Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-24T14:31:08.547Z Has data issue: false hasContentIssue false

1 - Overview and introduction

Published online by Cambridge University Press:  06 October 2009

Allan Griffin
Affiliation:
University of Toronto
Tetsuro Nikuni
Affiliation:
Tokyo University of Science
Eugene Zaremba
Affiliation:
Queen's University, Ontario
Get access

Summary

Since the dramatic discovery of Bose–Einstein condensation (BEC) in trapped atomic gases in 1995 (Anderson et al., 1995), there has been an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first phase of this research was discussed in the influential review article by Dalfovo et al. (1999) and in the proceedings of the 1998 Varenna Summer School on BEC (Inguscio et al., 1999). More recently, this research has been well documented in two monographs, by Pethick and Smith (2008, second edition) and by Pitaevskii and Stringari (2003). Most of this research, both experimental and theoretical, has concentrated on the case of low temperatures (well below the BEC transition temperature, TBEC), where one is effectively dealing with a pure Bose condensate. The total fraction of noncondensate atoms in such experiments can be as small as 10% of the total number of atoms and, equally importantly, this low-density cloud of thermally excited atoms is spread over a much larger spatial region compared with the high-density condensate, which is localized at the centre of the trapping potential. Thus most studies of Bose-condensed gases at low temperatures have concentrated entirely on the condensate degree of freedom and its response to various perturbations. This region is well described by the famous Gross–Pitaevskii (GP) equation of motion for the condensate order parameter Φ(r, t). As shown by research since 1995, this pure condensate domain is very rich in physics.

The main goal of the present book, in contrast, is to describe the dynamics of dilute trapped atomic gases at finite temperatures such that the noncondensate atoms also play an important role.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×