Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-29T01:40:15.706Z Has data issue: false hasContentIssue false

32 - Respiratory rhythms and apnoeas in the newborn

from Part III - Control of central nervous system output

Published online by Cambridge University Press:  04 August 2010

B. Duron
Affiliation:
Laboratoire de Neurophysiologie, URA 1331 CNRS 10, Amiens, France
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

In newborns of many species, breathing patterns are characterized by a very irregular rhythm interrupted by high-frequency respiratory periods (Mortola, 1984) and by the development of spontaneous apnoeas. Inspiratory activities of the phrenic nerve and diaphragm in newborns and particularly in preterm babies (Duron, Khater-Boidin & Wallois, 1991) consist of bursts of action potentials of short duration (50–60 ms) and low frequency (4–6 Hz). Moreover, in kittens, during eupnoea there exists relatively weak neuronal inspiratory activity (Bystrzycka, Nail & Purves, 1975; Marlot & Duron, 1976; Goldberg & Milic-Emili, 1977). In the newborn kitten, the inspiratory time is of short duration and the average duration of phrenic motor unit discharge does not exceed 500 ms (Duron & Marlot, 1979). The inspiratory time progressively lengthens during postnatal development, at the same time as the discharge pattern of phrenic motor units changes.

At birth, with regard to early inspiratory motor units (Hilaire, Monteau & Dussardier, 1972), we observed a very rapid increase in discharge frequency, which reached values of around 60 Hz, very clearly higher than those found in the adult animal. The end of the discharge is sudden, suggesting the intervention of powerful inhibitory mechanisms (Duron & Marlot, 1979). Moreover, in various experimental procedures (anaesthetized or decerebrate preparations), bilateral vagotomy, which in adults reinforces central inspiratory activity, induces prolongation and reinforcement of expiration in newborn animals (Marlot & Duron, 1979a). As shown in Fig. 32.1, bilateral vagotomy not only increases the expiratory time but also provokes the appearance of electrical activity in the expiratory muscles.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 327 - 336
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×