Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T02:43:31.232Z Has data issue: false hasContentIssue false

19 - Cortical circuits, synchronization and seizures

from Part III - Control of central nervous system output

Published online by Cambridge University Press:  04 August 2010

J. G. R. Jefferys
Affiliation:
Department of Physiology and Biophysics, St Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London, UK
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

The epilepsies as a group are amongst the most common of neurological disorders, so that about 1% of the population experience more than one seizure during their lifetime. They provide a particularly fertile area for the interaction of basic neurophysiology and clinical neurology. Epileptic activity can be considered a pathological extreme of normal neuronal synchronization. Studies of experimental epilepsies both help us understand the fundamentals of the underlying disease processes and provide the impetus for basic research on brain function. They do indeed provide a ‘Window to Brain Mechanisms’ to borrow the title of an earlier monograph (Lockard & Ward, 1980).

A key feature of epileptic foci is the abrupt transition from apparently normal neuronal activity to the intense and synchronous discharge of many, if not all, of the neurones in the focus. The extent and duration of this synchrony varies. For present purposes we can divide discharges from epileptic foci into: brief and localized ‘interictal’ bursts, which last <200 ms; ‘polyspikes’ or ‘after-discharges’, which last several seconds but which also tend to remain localized at the focus; and ‘seizures’, which last tens of seconds up to 2 minutes, and which normally involve large areas of the brain, and may generalize into most of the neocortex, resulting in motor fits (Fig. 19.1). Normally epileptic seizures are self-limiting, but when these constraints fail status epilepticus results, which is a life-threatening medical emergency, and which is likely to cause substantial brain damage.

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 210 - 220
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×