Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T10:32:12.328Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  21 May 2010

Javier Trujillo-Bueno
Affiliation:
Instituto de Astrofísica de Canarias
Fernando Moreno-Insertis
Affiliation:
Instituto de Astrofísica de Canarias
J. Trujillo-Bueno
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Moreno-Insertis
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
F. Sanchez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Most observational work in astrophysics has so far been carried out mainly on the basis of the intensity of the radiation received from the object observed as a function of wavelength. However, an important and frequently overlooked aspect of electromagnetic radiation is its state of polarization, which is related to the orientation of the electric field of the wave. The state of polarization can be conveniently characterized in terms of four quantities that can be measured by furnishing our telescopes with a polarimeter. These observables are the four Stokes parameters (I, Q, U, V) which were formulated by Sir George Stokes in 1852 and introduced into astrophysics by the Nobel laureate Subrahmanyan Chandrasekhar in 1946. A quick, intuitive definition of the meaning of these four parameters can be obtained from Figure 1 of the chapter by Prof. Landi Degl'Innocenti in this book, which we borrowed for the poster announcing the Twelfth Canary Islands Winter School on Astrophysical Spectropolarimetry.

In physics laboratory experiments, where the magnetic field is known beforehand, the observed polarization signals are used to obtain information on the atomic and molecular structure of the system under study. In astrophysics we have the inverse problem, the magnetic field being the unknown quantity. To obtain information about cosmic magnetic fields, therefore, we have to learn how to interpret spectropolarimetric observations correctly by resorting to our knowledge of atomic and molecular physics.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×