Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T09:47:24.331Z Has data issue: false hasContentIssue false

Interstellar magnetic fields and infrared-submillimeter spectropolarimetry

Published online by Cambridge University Press:  21 May 2010

Roger H. Hildebrand
Affiliation:
University of Chicago, Department of Astronomy and Astrophysics, Department of Physics, and Enrico Fermi Institute. 5640 S. Ellis Ave., Chicago, IL 60637, USA
J. Trujillo-Bueno
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Moreno-Insertis
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Sanchez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

The large-scale features of the magnetic field in the arms of the Galaxy have been traced by observations of polarized starlight, synchrotron emission, Zeeman splitting, and Faraday rotation. More recently, it has become possible to map fields in dense clouds by observations of polarized thermal emission from magnetically aligned dust grains. Observations at far-infrared and submillimeter wavelengths provide measurements of the field as projected on the sky at hundreds of points in individual clouds. In the polarization maps, especially when compared at several wavelengths, one finds examples of fields shaped by gravitational contraction, differential rotation, and compression. One also finds evidence for unresolved thermal structure and turbulence. To interpret the results one must understand the physical principles that relate emission, absorption, and scattering; and that relate polarization to the shapes and materials of the emitting dust grains. When these principles are applied to emission one finds that the degree of polarization in homogeneous clouds should be nearly independent of wavelength in the far-infrared and submillimeter portions of the spectrum. The steep polarization spectra actually observed can tentatively be understood if one assumes a heterogeneous temperature and radiation structure in which there is a correlation between temperature and grain alignment. The potential sources of systematic errors in polarization measurements are such that anyone entering the field must carefully review the appropriate observing and analysis techniques. With attention to the required techniques and with new instruments to be commissioned in the next few years it should become feasible to pursue scientific goals that have thus far been largely inaccessible.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×