Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T08:02:06.461Z Has data issue: false hasContentIssue false

2 - Biology of preterm labour

Published online by Cambridge University Press:  07 August 2009

Jane Norman
Affiliation:
University of Glasgow
Ian Greer
Affiliation:
University of Glasgow
Get access

Summary

Introduction

The prevention of preterm labour remains one of the primary goals of obstetric research. To achieve this effectively, we need to understand the mechanisms regulating uterine contractility, cervical ripening and activation of the fetal membranes. Whether preterm labour represents an acceleration of the mechanisms involved in term labour remains controversial. Romero et al. (1997) propose that the fundamental difference between term and preterm labour is that the former results from physiological activation of the components of a common terminal pathway, while preterm labour results from disease processes activating one or more of the components of this pathway. In contrast, Challis et al. (2000) suggest that the causes of preterm labour may vary at different times during pregnancy and will not necessarily reflect acceleration of the processes occurring during labour at term. At present, the factors maintaining myometrial quiescence during pregnancy, and those that stimulate the onset of uterine contractions and cervical ripening at term remain obscure. Until these factors are elucidated, it seems unlikely that effective strategies for the treatment of preterm labour will be found (Goldenberg and Rouse 1998).

Myometrial contractions

The uterus is spontaneously active and, using electromyographic measurements, contractile activity can be detected in both pregnant and non-pregnant women (Morrison 1996). Two different types of electromyographic activity have been described in the myometrium of the pregnant rhesus monkey, referred to as contractures and contractions, and are believed to be present in most species (Nathanielsz et al. 1992).

Type
Chapter
Information
Preterm Labour
Managing Risk in Clinical Practice
, pp. 26 - 75
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, A. D.. D'Andrea, N., Truong McMahon, M. J. and Lessey, B. A. (2001) Cervical stroma apoptosis in pregnancy. Obstet. Gynecol. 97(3), 399–403.Google ScholarPubMed
Allen, J., Uldbjerg, N., Petersen, L. K. and Secher, N. J. (1989) Intracervical 17-β oestradiol before induction of second trimester abortion with a prostaglandin E1 analogue. Eur. J. Obstet. Gynecol. Reprod. Biol. 32, 123–7.CrossRefGoogle ScholarPubMed
Alm, P., Alumets, J., Hakanson, R. and Sundler, F. (1977) Peptidergic (vasoactive intestinal peptide) nerves in the genito-urinary tract. Neurosci. 2, 751–4.CrossRefGoogle ScholarPubMed
Alm, P., Alumets, J., Brodin, G.et al. (1978) Peptidergic (substance P) nerves in the genito-urinary tract. Neurosci. 3, 419–25.CrossRefGoogle ScholarPubMed
Altabef, K. M., Spencer, J. T. and Zinberg, S. (1992) Intravenous nitroglycerin for uterine relaxation for an inverted uterus. Am. J. Obstet. Gynecol. 166, 1237–8.CrossRefGoogle ScholarPubMed
Ambrus, G. and Rao, Ch. V. (1994) Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotrophin. Endocrinology 135, 2772–9.CrossRefGoogle Scholar
Bacon, C. R., Morrison, J. J., O'Reilly, G., Cameron, I. T. and Davenport, A. P. (1995) ETA and ETB endothelin receptors in human myometrium characterised by the subtype selective ligands BQ123, BQ3020, FR139317 and PD151242. J. Endocrinol. 144, 127–34.CrossRefGoogle Scholar
Baggiolini, M., Wakz, A. and Kunkel, S. L. (1989) Neutrophil activating peptide-1/interleukin-8 a novel cytokine that activate neutrophils [review]. J. Clin. Invest. 246, 1045–9.CrossRefGoogle Scholar
Bansal, R. K., Goldsmith, P. C., He, Y.et al. (1997) A decline in myometrial nitric oxide synthase expression is associated with labor and delivery. J. Clin. Invest. 99, 2502–8.CrossRefGoogle ScholarPubMed
Bao, S., Rai, J. and Schreiber, J. (2001) Brain nitric oxide synthase expression is enhanced in the human cervix in labor. J. Soc. Gynecol. Investig. 8(3), 158–64CrossRefGoogle ScholarPubMed
Bao, S., Rai, J. and Schreiber, J.(2002) Expression of nitric oxide synthase isoforms in human pregnant myometrium at term. J. Soc. Gynecol. Investig. 9(6), 351–6.CrossRefGoogle ScholarPubMed
Barclay, C. G., Brennand, J. E., Kelly, R. W. and Calder, A. A. (1993) Interleukin-8 production by the human cervix. Am. J. Obstet. Gynecol. 169, 625–32.CrossRefGoogle ScholarPubMed
Barnes, F. (1881) Hourglass contraction of the uterus treated with nitrate of amyl. BMJ 1, 377.CrossRefGoogle Scholar
Batra, S. (1994) Hormonal control of myometrial function. In Chard, T. and Grudzinskas, J. G., eds., The Uterus. Cambridge: Cambridge University Press. 173–92.Google Scholar
Bayhi, D. A., Sherwood, C. D. and Campbell, C. E. (1992) Intravenous nitroglycerin for uterine inversion. J. Clin. Anaesth. 4, 487–8.CrossRefGoogle ScholarPubMed
Beck, P., Adler, P., Szlachter, N., Steinetz, B. G. and Weiss, G. (1978) Synergistic effect of human relaxin and progesterone concentration preceding normal labor. Obstet. Gynecol. 51, 686–90.Google Scholar
Belfort, M. A. (1993) Intravenous nitroglycerin as a tocolytic agent for intrapartum external cephalic version. S. Afr. Med. J. 83, 656.Google ScholarPubMed
Bell, R. J., Permezel, M., MacLennan, A.et al. (1993) A randomized, double-blind, placebo-controlled trial of the safety of vaginal recombinant human relaxin for cervical ripening. Obstet. Gynecol. 82, 328–33.Google ScholarPubMed
Benedetto, C., Petraglia, F., Marozio, L.et al. (1994) Corticotrophin-releasing hormone increases prostglandin F2α activity on human myometrium. Am. J. Obstet. Gynecol. 171, 126–31.CrossRefGoogle Scholar
Bennett, P. R., Rose, M. P., Myatt, L. and Elder, M. G. (1987) Preterm labor: stimulation of arachidonic acid metabolism in human amnion cells by bacterial products. Am. J. Obstet. Gynecol. 156(3), 649–55.CrossRefGoogle ScholarPubMed
Bian, J. and Sun, Y. (1997) Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol. Cell. Biol. 17(11), 6330–8.CrossRefGoogle ScholarPubMed
Bokstrom, H. and Norstrom, A. (1995) Effects of mifepristone and progesterone on collagen synthesis in the human uterine cervix. Contraception 51, 249–54.CrossRefGoogle ScholarPubMed
Bokstrom, H., Brannstrom, M., Alexandersson, M. and Norstrom, A. (1997) Leukocyte subpopulations in human uterine cervical stroma at early and term pregnancy. Hum. Reprod. 12, 586–90.CrossRefGoogle ScholarPubMed
Bottari, S. P., Vokaer, A., Kaivez, E., Lescrainier, J. P. and Vauquelin, G. (1985) Regulation of α- and β-adrenergic receptor subclasses by gonadal steroids in human myometrium. Acta Physiol. Hung. 65, 335–46.Google ScholarPubMed
Bowen, J. M., Chamley, L., Keelan, J. A. and Mitchell, M. D. (2002) Cytokines of the placenta and extra-placental membranes: roles and regulation during human pregnancy and parturition. Placenta 23(4), 257–73.CrossRefGoogle ScholarPubMed
Boyle, M. B., MacLusky, N. J., Naftolin, F. and Kaczmarek, L. K. (1987) Hormonal regulation of K+-channel messenger RNA in rat myometrium during oestrus cycle and in pregnancy. Nature 330(6146), 373–5.CrossRefGoogle ScholarPubMed
Bozler, E. (1941) Influence of estrone on the electrical characteristics and the mobility of uterine muscle. Endocrinology 29, 225–7.CrossRefGoogle Scholar
Brennand, J. E., Calder, A. A., Leitch, C. R.et al. (1997) Recombinant human relaxin as a cervical ripening agent. BJOG, 104, 775–80.CrossRefGoogle ScholarPubMed
Brennand, J., Leask, R., Kelly, R., Greer, I. and Calder, A. (1998) The influence of amniotic fluid on prostaglandin synthesis and metabolism in human fetal membranes. Acta Obstet. Gynecol. Scand. 77, 142–50.CrossRefGoogle ScholarPubMed
Brocklehurst, P., Hannah, M. and McDonald, H. (2002) Interventions for treating bacterial vaginosis in pregnancy (Cochrane Review). In The Cochrane Library, Issue 3, Oxford: Update Software.Google Scholar
Bryant-Greenwood, G. D. and Yamamoto, S. Y. (1995) Control of peripartal collagenolysis in the human chorion-decidua. Am. J. Obstet. Gynecol. 172(1 Pt 1), 63–70.CrossRefGoogle ScholarPubMed
Buhimschi, I., Yallampalli, C., Dong, Y-L. and Garfield, R. E. (1995) Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of human uterine contractility during pregnancy. Am. J. Obstet. Gynecol. 172, 1577–84.CrossRefGoogle ScholarPubMed
Buhimschi, I., Ali, M., Jain, V., Chwalisz, K. and Garfield, R. E. (1996) Differential regulation of nitric oxide in the rat uterus and cervix during pregnancy in labour. Hum. Reprod. 11, 1755–66.CrossRefGoogle Scholar
Bulbring, E. and Tomito, T. (1987) Catecholamine action on smooth muscle. Pharmacol. Rev. 39, 49–96.Google ScholarPubMed
Cabrol, D., Dubois, P., Sedbon, E.et al. (1987) Prostaglandin E2-induced changes in the distribution of glycosaminoglycans in the isolated rat cervix. Eur. J. Obstet. Gynecol. 26, 359–65.CrossRefGoogle Scholar
Calder, A. A. (1980) Pharmacological management of the unripe cervix in the human. In Naftolin, F. and Stubblefield, P. G., eds., Dilatation of the Uterine Cervix. New York: Raven Press, pp. 147–56.Google Scholar
Calder, A. A.(1994) The cervix during pregnancy. In Chard, T. and Grudzinskas, J. G., eds., The Uterus. Cambridge: Cambridge University Press, pp. 288–307.Google Scholar
Calder, A. A. and Greer, I. A. (1991) Pharmacological modulation of cervical compliance in the first and second trimesters of pregnancy. Semin. Perinatol. 15, 162–72.Google ScholarPubMed
Calder, A. A. and Greer, I. A.(1992) Cervical physiology and induction of labour. In Bonnar, J., ed., Recent Advances in Obstetrics and Gynaecology. Edinburgh: Churchill Livingstone, 17, 33–56.Google Scholar
Calixto, J. B. and Rae, G. A. (1991) Effects of endothelin, Bay K8644 and other oxytocics in non-pregnant and late pregnant rat isolated uterus. Eur. J. Pharmacol. 192, 109–16.CrossRefGoogle ScholarPubMed
Carbonne, B., Mignot, T. M., Tsatsaris, V. and Ferre, F. (1998) Changes in plasma and amniotic fluid endothelin levels during pregnancy: facts or artefacts?Eur. J. Obstet. Gynecol. Reprod. Biol. 76(1), 15–19.CrossRefGoogle ScholarPubMed
Carey, J. C., Klebanoff, M. A., Hauth, J. C.et al. (2000) Metronidazole to prevent preterm delivery in pregnant women with asymptomatic bacterial vaginosis. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N. Engl. J. Med. 342 534–40.CrossRefGoogle ScholarPubMed
Carsten, M. E. (1968) Regulation of myometrial composition, growth and activity. In Assali, N. S., ed., The Maternal Organism, Vol 1 of the Biology of Gestation Series. New York: Academic Press, pp. 355–425.Google Scholar
Carsten, M. E. and Miller, J. D. (1985) Calcium release by inositol trisphosphate from calcium-transporting microsomes derived from uterine sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 130, 1027–31.CrossRefGoogle Scholar
Casatella, M. N. (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol. Today 16, 21–6.CrossRefGoogle Scholar
Casey, M. L. and MacDonald, P. C. (1988) Biomolecular processes in the onset of parturition: decidual activation. Clin. Obstet. Gynecol. 31, 533–52.CrossRefGoogle ScholarPubMed
Casey, M. L. and MacDonald, P. C.(1993) Human parturition: distinction between the initiation of parturition and the onset of labor. Semin. Reprod. Endocrinol. 11, 272–84.CrossRefGoogle Scholar
Casey, M. L., Cox, S. M., Word, A. and MacDonald, P. C. (1990) Cytokines and infection-induced preterm labour. Reprod. Fertil. Dev. 2, 499–510.CrossRefGoogle ScholarPubMed
Challis, J. R. G. and Hooper, S. (1989) Birth: Outcome of a positive cascade. Bailliere's Clin. Endocrinol. Metab. 3, 781–93.CrossRefGoogle ScholarPubMed
Challis, J. R. G. and Lye, S. J. (1994) Parturition. In Knobil, E. and Neil, J. D. eds., The Physiology of Reproduction. New York: Raven Press, pp. 985–1031.Google Scholar
Challis, J. R. and Mitchell, M. D. (1994) Basic mechanisms of preterm labour. Res. Clin. Forums 16, 39–58.Google Scholar
Challis, J. R. G., Matthews, S. G., Gibb, W. and Lye, S. J. (2000) Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21, 514–50.Google ScholarPubMed
Chanrachakul, B., Herabutya, Y. and Punyavachira, P. (2000) Randomized comparison of glyceryl trinitrate and prostaglandin E2 for cervical ripening at term. Obstet. Gynecol. 96, 549–53.Google ScholarPubMed
Chard, T., Boyd, N. R. H., Edwards, C. R. W. and Boyd, N. (1971) Release of oxytocin and vasopressin by human fetus during labour. Nature (Lond.) 234, 352–4.CrossRefGoogle ScholarPubMed
Chibbar, R., Miller, F. D. and Mitchell, B. F. (1993) Synthesis of oxytocin in amnion, chorion and decidua may influence the timing of human parturition. J. Clin. Invest. 91, 185–92.CrossRefGoogle ScholarPubMed
Chwalisz, K. (1988) Cervical ripening and induction of labour with progesterone antagonists. Proceedings of the XI European Congress of Perinatal Medicine. Rome: CIC Edizioni Internaziolini, p. 60.
Chwalisz, K.(1994) The use of progesterone antagonists for cervical ripening as an adjunct to labour and delivery. Hum. Reprod. 9, 131–63.CrossRefGoogle ScholarPubMed
Chwalisz, K., Benson, M., Scholz, P.et al. (1994a) Cervical ripening with the cytokines interleukin 8, interleukin 1β and tumour necrosis factor α in guinea pigs. Hum. Reprod. 9, 2173–81.CrossRefGoogle Scholar
Chwalisz, K., Ciesla, I. and Garfield, R. E. (1994b) Inhibition of nitric oxide (NO) synthesis induces preterm parturition and pre-eclampsia-like conditions in guinea pigs. Soc. Gynecol. Investig., 41st Annual Meeting. A36.Google Scholar
Chwalisz, K., Buhimschi, I. and Garfield, R. E. (1996) Role of nitric oxide in obstetrics. Prenat. Neonat. Med. 1, 292–329.Google Scholar
Chwalisz, K., Shao-Qing, S., Garfield, R. E. and Bier, H. M. (1997) Cervical ripening in guinea-pigs after a local application of nitric oxide. Hum. Reprod. 12, 2093–101.CrossRefGoogle ScholarPubMed
Coburn, RF. (1987) Stretch-induced membrane depolarization in ferret trachealis smooth muscle cells. J. Appl. Physiol. 62, 2320–5.CrossRefGoogle ScholarPubMed
Colditz, I. G. (1990) Effects of exogenous prostaglandin E2 and actinomycin-D on plasma leakage induced by neutrophil activating peptide-1/interleukin-8. Immunol. Cell. Biol. 68, 397–403.CrossRefGoogle ScholarPubMed
Cole, W. C., Garfield, R. E. and Kirkaldy, J. S. (1988) Gap junctions and direct intercellular communication between rat uterine smooth muscle cells. Am. J. Physiol. 249, C20–31.CrossRefGoogle Scholar
Cotch, M. F., Pastorek, J. G. 2nd, Nugent, R. P., et al. (1997) Trichomonas vaginalis associated with low birthweight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex. Transm. Dis. 24, 353–60.CrossRefGoogle ScholarPubMed
Crankshaw, D. J., Crankshaw, J., Brenda, L. A. and Daniel, E. E. (1979) Receptors for E type prostaglandins in the plasma membrane of non-pregnant myometrium. Arch. Biochem. Biophys. 198, 459–65.CrossRefGoogle Scholar
Csapo, A. L. (1956) Progesterone ‘block’. Am. J. Anat. 98, 273–91.CrossRefGoogle Scholar
Csapo, A. L.(1977) The “see-saw” theory of parturition. Ciba Found. Symp. 47, 159–210.Google Scholar
Danforth, D. N., Buckingham, J. C. and Roddick, J. W. (1960) Connective tissue changes incident to cervical effacement. Am. J. Obstet. Gynecol. 86, 939–45.CrossRefGoogle Scholar
Danforth, D. N., Veis, A., Breen, M.et al. (1974) The effect of pregnancy and labor on the human cervix: changes in collagen, glycoproteins and glycosaminoglycans. Am. J. Obstet. Gynecol. 120, 641–9.CrossRefGoogle ScholarPubMed
David, M., Halle, H., Lichtenegger, W., Sinha, P. and Zimmermann, T. (1998) Nitroglycerin to facilitate fetal extraction during cesarean delivery. Obstet. Gynecol. 91, 119–24.CrossRefGoogle ScholarPubMed
Dawood, M. Y., and Khan-Dawood, F. S. (1985) Oxytocin. In Shearman, R. F., ed., Clinical Reproductive Endocrinology. New York: Churchill Livingstone. 233–49.Google Scholar
Dayan, S. S. and Schwalbe, S. S. (1996) The use of small dose intravenous nitroglycerin in a case of uterine inversion. Anesth. Analg. 82, 1091–3.Google Scholar
Denison, F. C., Riley, S. C., Elliott, C. L.et al. (2000) The effect of mifepristone administration on leukocyte populations, matrix metalloproteinases and inflammatory mediators in the first trimester cervix. Mol. Hum. Reprod. 6(6), 541–8.CrossRefGoogle ScholarPubMed
Dennes, W. J., Slater, D. M., Poston, L. and Bennett, P. R. (1999) Myometrial nitric oxide synthase messenger ribonucleic acid expression does not change throughout gestation or with the onset of labor. Am. J. Obstet. Gynecol. 180(2 Pt 1), 387–92.CrossRefGoogle ScholarPubMed
Di Iulio, J. L., Gude, N. M., King, R. G. and Brennecke, S. P. (1995) Human placental and fetal membrane nitric oxide synthase activity before, during, and after labor at term. Reprod. Fertil. Dev. 7, 1505–8.Google ScholarPubMed
Di Liberto, G., Dallot, E., Eude-Le Parco, I.et al. (2003) A critical role for PKC zeta in endothelin-1-induced uterine contractions at the end of pregnancy. Am. J. Physiol. Cell. Physiol. 285, C599–607.CrossRefGoogle ScholarPubMed
Diamond, J. (1990) Beta-adrenoreceptors, cyclic AMP and cyclic GMP in control of uterine motility. In Carsten, M. E. and Miller, J. D., eds., Uterine Function: Molecular and Cellular Aspects. New York: Plenum Press, pp. 249–75.CrossRefGoogle Scholar
Ding, J. Q., Granberg, S. and Norstrom, A. (1990) Clinical effects and cervical tissue changes after treatment with 16, 16 dimethyl-trans delta 2 PGE1 methylester. Prostaglandins 39, 281–5.CrossRefGoogle ScholarPubMed
Dombroski, R. A., Woodard, D. S., Harper, M. J. and Gibbs, R. S. (1990) A rabbit model for bacteria-induced preterm pregnancy loss. Am. J. Obstet. Gynecol. 163(6 Pt 1), 1938–43.CrossRefGoogle ScholarPubMed
Duckitt, K. and Thornton, S. (2002) Nitric oxide donors for the treatment of preterm labour. Cochrane Database Syst. Rev. 3, CD002860.CrossRefGoogle Scholar
Egarter, C. H. and Husslein, P. (1992) Biochemistry of myometrial contractility. Clin. Obstet. Gynecol. 6, 755–69.Google Scholar
Ekerhovd, E., Weijdegard, B., Brannstrom, M., Mattsby-Baltzer, I. and Norstrom, A. (2002) Nitric oxide induced cervical ripening in the human: Involvement of cyclic guanosine monophosphate, prostaglandin F(2 alpha), and prostaglandin E(2). Am. J. Obstet. Gynecol. 186(4), 745–50.CrossRefGoogle Scholar
Ekman, G., Malmstrom, A. and Uldbjerg, N. (1986) Cervical collagen: an important regulator of cervical function in term labour. Obstet. Gynecol. 67, 633–6.CrossRefGoogle Scholar
El Maradny, E., Kanayama, N., Halim, A.et al. (1994) Interleukin-8 induces cervical ripening in rabbits. Am. J. Obstet. Gynecol. 171, 77–83.CrossRefGoogle ScholarPubMed
El Maradny, E., Kanayama, N., Halim, A.et al. (1995) The effect of interleukin-1 in rabbit cervical ripening. Eur. J. Obstet. Gynecol. Reprod. Biol. 60, 75–80.CrossRefGoogle ScholarPubMed
Ellwood, D. A., Mitchell, M. D. and Anderson, A. B. M. (1980) The in vitro production of prostanoids by the human cervix during pregnancy: preliminary observations. BJOG, 87, 210–14.CrossRefGoogle ScholarPubMed
Ellwood, D. A., Anderson, A. B. M., Mitchell, M. D. et al. (1981) Prostanoids, collagenase and cervical softening in sheep. In Ellwood, D. A. and Anderson, A. B. M., eds., The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations. Edinburgh: Churchill Livingstone, pp. 57–73.Google Scholar
Erkinheimo, T. L., Saukkonen, K., Narko, K.et al. (2000) Expression of cyclo-oxygenase-2 and prostanoid receptors by human myometrium. J. Clin. Endocrinol. Metab. 85(9), 3468–75.Google Scholar
Eude, I., Paris, B., Cabrol, D., Ferre, F. and Breuiller-Fouche, M. (2000) Selective protein kinase C isoforms are involved in endothelin-1-induced human uterine contraction at the end of pregnancy. Biol. Reprod. 63(5), 1567–73.CrossRefGoogle ScholarPubMed
Evans, M. I., Dougan, M. B., Moawad, A. H.et al. (1983) Ripening of the human cervix with porcine ovarian relaxin. Am. J. Obstet. Gynecol. 147, 410–14.CrossRefGoogle ScholarPubMed
Facchinetti, F., Piccinini, F. and Volpe, A. (2000) Chemical ripening of the cervix with intracervical application of sodium nitroprusside: a randomized controlled trial. Hum. Reprod. 15(10), 2224–7.CrossRefGoogle ScholarPubMed
Flint, A. P. F. (1979) Role of progesterone and estrogen in the control of the onset of labor in man: a continuing controversy. In Keirse, M. J. N. C., Anderson, A. B. M. and Bennebroek-Gravenhorst, J., eds., Human Parturition. New Concepts and Developments. The Netherlands: Leiden University Press, pp. 85–100.Google Scholar
Flint, A. P. F., Anderson, A. B. M., Steele, P. A. and Turnbull, A. C. (1975) The mechanism by which fetal cortisol controls the onset of parturition in the sheep. Biochem. Soc. Trans. 3, 1189–94.CrossRefGoogle Scholar
Florio, P., Woods, R. J., Genazzani, A. R., Lowry, P. J. and Petragalia, F. (1997) Changes in amniotic immunoreactive corticotrophin-releasing factor (CFR) and CRF-binding protein levels in pregnant women at term and during labor. J. Clin. Endocrinol. Metab. 82, 835–8.Google Scholar
Fortunato, S. J. and Menon, R. (2001). Distinct molecular events suggest different pathways for preterm labor and premature rupture of membranes. Am. J. Obstet. Gynecol. 184, 1399–405; discussion 1405–6.CrossRefGoogle ScholarPubMed
Fortunato, S. J., Menon, R., Bryant, C.et al. (2000). Programmed cell death (apoptosis) as a possible pathway to metalloproteinase activation and fetal membrane degradation in premature rupture of membranes. Am. J. Obstet. Gynecol. 182(6), 1468–76.CrossRefGoogle ScholarPubMed
Fosang, A. J., Handley, C. J., Santer, V., Lowther, D. A. and Thorburn, G. D. (1984) Pregnancy-related changes in the connective tissue of the ovine cervix. Biol. Reprod. 30 1223–35.CrossRefGoogle ScholarPubMed
Fuchs, A. R. (1978) Hormonal control of myometrial function during pregnancy and parturition. Acta Endocrinol. 221, 3–71.Google ScholarPubMed
Fuchs, F. and Stakeman, G. (1960) Treatment of threatened premature labour with large doses of progesterone. Am. J. Obstet. Gynecol. 79, 172–6.CrossRefGoogle ScholarPubMed
Fuchs, A. R., Fuchs, F., Husslein, P. and Soloff, M. S. (1984) Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol. 150, 734–41.CrossRefGoogle ScholarPubMed
Garfield, R. E., (1984) Myometrial ultrastructure and uterine contractility. In Bottari, S., Thomas, J. P. and Vokaer, A., eds., Uterine Contractility. New York: Mason, pp. 81–109.Google Scholar
Garfield, R. E.,(1994) Role of cell-to-cell coupling in control of myometrial contractility and labor. In Garfield, R. E. and Tabb, T. N., eds., Control of Uterine Contractility. Boca Raton: CRC Press, pp. 39–81.Google Scholar
Garfield, R. E., and Hayashi, R. H. (1981) Appearance of gap junctions in the myometrium of women during labor. Am. J. Obstet. Gynecol. 140, 254–60.CrossRefGoogle ScholarPubMed
Garfield, R. E., and Somlyo, A. P. (1985) Structure of smooth muscle. In Groves, A. K. and Daniel, E. E., eds., Calcium and Contractility. Clifton, NJ: Humana Press, pp. 1–36.CrossRefGoogle Scholar
Garfield, R. E. and Yallampalli, C. (1994) Structure and function of uterine muscle. In Chard, T. and Grudzinskas, J. G., eds., The Uterus. Cambridge: Cambridge University Press, pp. 54–93.Google Scholar
Garfield, R. E., Sims, S. M., Daniel, E. E. (1977) Gap junctions: their presence and necessity in myometrium during parturition. Science, 198, 958–960.CrossRefGoogle ScholarPubMed
Germain, A. M., Smith, J., Casey, M. L. and MacDonald, P. C. (1994) Human fetal membrane contribution to the prevention of parturition: uterotonin degradation. J. Clin. Endocrinol. Metab. 78, 463–70.Google ScholarPubMed
Gibbins, I. L., Furness, J. B., Costa, M.et al. (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci. Lett. 57, 125–30.CrossRefGoogle ScholarPubMed
Goldenberg, R., Mercer, B., Meis, P. J.et al. (1996). “The preterm preduction study: fetal fibronectin testing and spontanous preterm birth.” Obstet. Gynecol. 87, 643–8.CrossRefGoogle Scholar
Goldenberg, R. L. and Rouse, D. J. (1998) Prevention of premature birth. N. Engl. J. Med. 339, 313–320.CrossRefGoogle ScholarPubMed
Golichowski, A. (1980) Cervical stromal interstitial polysaccharide metabolism in pregnancy. In Naftolin, F. and Stubblefield, P. G., eds., Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management. New York: Raven Press, pp. 99–112.Google Scholar
Gomez, R., Romero, R., Mazor, M. et al. (1997) The role of infection in preterm labour and delivery. In Elder, M. G., Romero, R. and Lamont, R. F., eds., Preterm Labor. New York: Churchill Livingstone, pp. 85–126.Google Scholar
Gordon, A. J. and Calder, A. A. (1977) Oestradiol applied locally to ripen the unfavourable cervix. Lancet ii, 1319–21.CrossRefGoogle Scholar
Granstrom, L., Ekman, G., Ulmsten, U. and Malmstrom, A. (1989) Changes in connective tissue of corpus and cervix uteri during ripening and labour in term pregnancy. BJOG 96, 1198–202.CrossRefGoogle ScholarPubMed
Greer, I. A. (1992) Cervical ripening. In Drife, J. O. and Calder, A. A., eds., Prostaglandins and the Uterus. London: Springer-Verlag, pp. 191–209.CrossRefGoogle Scholar
Gupta, J. K. and Johnson, N. (1990) Effect of mifepristone on dilatation of the pregnant and non-pregnant cervix. Lancet i, 1238–40.CrossRefGoogle Scholar
Guzick, D. S. and Winn, K. (1985) The association of chorioamnionitis with preterm delivery. Obstet. Gynecol. 65, 11–16.Google ScholarPubMed
Hansen, W. R., Keelan, J. A., Skinner, S. J. and Mitchell, M. D. (1999). Key enzymes of prostaglandin biosynthesis and metabolism. Coordinate regulation of expression by cytokines in gestational tissues: a review. Prostaglandins Other Lipid Mediat. 57, 243–57.CrossRefGoogle ScholarPubMed
Harder, D. R., Gilbert, R. and Lombard, J. H. (1987) Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. Am. J. Physiol. 253(4 Pt 2), F778–81.Google ScholarPubMed
Heddleston, L., McDuffie, R. S. Jr. and Gibbs, R. S. (1993) A rabbit model for ascending infection in pregnancy: intervention with indomethacin and delayed ampicillin-sulbactam therapy. Am. J. Obstet. Gynecol. 169, 708–12.CrossRefGoogle ScholarPubMed
Hegele-Hartung, C., Chwalisz, K., Beier, H. M. and Elger, W. (1989) Ripening of the uterine cervix of the guinea-pig after treatment with the progesterone antagonist onapristone (ZK98.299): an electron microscopic study. Hum. Reprod. 4, 369–77.CrossRefGoogle Scholar
Hillhouse, E. W., Grammatopoulos, D., Milton, N. G. N. and Quartero, H. W. P. (1993) The identification of a human myometrial corticotrophin releasing hormone receptor that increases in affinity during pregnancy. J. Clin. Endocrinol. Metab. 76, 736–41.Google ScholarPubMed
Hillier, K. and Karim, S. M. M. (1970) The human isolated cervix: a study of its spontaneous motility and responsiveness to drugs. Br. J. Pharmacol. 40, 576–7.Google ScholarPubMed
Hoffman, B. B., Lavin, T. N., Lefkowitz, R. J. and Ruffolo, R. R. (1981) Alpha adrenergic subtypes in rabbit uterus: mediation of myometrial contraction and regulation by estrogens. J. Pharmacol. Exp. Ther. 219, 290–5.Google ScholarPubMed
Honore, J. C., Robert, B., Vacher-Lavenu, M. C.et al. (2000) Expression of endothelin receptors in human myometrium during pregnancy and in uterine leiomyomas. J. Cardiovasc. Pharmacol. 36(5 Suppl 1), S386–9CrossRefGoogle ScholarPubMed
Horton, E. W. and Poyser, N. (1976) Uterine luteolytic hormone: a physiological role for prostaglandin F2α. Physiol. Rev. 56, 595–651.CrossRefGoogle ScholarPubMed
Huang, W. M., Gu, J., Blank, M. A.et al. (1984) Peptide-immunoreactive nerves in the mammalian female genital tract. Histochem. J. 16, 1297–310.CrossRefGoogle ScholarPubMed
Hurwitz, L. (1986) Pharmacology of calcium channels and smooth muscle. Ann. Rev. Pharmacol. Toxicol. 26, 225–58.CrossRefGoogle ScholarPubMed
Huxley, H. E. (1971) The structural basis of muscular contraction. Proc. R. Soc. Lond. [series B] 178, 131–49.CrossRefGoogle ScholarPubMed
Inoue, Y., Nakao, K., Obabi, K.et al. (1990) Some electrical properties of human pregnant myometrium. Am. J. Obstet. Gynecol. 162, 1090–98.CrossRefGoogle ScholarPubMed
Ito, A., Kitamura, K., Mori, Y. and Hirakawa, S. (1979) The change in solubility of type 1 collagen in human cervix in pregnancy at term. Biochem. Med. 21, 262–70.CrossRefGoogle Scholar
Ito, A., Sato, T., Iga, T. and Mori, Y. (1990) Tumor necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts. FEBS Lett. 269(1), 93–5.CrossRefGoogle ScholarPubMed
Izumi, H., Yallampalli, C. and Garfield, R. E. (1993) Gestational changes in L-arginine-induced relaxation of pregnant rat and human myometrial smooth muscle. Am. J. Obstet. Gynecol. 169, 1327–37.CrossRefGoogle ScholarPubMed
Jeffcoat, M. K., Geurs, N. C., Reddy, M. S.et al. (2001) Periodontal infection and preterm birth: results of a prospective study. J. Am. Dent. Assoc. 132, 875–80.CrossRefGoogle ScholarPubMed
Jeffcoat, M. K., Hauth, J. C., Geurs, N. C.et al. (2003) Periodontal disease and preterm birth: results of a pilot intervention study. J. Periodontol. 74, 1214–18.CrossRefGoogle ScholarPubMed
Jeffrey, J. J. (1991) Collagen and collagenase: pregnancy and parturition. Semin. Perinatol. 15, 118–12.Google ScholarPubMed
Jeffrey, J. J., Coffrey, R. J. and Eizen, A. Z. (1971) Studies of uterine collagenase in tissue culture II. Effect of steroid hormones on enzyme production. Biochim. Biophys. Acta. 252, 143–9.CrossRefGoogle ScholarPubMed
Jeffrey, J. J. and Koob, T. J. (1980) Endocrine control of collagen degradation in the uterus. In Naftolin, F. and Stubblefield, P. G., eds., Dilatation of the Uterine Cervix. New York: Raven Press, pp. 135–45.Google Scholar
Johansson, B. and Mellander, S. (1975) Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circ Res. 36(1), 76–83CrossRefGoogle ScholarPubMed
Johnson, R. F., Mitchell, C. M., Giles, W. B., Walters, W. A. and Zakar, T. (2002) The in vivo control of prostaglandin H synthase-2 messenger ribonucleic acid expression in the human amnion at parturition. J. Clin. Endocrinol. Metab. 87, 2816–23.CrossRefGoogle ScholarPubMed
Johnston, T. A., Hodson, S., Greer, I. A., Kelly, R. W. and Calder, A. A. (1993) Plasma glycosaminoglycan and prostaglandin concentrations before and after the onset of spontaneous labour. In Prostaglandins in Reproduction. (Proceedings of the Third European Congress), Edinburgh.
Jones, S. A. and Challis, J. R. G. (1989) Local stimulation of prostaglandin production by corticotrophin releasing hormone in human fetal membranes and placenta. Biochem. Biophys. Res. Commun. 159, 192–4.CrossRefGoogle ScholarPubMed
Junqueira, L. C. U., Zugaib, M.Montes, G. S.et al. (1980) Morphological and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilatation. Am. J. Obstet. Gynecol. 138, 273–81.CrossRefGoogle Scholar
Karalis, K., Goodwin, G. and Majzoub, J. A. (1996) Cortisol blockade of progesterone: a possible molecular mechanism involved in the initiation of human parturition. Nature Med. 2, 556–60.CrossRefGoogle Scholar
Katsura, M., Ito, A., Hirakawa, et al. (1989). Human recombinant interleukin-1 alpha increases biosynthesis of collagenase and hyaluronic acid in cultured human chorionic cells. FEBS Lett. 244(2), pp. 315–18.CrossRefGoogle ScholarPubMed
Keelan, J. A., Myatt, L. and Mitchell, M. D. (1997) Endocrinology and paracrinology of parturition. In Elder, M. G., Romero, R., and Lamont, R. F., eds., Preterm Labor. New York: Churchill Livingstone, pp. 457–91.Google Scholar
Keirse, M. J. N. C. (1979) Endogenous prostaglandins in human parturition. In Keirse, M. J. N. C., Anderson, A. B. M. and Bennebroek-Gravenhorst, J., eds., Human Parturition. New Concepts and Developments. The Netherlands: Leiden University Press, pp. 101–42.Google Scholar
Keirse, M. J. N. (1990) Progestogen administration in pregnancy may prevent preterm delivery. BJOG. 97, 149–54.CrossRefGoogle ScholarPubMed
Keirse, M. J. N. C. (1995) New perspectives for the effective treatment of preterm labor. Am. J. Obstet. Gynecol. 173, 618–28.CrossRefGoogle ScholarPubMed
Kekki, M., Kurki, T., Pelkonen, J.et al. (2001) Vaginal clindamycin in preventing preterm birth and peripartal infections in asymptomatic women with bacterial vaginosis: a randomized, controlled trial. Obstet. Gynecol. 97, 643–8.Google ScholarPubMed
Kelly, R. W. (1996) Inflammatory mediators and parturition. J. Reprod. Fertil. 106, 89–96.Google Scholar
Kelly, R. W. and Bukman, A. (1990) Antiprogestagenic inhibition of uterine prostaglandin inactivation: a permissive mechanism for uterine stimulation. J. Steroid Biochem. Mol. Biol. 37, 37–101.CrossRefGoogle ScholarPubMed
Kelly, R. W., Healy, D. L., Cameron, I. T.et al. (1986) The stimulation of prostaglandin production by two antiprogesterone steroids in human endometrial cells. J. Clin. Endocrinol. Metab. 62, 1116–23.CrossRefGoogle ScholarPubMed
Kelly, A. J., Kavanagh, J. and Thomas, J. (2001) Relaxin for cervical ripening and induction of labour. Cochrane Database Syst. Rev. 2, CD003103.CrossRefGoogle Scholar
Kenyon, S. L., Taylor, D. J. and Tarnow-Mordi, W.; ORACLE Collaborative Group. (2001) Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group. Lancet 357(9261), 989–94.CrossRefGoogle ScholarPubMed
Khan-Dawood, F. S. and Dawood, M. Y. (1984) Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy. Am. J. Obstet. Gynecol. 150, 501–5.CrossRefGoogle ScholarPubMed
Kinsler, V. A., Thornton, S., Ashford, M. L., Melin, P. and Smith, S. K. (1996) The effect of the oxytocin antagonists F314 and F792 on the in vitro contractility of human myometrium. BJOG 103(4), 373–5.Google ScholarPubMed
Klebanoff, M. A., Carey, J. C., Hauth, J. C.et al.; National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. (2001) Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N. Engl. J. Med. 345(7), 487–93.CrossRefGoogle ScholarPubMed
Kleissl, H. P., Rest, M., Naftolin, F., Glorieux, F. H. and Leon, A. (1978) Collagen changes in human cervix at parturition. Am. J. Obstet. Gynecol. 130, 748–53.CrossRefGoogle ScholarPubMed
Kokenyesi, R. and Woessner, J. R. (1990) Relationship between dilatation rate of the uterine cervix and a small dermatan sulfate proteoglycan. Biol. Reprod. 42, 87–9.CrossRefGoogle Scholar
Krantz, K. E. (1959) Innervation of the human uterus. Ann. N.Y. Acad. Sci. 75, 770–84.CrossRefGoogle ScholarPubMed
Kupittayanant, S., Luckas, M. J. and Wray, S. (2002) Effect of inhibiting the sarcoplasmic reticulum on spontaneous and oxytocin-induced contractions of human myometrium. BJOG 109, 289–96.CrossRefGoogle ScholarPubMed
Kurki, T., Laatikainen, T., Salminen-Lappalainen, K. and Ylikorkala, O. (1991) Maternal plasma corticotrophin releasing hormone is elevated in preterm labour but unaffected by indomethacin or nylidrin. BJOG 98, 685–91.CrossRefGoogle ScholarPubMed
Ledger, W. L., Webster, M., Harrison, L. P.et al. (1985) Increase in cervical extensibility during labor induced after isolation of the uterus in the pregnant sheep. Am. J. Obstet. Gynecol. 151, 397–402.CrossRefGoogle Scholar
Ledingham, M. A., Denison, F. C., Kelly, R. W., Young, A. and Norman, J. E. (1999) Nitric oxide donors stimulate prostaglandin F(2alpha) and inhibit thromboxane B(2) production in the human cervix during the first trimester of pregnancy. Mol. Hum. Reprod. 5(10), 973–82.CrossRefGoogle ScholarPubMed
Ledingham, M. A., Thomson, A. J., Greer, I. A. and Norman, J. E. (2000a) Nitric oxide in parturition. BJOG 107(5), 581–93.CrossRefGoogle Scholar
Ledingham, M. A., Thomson, A. J., Young, A.et al. (2000b) Changes in the expression of nitric oxide synthase in the human uterine cervix during pregnancy and parturition. Mol. Hum. Reprod. 6, 1041–8.CrossRefGoogle Scholar
Ledingham, M. A., Thomson, A. J., Jordan, F.et al. (2001) Changes in cell adhesion molecule expression in the human uterine cervix and myometrium during pregnancy and parturition. Obstet. Gynecol. 97, 235–42.Google ScholarPubMed
Lee, J. H. and Chang, K. C. (1995) Different sensitivity to nitric oxide of human pregnant and non-pregnant myometrial contractility. Pharmacol. Commun. 5, 147–54.Google Scholar
Lees, C., Campbell, S., Jauniaux, E.et al. (1994) Arrest of preterm labour and prolongation of gestation with glyceryl trinitrate, a nitric oxide donor. Lancet 343, 1325–6.CrossRefGoogle ScholarPubMed
Lelaidier, C., Baton, C., Benifla, J. L.et al. (1994). Mifepristone for labour induction after previous Caesarean section. BJOG 101, 501–3.CrossRefGoogle ScholarPubMed
Leppert, P. C. (1992) Cervical softening, effacement and dilatation: A complex biochemical cascade. J. Mat. Fet. Med. 1, 213–23.Google Scholar
Leppert, P. C.(1995) Anatomy and physiology of cervical ripening. Clin. Obstet. Gynecol. 38, 267–79.CrossRefGoogle ScholarPubMed
Leppert, P. C.(1998) Proliferation and apoptosis of fibroblasts and smooth muscle cells in rat uterine cervix throughout gestation and the effect of the antiprogesterone onapristone. Am. J. Obstet. Gynecol. 178, 713–25.CrossRefGoogle ScholarPubMed
Leppert, P. C. and Yu, S. Y. (1994) Apoptosis in the cervix of pregnant rats in association with cervical softening. Gynecol. Obstet. Invest. 37, 150–4.CrossRefGoogle ScholarPubMed
Liggins, G. C. (1978) Ripening of the cervix. Semin. Perinatol. 2, 261–71.Google ScholarPubMed
Liggins, G. C.(1981) Cervical ripening as an inflammatory reaction. In Ellwood, D. A. and Anderson, A. B. M., eds., The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations. Edinburgh: Churchill Livingstone, pp. 1–9.Google Scholar
Liggins, G. C.(1994) Mechanisms of the onset of labor: the New Zealand perspective. Aust. N. Z. J. Obstet. Gynaecol. 34, 338–42.CrossRefGoogle ScholarPubMed
Lindahl, U. and Hook, M. (1978) Glycosaminoglycans and their binding to biological macromolecules. Ann. Rev. Biochem. 47, 385–417.CrossRefGoogle ScholarPubMed
Locksmith, G. J., Clark, P., Duff, P., Saade, G. R. and Schultz, G. S. (2001). Amniotic fluid concentrations of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 during pregnancy and labor. Am. J. Obstet. Gynecol. 184, 159–64.CrossRefGoogle Scholar
Lockwood, C. J., Krikun, G., Aigner, S. and Schatz, F. (1996) Effects of thrombin on steroid-modulated cultured endometrial stromal cell fibrinolytic potential. J. Clin. Endocrinol. Metab. 81, 107–12.Google ScholarPubMed
Lye, S. J., Nicholson, B. J., Mascarenhas, M., MacKenzie, L. and Petrocelli, T. (1993) Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology, 132, 2380–6.CrossRefGoogle ScholarPubMed
McKeown, K. J. and Challis, J. R. (2003) Regulation of 15-hydroxy prostaglandin dehydrogenase by corticotrophin-releasing hormone through a calcium-dependent pathway in human chorion trophoblast cells. J. Clin. Endocrinol. Metab. 88, 1737–41.CrossRefGoogle ScholarPubMed
McLaren, J., Malak, T. M. and Bell, S. C. (1999) Structural characteristics of term human fetal membranes prior to labour: identification of an area of altered morphology overlying the cervix. Hum. Reprod. 14, 237–41.CrossRefGoogle ScholarPubMed
McLaren, J., Taylor, D. J. and Bell, S. C. (2000a) Increased concentration of pro-matrix metalloproteinase 9 in term fetal membranes overlying the cervix before labor: implications for membrane remodelling and rupture. Am. J. Obstet. Gynecol. 182(2), 409–16.CrossRefGoogle Scholar
McLaren, J., Taylor, D. J. and Bell, S. C.(2000b) Prostaglandin E(2)-dependent production of latent matrix metalloproteinase-9 in cultures of human fetal membranes. Mol. Hum. Reprod. 6(11), 1033–40.CrossRefGoogle Scholar
McLean, M., Thompson, D., Zhang, H-P., Brinsmead, M. and Smith, R. (1994) Corticotrophin releasing hormone and beta-endorphin in labour. Eur. J. Endocrinol. 131, 167–72.CrossRefGoogle ScholarPubMed
McLean, M., Bisits, A., Davis, J.et al. (1995) A placental clock controlling the length of human pregnancy. Nature Med. 1, 460–3.CrossRefGoogle ScholarPubMed
MacLennan, A. H., Green, R. C., Bryant-Greenwood, G. D., Greenwood, F. C. and Seamark, R. F. (1980) Ripening of the human cervix and induction of labour with purified porcine relaxin. Lancet i, 220–3.CrossRefGoogle Scholar
McMurty, J. P., Floerscheim, G. L. and Bryant-Greenwood, G. D. (1980) Characterization of the binding of 125I-labelled succinylated porcine relaxin in human and mouse fibroblasts. J. Reprod. Fertil. 58, 43–9.CrossRefGoogle Scholar
McParland, P. C., Bell, S. C., Prinsle, J. H.et al. (2001). Regional and cellular localization of osteonectin/SPARC expression in connective tissue and cytotrophoblastic layers of human fetal membranes at term. Mol. Hum. Reprod. 7, 463–74.CrossRefGoogle ScholarPubMed
Magann, E. F., Perry, K. G., Dockery, J. R.et al. (1995) Cervical ripening before medical induction of labor: A comparison of prostaglandin E2, estradiol, and oxytocin. Am. J. Obstet. Gynecol. 172, 1702–8.CrossRefGoogle ScholarPubMed
Malak, T. M. and Bell, S. C. (1994). Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. BJOG 101(5), 375–86.CrossRefGoogle ScholarPubMed
Malak, T. M., Ockleford, C. D., Bell, S. C.et al. (1993). Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14(4), 385–406.CrossRefGoogle ScholarPubMed
Malak, T., Mulholland, G., Bell, S. C. (1994). Morphometric characteristics of the decidua, cytotrophoblast, and connective tissue of the prelabor ruptured fetal membranes. Ann. NY Acad. Sci. 734, 430–2.CrossRefGoogle ScholarPubMed
Manabe, Y., Yoshimura, S., Mori, T. and Aso, T. (1985) Plasma levels of 13,14-dihydro-15-keto prostaglandin F2 alpha, estrogens, and progesterone during stretch-induced labor at term. Prostaglandins 30(1), 141–52.CrossRefGoogle ScholarPubMed
Marc, S., Leiber, D. and Harbon, S. (1986) Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett. 201, 9–14.CrossRefGoogle ScholarPubMed
Matsuo, K., Gokita, T., Karibe, H. and Uchida, M. K. (1989) Calcium independent contraction of uterine smooth muscle. Biochem. Biophys. Res. Commun. 155, 722–7.CrossRefGoogle Scholar
Mayer, D. C. and Weeks, S. K. (1992) Antepartum uterine relaxation with nitroglycerin at Caesarean delivery. Can. J. Anaesth. 39, 166–9.CrossRefGoogle ScholarPubMed
Maymon, E., Romero, R., Pacora, P.et al. (2000a). Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 183(4), 914–20.CrossRefGoogle Scholar
Maymon, E., Romero, R., Pacora, P.et al. (2000b). Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. Am. J. Obstet. Gynecol. 182(6), 1545–53.CrossRefGoogle Scholar
Maymon, E., Romero, R., Pacora, P.et al. (2000c). Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am. J. Obstet. Gynecol. 183(4), 887–94.CrossRefGoogle Scholar
Maymon, E., Romero, R., Pacora, P.et al. (2000d). Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am. J. Obstet. Gynecol. 183(1), 94–9.CrossRefGoogle Scholar
Mercier, F. J., Dounas, M., Bouaziz, H., Lhuissier, C. and Benhamou, D. (1997) Intravenous nitroglycerin to relieve intrapartum fetal distress related to uterine hyperactivity: a prospective observational study. Anesth. Analg. 84, 1117–20.CrossRefGoogle ScholarPubMed
Meis, P. J., Klebanoff, M., Thom, E.et al. National National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. (2003) Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N. Engl. J. Med. 348(24), 2379–85.CrossRefGoogle ScholarPubMed
Mesiano, S., Chan, E. C., Fitter, J. T.et al. (2002) Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab. 87(6), 2924–30.CrossRefGoogle ScholarPubMed
Millar, L. K., Stollberg, J., DeBuque, L. and Bryant-Greenwood, G. (2000) Fetal membrane distention: determination of the intrauterine surface area and distention of the fetal membranes preterm and at term. Am. J. Obstet. Gynecol. 182, 128–34.CrossRefGoogle ScholarPubMed
Mitchell, B. F. and Schmid, B. (2001) Oxytocin and its receptor in the process of parturition. J. Soc. Gynecol. Investig. 8, 122–33.CrossRefGoogle ScholarPubMed
Mitchell, B. F. and Olson, D. M. (2004) Prostaglandin endoperoxide H synthase inhibitors and other tocolytics in preterm labour. Prostaglandins Leukot. Essent. Fatty Acids 70 167–87.CrossRefGoogle ScholarPubMed
Mitchell, M. D. (1984) The mechanisms of human parturition. J. Develop. Physiol. 6, 107–18.Google Scholar
Monir-Bishty, E., Pierce, S. J., Kupittayanant, S., Shmygol, A. and Wray, S. (2003) The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG, 110, 1050–6.CrossRefGoogle ScholarPubMed
Morrison, J. J. (1996) Physiology and pharmacology of uterine contractility. In O'Brien, P. M. S., ed., The Yearbook of the RCOG, 1996. London: RCOG Press, pp. 45–61.Google Scholar
Morrison, J. J. and Smith, S. K. (1994) Prostaglandins and uterine activity. In Grudinskas, J. G. and Yovich, J. L., eds., Cambridge Reviews in Human Reproduction: Uterine Physiology. Cambridge: Cambridge University Press, pp. 230–51.Google Scholar
Naeye, R. L. and Peters, E. C. (1980) Causes and consequences of premature rupture of fetal membranes. Lancet. 1(8161), 192–4.CrossRefGoogle ScholarPubMed
Nathan, C. F. (1987) Secretory products of macrophages. J. Clin. Invest. 79, 319–20.CrossRefGoogle ScholarPubMed
Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–64.CrossRefGoogle ScholarPubMed
Nathanielsz, P. and Honnebier, M. (1992) Myometrial function. In Drife, J. and Calder, A., eds., Prostaglandins and the Uterus. London: Springer-Verlag, pp. 161–76.CrossRefGoogle Scholar
Negishi, M., Sugimoto, Y. and Ichikawa, A. (1995) Molecular mechanisms of diverse actions of prostanoid receptors. Biochim. Biophys. Acta 1259(1), 109–19.CrossRefGoogle ScholarPubMed
Nilsson, L., Reinheimer, T., Steinwall, M. and Akerlund, M. (2003) FE 200 440: a selective oxytocin antagonist on the term-pregnant human uterus. BJOG. 110(11), 1025–8.CrossRefGoogle ScholarPubMed
Nixon, W. C. W. (1951) Uterine activity, normal and abnormal. Am. J. Obstet. Gynecol. 62, 964–84.CrossRefGoogle Scholar
Norman, J. E. (1992) Menstrual induction: methods and mechanisms of action. Unpublished M. D. Thesis. University of Edinburgh.
Norman, J. E., Ward, L. M., Martin, W.et al. (1997) Effects of cyclic GMP and the nitric oxide donors glyceryl trinitrate and sodium nitroprusside on contractions in vitro of isolated myometrial tissue from pregnant women. J. Reprod. Fertil. 110, 249–54.CrossRefGoogle Scholar
Norman, J. E., Thomson, A. J., Telfer, J. F.et al. (1999) Myometrial constitutive nitric oxide synthase expression is increased during human pregnancy. Mol. Hum. Reprod. 5, 175–81.CrossRefGoogle ScholarPubMed
Norman, M., Ekman, G., Ulmsten, U., Barchan, K. and Malmstrom, A. (1991) Proteoglycan metabolism in the connective tissue of pregnant and non-pregnant human cervix. An in vitro study. Biochem. J. 275, 515–20.CrossRefGoogle ScholarPubMed
Norman, M., Ekman, G. and Malmstrom, A. (1993) Changed proteoglycan metabolism in human cervix immediately after spontaneous vaginal delivery. Obstet. Gynecol. 81, 217–23.Google ScholarPubMed
Norstrom, A. (1984) The effects of prostaglandins on the biosynthesis of connective tissue constituents in the non-pregnant human cervix uteri. Acta Obstet. Gynecol. Scand. 63, 169–73.CrossRefGoogle ScholarPubMed
Norstrom, A., Bergman, I., Lindblom, B.et al. (1985) Effects of 9 deoxo- 16, 16 dimethyl-9-methylene PGE2 on muscle contractile activity and collagen synthesis in the human cervix. Prostaglandins 29, 337–46.CrossRefGoogle ScholarPubMed
Obrink, B. (1973) A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur. J. Biochem. 33, 387–400.CrossRefGoogle ScholarPubMed
Ogawa, M., Hirano, H., Tsubaki, H., Kodama, H. and Tanaka, T. (1998) The role of cytokines in cervical ripening: correlations between the concentrations of cytokines and hyaluronic acid in cervical mucus and the induction of hyaluronic acid production by inflammatory cytokines by human cervical fibroblasts. Am. J. Obstet. Gynecol. 179, 105–10.CrossRefGoogle ScholarPubMed
Oishi, K., Takano-Ohmuro, H., Minakawa-Matsuo, N.et al. (1991) Oxytocin contracts rat uterine smooth muscle in calcium-free medium without any phosphorylation of myosin light chain. Biochem. Biophys. Res. Commun. 176, 122–8.CrossRefGoogle Scholar
Olah, K. S. and Gee, H. (1992) The prevention of preterm delivery- can we afford to continue to ignore the cervix?BJOG. 99, 278–80.CrossRefGoogle ScholarPubMed
Orsino, A., Taylor, C. V. and Lye, S. J. (1996) Connexin-26 and connexin-43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology 137(5), 1545–53.CrossRefGoogle ScholarPubMed
Osada, K., Tsunoda, H., Miyauchi, T.et al. (1997) Pregnancy increases ET-1-induced contraction and changes receptor subtypes in uterine smooth muscle in humans. Am. J. Physiol.. 272(2 Pt 2), R541–8.Google ScholarPubMed
Osman, I. A.Young, A., Ledingham, M. A.et al. (2003) Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol. Hum. Reprod. 9, 41–5CrossRefGoogle ScholarPubMed
Osmers, R., Rath, W., Adelmann-Grill, B. C.et al. (1992) Origin of cervical collagenase during parturition. Am. J. Obstet. Gynecol. 166, 1455–60.CrossRefGoogle ScholarPubMed
Osmers, R. G. W., Blaser, J., Kuhn, W. and Tschesche, H. (1995) Interleukin-8 synthesis and the onset of labor. Obstet. Gynecol. 86, 223–9.CrossRefGoogle ScholarPubMed
Ou, C. W., Orsino, A. and Lye, S. J. (1997) Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 138, 5398–407.CrossRefGoogle ScholarPubMed
Owman, Ch., Stjernquist, M., Helm, G.et al. (1986) Comparative histochemical distribution of nerve fibers storing noradrenaline and neuropeptide Y (NPY) in human ovary, fallopian tube and uterus. Med. Biol. 64, 57–65.Google ScholarPubMed
Park, K. H., Chaiworapongsa, T., Kim, Y. M.et al. (2003) Matrix metalloproteinase 3 in parturition, premature rupture of the membranes, and microbial invasion of the amniotic cavity. J. Perinat. Med. 31, 12–22CrossRefGoogle ScholarPubMed
Parry, D. S. and Ellwood, D. A. (1981) Ultrastructural aspects of cervical softening in sheep. In: Ellwood, D. A. and Anderson, A. B. M., eds., The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations. Edinburgh: Churchill Livingstone, pp. 74–84.Google Scholar
Petersen, L. K., Skajaa, K. and Uldbjerg, N. (1992) Serum relaxin as a potential marker for preterm labour. BJOG. 99, 292–5.CrossRefGoogle ScholarPubMed
Petraglia, F., Giardino, L., Coukos, G.et al. (1990) Corticotrophin-releasing factor and parturition: plasma and amniotic fluid levels and placental binding sites. Obstet. Gynecol. 75, 784–9.Google ScholarPubMed
Price, S. A. and Bernal, A. L. (2001) Uterine quiescence: the role of cyclic AMP. Exp. Physiol. 86, 265–72.CrossRefGoogle ScholarPubMed
Radestad, A., Bygdeman, M. and Green, K. (1990) Induced cervical ripening with mifepristone (RU486) and bioconversion of arachidonic acid in human pregnant uterine cervix in the first trimester. Contraception 41, 283–92.CrossRefGoogle ScholarPubMed
Radestad, A., Thyberg, J. and Christensen, N. J. (1993) Cervical ripening with mifepristone (RU486) in first trimester abortion. An electron microscope study. Hum. Reprod. 8, 1136–42.CrossRefGoogle ScholarPubMed
Ramsay, B., Sooranna, S. R. and Johnson, M. R. (1996) Nitric oxide synthase activities in human myometrium and villous trophoblast throughout pregnancy. Obstet. Gynecol. 87, 249–53.CrossRefGoogle ScholarPubMed
Rath, W., Adelmann-Girill, B. C., Pieper, U.et al. (1987) The role of collagenases and proteases in prostaglandin induced cervical ripening. Prostaglandins 34, 119–27.CrossRefGoogle ScholarPubMed
Rath, W., Osmers, B. C., Adelmann-Girill, B. C. et al. (1988) Biophysical and biochemical changes of cervical ripening. In Egarter, C. and Husslein, P., eds., Prostaglandins for Cervical Ripening and/or Induction of Labour. Vienna: Facultas, pp. 32–41Google Scholar
Rauk, P. N. and Chiao, J. P. (2000) Interleukin-1 stimulates human uterine prostaglandin production through induction of cyclo-oxygenase-2 expression. Am. J. Reprod. Immunol. 43(3), 152–9.CrossRefGoogle Scholar
Reis, F. M., Fadalti, M., Florio, P. and Petraglia, F. (1999) Putative role of placental corticotrophin-releasing factor in the mechanisms of human parturition. J. Soc. Gynecol. Investig. 6(3), 109–19.CrossRefGoogle ScholarPubMed
Reynolds, S. R. M. (1965) Physiology of the Uterus. New York: Hoeber.Google Scholar
Romero, R., Roslansky, P., Oyarzun, E.et al. (1988) Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. Am. J. Obstet. Gynecol. 158, 1044–9.CrossRefGoogle ScholarPubMed
Romero, R., Gomez, R., Mazor, M., Ghezzi, F. and Yoon, B. H. (1997) The preterm labor syndrome. In Elder, M. G., Romero, R. and Lamont, R. F., eds., Preterm Labor. New York: Churchill Livingstone, pp. 29–50.Google Scholar
Rosen, T., Kuczynski, E., O'Neill, L. M. , L. M.et al. (2001). Plasma levels of thrombin-antithrombin complexes predict preterm premature rupture of the fetal membranes. J. Matern. Fetal Med. 10(5), 297–300.CrossRefGoogle ScholarPubMed
Rosselli, M. (1997) Nitric oxide and reproduction. Mol. Hum. Reprod. 3, 639–41.CrossRefGoogle ScholarPubMed
Rowlands, S., Trudinger, B. and Visva-Lingam, S. (1996) Treatment of preterm cervical dilatation with glyceryl trinitrate, a nitric oxide donor. Aust. N.Z. J. Obstet. Gynaecol. 36, 377–81.CrossRefGoogle ScholarPubMed
Russell, P. (1979) Inflammatory lesions of the human placenta: clinical significance of acute chorioamnionitis. Am. J. Obstet. Gynecol. 2, 127–37.Google Scholar
Sadovsky, Y., Nelson, D. M., Muglia, L. J.et al. (2000) Effective diminution of amniotic prostaglandin production by selective inhibitors of cyclo-oxygenase type 2. Am. J. Obstet. Gynecol. 182(2), 370–6.CrossRefGoogle Scholar
Samuelson, U. E., Dalsgaard, C. J., Lundberg, J. M. and Hokfelt, T. (1985) Calcitonin gene-related peptide inhibits spontaneous contractions in human uterus and fallopian tube. Neurosci. Lett. 62, 225–30.CrossRefGoogle ScholarPubMed
Sato, T., Ito, A. and Mori, Y. (1990) Interleukin 6 enhances the production of tissue inhibitor of metalloproteinases (TIMP) but not that of matrix metalloproteinases by human fibroblasts. Biochem. Biophys. Res. Commun. 170(2), 824–9.CrossRefGoogle Scholar
Sawdy, R. J., Slater, D. M., Dennes, W. J., Sullivan, M. H. and Bennett, P. R. (2000) The roles of the cyclo-oxygenases types one and two in prostaglandin synthesis in human fetal membranes at term. Placenta 21(1), 54–7.CrossRefGoogle ScholarPubMed
Schwartz, L. B. (1997) Understanding human parturition. Lancet 350, 1792–3.CrossRefGoogle ScholarPubMed
Scott, J. E. and Orford, C. R. (1981) Dermatan sulphate rich proteoglycan associates with rat tail tendon collagen at the d band in the gap region. Biochem. J. 197, 213–16.CrossRefGoogle Scholar
Sennstrom, M. B., Ekman, G., Westergren-Thorsson, G.et al. (2000) Human cervial ripening, an inflammatory process mediated by cytokines. Mol. Hum. Reprod. 6(4), 375–81.CrossRefGoogle Scholar
Sitteri, P. K., Febres, F., Clemens, L. E.et al. (1977) Progesterone and maintenance of pregnancy: is progesterone nature's immunosuppressant?Ann. N.Y. Acad. Sci. 286, 384–97.CrossRefGoogle Scholar
Slater, D., Berger, L., Newton, R., Moore, G. and Bennett, P. (1994) The relative abundance of type 1 to type 2 cyclo-oxygenase mRNA in human amnion at term. Biochem. Biophys. Res. Commun. 198(1), 304–8.CrossRefGoogle ScholarPubMed
Slater, D. M., Berger, L., Newton, R., Moore, G. E. and Bennett, P. R. (1995) Changes in the expression of types 1 and 2 cyclo-oxygenase in human fetal membranes at term. Am. J. Obstet. Gynecol. 172, 77–82.CrossRefGoogle Scholar
Slater, D., Allport, V. and Bennett, P. (1998) Changes in the expression of the type-2 but not the type-1 cyclo-oxygenase enzyme in chorion-decidua with the onset of labour. BJOG. 105, 745–8.CrossRefGoogle Scholar
Slater, D. M., Dennes, W. J., Campa, J. S., Poston, L. and Bennett, P. R. (1999) Expression of cyclo-oxygenase types-1 and -2 in human myometrium throughout pregnancy. Mol. Hum. Reprod. 5(9), 880–4.CrossRefGoogle ScholarPubMed
Smaill, F. (2002) Antibiotics for asymptomatic bacteriuria in pregnancy (Cochrane Review). In The Cochrane Library, Issue 3. Oxford: Update Software.Google Scholar
So, T., Ito, A., Mori, Y. , Y.et al. (1992). Tumor necrosis factor-alpha stimulates the biosynthesis of matrix metalloproteinases and plasminogen activator in cultured human chorionic cells. Biol. Reprod. 46(5), 772–8.CrossRefGoogle ScholarPubMed
Somlyo, A. V. (1980) Ultrastructure of vascular smooth muscle. In Bohr, D. F., Somlyo, A. P. and Sparks, H. P., eds., Handbook of Physiology. The Cardiovascular System, vol. 2. Bethesda: American Physiological Society, pp. 33–70.Google Scholar
Somlyo, A. P., Bond, M., Somlyo, A. V. and Scarpa, A. (1985) Inositol trisphosphate induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 82, 5231–5.CrossRefGoogle ScholarPubMed
Stjernquist, M., Ekblad, E., Owman, Ch. and Sundler, F. (1986) Neuronal localization and motor effects of gastrin releasing peptide (GRP) in rat uterus. Reg. Peptides 13, 197–205.CrossRefGoogle Scholar
Stricklin, G. P. and Hibbs, M. S. (1988) Biochemistry and physiology of mammalian collagenases. In Nimni, M. E., ed., Collagen Biochemistry, vol. 1. Boca Ranton: CRC Press, pp. 187–205.Google Scholar
Stys, S. J., Clarke, K. E., Clewell, W. M. et al. (1980) Hormonal effects on cervical compliance in sheep. In Naftolin, F. and Stubblefield, P. G., eds., Dilatation of the Uterine Cervix. New York: Raven Press, pp. 147–56.Google Scholar
Swahn, M. L. and Bygdeman, M. (1988) The effect of the antiprogestin RU-486 on uterine contractility and sensitivity to prostaglandin and oxytocin. BJOG. 85, 126–34.CrossRefGoogle Scholar
Taggart, M. J. and Wray, S. (1998) Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. J. Physiol. 511 (Pt 1): 133–44.CrossRefGoogle ScholarPubMed
Theobald, G. W., Robards, M. F. and Suster, P. E. N. (1969) Changes in myometrial sensitivity to oxytocin in man during the last six weeks of pregnancy. Br. J. Obstet. Gynaecol. 76, 385–93.CrossRefGoogle ScholarPubMed
Thomas, J., Kelly, A. J. and Kavanagh, J. (2001) Oestrogens alone or with amniotomy for cervical ripening or induction of labour. Cochrane Database Syst. Rev. 4, CD003393.CrossRef
Thomson, A. J., Lunan, C. B., Cameron, A. D.et al. (1997a) Nitric oxide donors induce ripening of the human uterine cervix: a randomised controlled trial. BJOG. 104, 1054–7.CrossRefGoogle Scholar
Thomson, A. J., Telfer, J. F., Kohnen, G. (1997b) Nitric oxide synthase activity and localisation do not change in uterus and placenta during human parturition. Hum. Reprod. 12, 2546–52.CrossRefGoogle Scholar
Thomson, A. J., Lunan, C. B., Ledingham, M. A.et al. (1998) Randomised trial of a nitric oxide donor versus prostaglandin for cervical ripening before first-trimester termination of pregnancy. Lancet 352, 1093–6.CrossRefGoogle ScholarPubMed
Thomson, A. J., Telfer, J. F., Young, A.et al. (1999) Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum. Reprod. 14, 229–36.CrossRefGoogle ScholarPubMed
Thornton, S. and Gillespie, J. I. (1992) Biochemistry of uterine contractions. Contemp. Rev. Obstet. Gynaecol. 4, 121–6.Google Scholar
Tschugguel, W., Schneeberger, C., Lass, H.et al. (1999) Human cervical ripening is associated with an increase in cervical inducible nitric oxide synthase expression. Biol. Reprod. 60(6), 1367–72.CrossRefGoogle ScholarPubMed
Tulchinsky, D., Hobel, C. J., Yeager, E. and Marshall, J. R. (1972) Plasma estrone, estradiol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am. J. Obstet. Gynecol. 112, 1095–100.CrossRefGoogle ScholarPubMed
Uldbjerg, N. and Malmstrom, A. (1991) The role of proteoglycans in cervical dilatation. Semin. Perinatol. 15, 127–32.Google ScholarPubMed
Uldbjerg, N., Ekman, G., Malmstrom, A.et al. (1981) Biochemical and morphological changes of human cervix after local application of prostaglandin E2 in pregnancy. Lancet i, 267–8.CrossRefGoogle Scholar
Uldbjerg, N., Ekman, G. and Malmstrom, A. (1983a) Ripening of the human cervix related to changes in collagen, glycosaminoglycans and collagenolytic activity. Am. J. Obstet. Gynecol. 147, 662–6.CrossRefGoogle Scholar
Uldbjerg, N., Ekman, G., Malmstrom, A., Ulmsten, U. and Wingerup, L. (1983b) Biochemical changes in human cervical connective tissue after local application of prostaglandin E2. Gynecol. Obstet. Invest. 15, 291–9.CrossRefGoogle Scholar
Uldbjerg, N., Malmstrom, A., Ekman, G.et al. (1983c) Isolation and characterization of dermatan sulphate proteoglycan from human uterine cervix. Biochem. J. 209, 497–503.CrossRefGoogle Scholar
Uldbjerg, N., Ulmsten, U. and Ekman, G. (1983d) The ripening of the human uterine cervix in terms of connective tissue biochemistry. Clin. Obstet. Gynecol. 26, 14–26.CrossRefGoogle Scholar
Ulug, U., Goldman, S., Ben-Shlomo, I. , I.et al. (2001). Matrix metalloproteinase (MMP)-2 and MMP-9 and their inhibitor, TIMP-1, in human term decidua and fetal membranes: the effect of prostaglandin F(2alpha) and indomethacin. Mol. Hum. Reprod. 7(12), 1187–93.CrossRefGoogle ScholarPubMed
Vaisanen-Tommiska, M., Nuutila, M., Aittomaki, K., Hiilesmaa, V. and Ylikorkala, O. (2003) Nitric oxide metabolites in cervical fluid during pregnancy: further evidence for the role of cervical nitric oxide in cervical ripening. Am. J. Obstet. Gynecol. 188 (3), 779–85.CrossRefGoogle ScholarPubMed
Meir, C. A., Ramirez, M. M., Matthews, S. G.et al. (1997) Chorionic prostaglandin catabolism is decreased in the lower uterine segment with term labour. Placenta 18(2–3), 109–14.CrossRefGoogle ScholarPubMed
Maillot, K., Weiss, M., Nagelschmidt, M.et al. (1977) Relaxin and cervical dilatation during partuition. Archiv. Gynakol. 223, 323–31.CrossRefGoogle Scholar
Maillot, K., Stuhlsatz, H. W., Mohanaradhkrishan, V.et al. (1979) Changes in the glycosaminoglycan distribution pattern in the human uterine cervix during pregnancy and labour. Am. J. Obstet. Gynecol. 135, 503–6.CrossRefGoogle Scholar
Wallace, J. L. (1999) Distribution and expression of cyclo-oxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal anti-inflammatory drugs (NSAIDs). Am. J. Med. 107(6A), 11S–16SCrossRefGoogle Scholar
Watari, M., Watari, H., DiSanto, M. E.et al. (1999) Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells. Am. J. Pathol. 154(6), 1755–62.CrossRefGoogle ScholarPubMed
Weiss, G., Goldsmith, L. T., Sachdev, R., Hagen, S. and Lederer, K. (1993) Elevated first-trimester serum relaxin concentrations in pregnant women following ovarian stimulation predict prematurity risk and preterm delivery. Obstet. Gynecol. 82, 821–31.Google ScholarPubMed
Wessen, A., Elowsson, P., Axemo, P. and Lindberg, B. (1995) The use of intravenous nitroglycerin for emergency cervico-uterine relaxation. Acta Anaesth. Scand. 39, 847–9.CrossRefGoogle ScholarPubMed
Westphal, U., Stroupe, S. D. and Cheng, S. L. (1977) Progesterone binding to serum proteins. Ann. N.Y. Acad. Sci. 286, 10–28.CrossRefGoogle ScholarPubMed
Wilson, L. Jr., and Parsons, M. (1996) Endocrinology of human gestation. In Adashi, E. Y., Rock, J. A. and Rosenwaks, Z., eds., Reproductive Endocrinology, Surgery and Technology. Philadelphia: Lippincott-Raven. pp. 452–75.Google Scholar
Winkler, M., Ruck, P., Horny, H. P.et al. (1998) Expression of cell adhesion molecules by endothelium in the human lower uterine segment during parturition at term. Am. J. Obstet. Gynecol. 178, 557–61.CrossRefGoogle ScholarPubMed
Winkler, M., Fischer, D. C., Ruck, P.et al. (1999) Parturition at term: parallel increases in interleukin-8 and proteinase concentrations and neutrophil count in the lower uterine segment. Hum. Reprod. 14(4), 1096–100.CrossRefGoogle ScholarPubMed
Woessner, J. (1994). The family of matrix metalloproteinases. Ann. N.Y. Acad. Sci. 732, 11–21.CrossRefGoogle ScholarPubMed
Wolff, K., Faxen, M., Lunell, N. O., Nisell, H. and Lindblom, B. (1996) Endothelin receptor type-A and receptor type-B gene-expression in human non-pregnant, term pregnant and pre-eclamptic uterus. Am. J. Obstet. Gynecol. 175, 1295–300.CrossRefGoogle Scholar
Wooley, D. E. (1984) Mammalian collagenases. In Piez, K. A. and Reddi, A. H., eds., Extracellular Matrix Biochemistry. New York: Elsevier, pp. 119–57.Google Scholar
Word, R. A., Kamm, K. E., Stull, J. T. and Casey, M. L. (1990) Endothelin increases cytoplasmic calcium and myosin phosphorylation in human myometrium. Am. J. Obstet. Gynecol. 162, 1103–8.CrossRefGoogle ScholarPubMed
Worldwide Atosiban versus Beta-Agonists Study Group. (2001) Effectiveness and safety of the oxytocin antagonist atosiban versus beta-adrenergic agonists in the treatment of preterm labour. BJOG 108(2): 133–42.
Wray, S. (1993) Uterine contraction and physiological mechanisms of modulation. Am. J. Physiol. 264, C1–C18.CrossRefGoogle ScholarPubMed
Xu, P., Alfaidy, N. and Challis,, J. R. (2002). Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J. Clin. Endocrinol. Metab. 87, 1353–61.CrossRefGoogle ScholarPubMed
Yallampalli, C. and Garfield, R. E. (1994) Uterine contractile responses to endothelin-1 and endothelin receptors are elevated during labor. Biol. Reprod. 51, 640–5.CrossRefGoogle ScholarPubMed
Young, A., Thomson, A. J., Ledingham, M. A.et al. (2002) Immunolocalization of pro-inflammatory cytokines in myometrium, cervix and fetal membranes during human parturition at term. Biol. Reprod. 66, 445–9.CrossRefGoogle Scholar
Yoshida, M., Sagawa, N., Itoh, H.et al. (2001) Nitric oxide increases matrix metalloproteinase-1 production in human uterine cervical fibroblast cells. Mol. Hum. Reprod. 7(10) 979–85.CrossRefGoogle ScholarPubMed
Zeeman, G. G., Khan-Dawood, F. S. and Dawood, M. Y. (1997) Oxytocin and its receptor in pregnancy and parturition: current concepts and clinical implications. Obstet. Gynecol. 89, 873–83.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×