid He. Assuming a simple variational ansatz for the superfluid and normal fluid velocity fields, this approach reduces the problem of finding the hydrodynamic collective mode frequencies to solving coupled algebraic equations for a few variational parameters. These equations contain constants that involve spatial integrals over various equilibrium thermodynamic derivatives. Such a variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid equations numerically.

This chapter is mainly based on Taylor and Griffin (2005), Taylor (2008) and Zilsel (1950). In it, we discuss the normal modes of the non-dissipative Landau two-fluid equations for a trapped superfluid. In Section 16.3, we illustrate this formalism by deriving expressions for the frequencies of the dipole and breathing modes of a trapped Bose superfluid. In Chapters 17 and 18, we discuss an extended version of the two-fluid equations that includes hydrodynamic damping. The hydrodynamic damping of the collective modes is calculated in Chapter 19 using a generalized version of the variational approach developed in this chapter.

Zilsel's variational formulation

Since two-fluid hydrodynamics only describes a system in local equilibrium, all thermodynamic quantities are functions of position and time. Even in static equilibrium, in the presence of a trapping potential, most thermodynamic quantities will be position dependent.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×