Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T02:12:20.896Z Has data issue: false hasContentIssue false

34 - HSV-1 and 2: immunobiology and host response

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2

Published online by Cambridge University Press:  24 December 2009

David M. Koelle
Affiliation:
Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Herpesviruses began to evolve prior to the development of acquired immunity (Arzul et al., 2002). It is therefore likely that evasion of innate immunity is an ancient function of alphaherpesviruses. Additional immune evasion functions have developed to adapt to the diverse repertoires of B- and T-cell immune receptors that characterize acquired immunity (Roizman and Pellet, 2001; Littman et al., 1999). Immune evasion is covered in detail elsewhere in this volume. The innate and acquired immune responses to HSV are relevant to preventative and therapeutic vaccines for HSV, HSV-induced immunopathology, and the use of modified HSV for gene or cancer therapy. While human studies are, of necessity, observational or ex vivo in nature and seldom access sites of neuronal latency, we review them in detail because of their medical relevance. The excellent tools available for murine studies, including exquisite control of the DNA sequence of HSV challenge strains, and of the phenotype and genotype of recipient animals, are yielding dramatic new insights as well. Reactivation of HSV from neuronal latency is less frequent in mice than in humans, limiting immunologic studies of this challenging phenomenon. Readers are referred to excellent reviews (Schmid and Rouse, 1992; Nash, 2000; Lopez et al., 1993, Simmons et al., 1992; Kohl,1992) for models and materials that cannot be covered in detail.

HSV interactions with dendritic cells

Dendritic cells (DC) are a major link between innate and acquired immunity. DC are mobile cells that can potently initiate acquired immunity.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 616 - 641
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, H., Beland, J. L., Del-Pan, N. C.et al. (1997). Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J. Exp. Med., 185, 1533–1540.CrossRefGoogle Scholar
Ahmad, A., Sharif-Askari, E., Fawaz, L., and Menezes, J. (2000). Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J. Virol., 74, 7196–7203.CrossRefGoogle ScholarPubMed
Ahmad-Nejad, P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M., and Wagner, H. (2002). Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. I. Immunol., 32, 1958–1968.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Allan, R. S., Smith, C. M., Belz, G. T.et al. (2003). Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science, 301, 1925–1928.CrossRefGoogle Scholar
Allan, R. S., Waithman, J., Bedoui, S.et al. (2006). Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153.CrossRefGoogle ScholarPubMed
Andersen, H., Dempsey, D., Chervenak, R., and Jennings, S. R. (2000). Expression of intracellular IFN-gamma in HSV-1-specific CD8+ T cells identifies distinct responding subpopulations during the primary response to infection. J. Immunol., 165, 2101–2107.CrossRefGoogle Scholar
Andrews, T., and Sullivan, K. E. (2003). Infections in patients with inherited defects in phagocytic functions. Clin. Microbiol. Rev., 16, 597–621.CrossRefGoogle Scholar
Ankel, H., Westra, D. F., Welling-Wester, S., and Lebon, P. (1998). Induction of interferonalpha by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology, 251, 317–326.CrossRefGoogle Scholar
Arany, I., Tyring, S. K., Stanley, M. A.et al. (1999). Enhancement of the innate and cellular immune response in patients with genital warts treated with topical imiquimod cream 5%. Antiviral Res., 43, 55–63.CrossRefGoogle ScholarPubMed
Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B., and Lanier, L. L. (2002). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science, 296, 1323–1326.CrossRefGoogle ScholarPubMed
Arzul, I., Renault, T., Thebault, A., and Gerard, A. (2002). Detection of oyster herpesvirus DNA and proteins in asymptomatic Crassostrea gigas adults. Virus Res., 84, 151–160.CrossRefGoogle ScholarPubMed
Asanuma, H., Sharp, M., Maecker, H. T., Maino, V. C., and Arvin, A. M. (2000). Frequencies of memory T cells specific for varicella-zoster virus, herpes simplex virus and cytomegalovirus determined by intracellular detection of cytokine expression. J. Infect. Dis., 181, 859–866.CrossRefGoogle Scholar
Ashkar, A. A., and Rosenthal, K. L. (2003). Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J. Virol., 77, 10168–10171.CrossRefGoogle ScholarPubMed
Ashkar, A. A., Bauer, S., Mitchell, W. J., Vieira, J., and Rosenthal, K. L. (2003). Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol., 77, 8948–8956.CrossRefGoogle Scholar
Ashley, R. L., Corey, L., Dalessio, J.et al. (1994). Protein-specific cervical antibody responses to primary genital herpes simplex virus type 2 infections. J. Infect. Dis., 170, 20–26.CrossRefGoogle ScholarPubMed
Asselin-Paturel, C., Boonstra, A., Dalod, M.et al. (2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol., 2, 1144–1150.CrossRefGoogle ScholarPubMed
Bacon, K., Baggiolini, M., Broxmeyer, H.et al. (2002). Chemokine/ chemokine receptor nomenclature. J. Interferon Cytokine Res., 22, 1067–1068.Google ScholarPubMed
Balachandran, N., Bacchetti, S., and Rawls, W. E. (1982). Protection against lethal challenge of Balb/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect. Immun., 37, 1132–1137.Google ScholarPubMed
Barcy, S. and Corey, L. (2001). Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells. J. Immunology, 166, 6242–6249.CrossRefGoogle ScholarPubMed
Barouch, D. H. and Letvin, N. L. (2001). CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr. Opin. Immunol., 13, 479–482.CrossRefGoogle ScholarPubMed
Becker, Y. (2003). Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells – a review. Virus Genes, 26, 119–130.CrossRefGoogle ScholarPubMed
Beland, J. L., Alder, H., Del-Pan, N. C.et al. (1998). Recombinant CD40L treatment protects allogeneic murine bone marrow transplant recipients from death caused by herpes simplex virus-1 infection. Blood, 92, 4472–4478.Google ScholarPubMed
Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the NK T cell lineage. Science, 296, 553–555.CrossRefGoogle ScholarPubMed
BenMohamed, L., Bertrand, G., McNamara, C. D.et al. (2003). Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol., 77, 9463–9473.CrossRefGoogle ScholarPubMed
Betts, M. R., Casazza, J. P., Patterson, B. A.et al. (2000). Putative immunodominant human immunodeficiency virus-specific CD8+ T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J. Virol., 74, 9144–9151.CrossRefGoogle ScholarPubMed
Biron, C. A., Byron, K. S., and Sullivan, J. L. (1989). Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med., 320, 1731–1735.CrossRefGoogle Scholar
Bishop, G. A., Marlin, S. D., Schwartz, S. A., and Glorioso, J. C. (1984). Human natural killer cell recognition of herpes simplex virus type 1 glycoproteins: specificity analysis with the use of monoclonal antibodies and antigenic variants. J. Immunol., 133, 2206–2214.Google ScholarPubMed
Bishop, G. A., Kumel, G., Schwartz, S. A., and Glorioso, J. C. (1986). Specificity of human natural killer cells in limiting dilution culture for determinants of herpes simplex virus type 1 glycoproteins. J. Virol., 57, 294–300.Google ScholarPubMed
Blaney, J. E., Nobusawa, E., Brehm, M. A.et al. (1998). Immunization with a single major histocompatibility class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J. Virol., 72, 9567–9574.Google ScholarPubMed
Boggess, K. A., Watts, D. H., Hobson, A. C., Ashely, R. L., Brown, Z. A., and Corey, L. (1997). Herpes simplex virus type 2 detection by culture and polymerase chain reaction and relationship to genital symptoms and cervical antibody status during the third trimester of pregnancy. Am. J. Obstet. Gynecol., 176, 443–451.CrossRefGoogle ScholarPubMed
Bonneau, R. H., Sheridan, J. F., Feng, N. G., and Glaser, R. (1991). Stress-induced suppression of herpes simplex virus (HSV)-specific cytotoxic T lymphocyte and natural killer cell activity and enhancement of acute pathogenesis following local HSV infection. Brain Behav. Immun., 5, 170–192.CrossRefGoogle ScholarPubMed
Bonneau, R. H., Brehm, M. A., and Kern, A. M. (1997). The impact of psychological stress on the efficacy of anti-viral adoptive immunotherapy in an immunocompromised host. J. Neuroimmunol., 78, 19–33.CrossRefGoogle Scholar
Boonstra, A., Asselin-Paturel, C., Gilliet, M.et al. (2003). Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med., 197, 101–109.CrossRefGoogle Scholar
Brehm, M. A., Pinto, A. K., Daniels, K. A., Schneck, J. P., Welsh, R. M., and Selin, L. K. (2002). T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol., 3, 627–634.CrossRefGoogle ScholarPubMed
Bresnihan, B. and Cunnane, G. (2003). Infection complications associated with the use of biologic agents. Rheum. Dis. Clin. North Am., 29, 185–202.CrossRefGoogle ScholarPubMed
Brown, Z. A., Wald, A., Morrow, R. A., Selke, S., Zeh, J., and Corey, L. (2003). Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. J. Am. Med. Assoc., 289, 203–209.CrossRefGoogle ScholarPubMed
Brunetti, C. R., Burke, R. L., Hoflack, B., Ludwig, T., Dingwell, K. S., and Johnson, D. C. (1995). Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. J. Virol., 69, 3517–3528.Google ScholarPubMed
Bukowski, J. F. and Welsh, R. M. (1986). The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1. J. Immunol., 136, 3481–3485.Google ScholarPubMed
Burrows, S. R., Silins, S. L., Moss, D. J., Khanna, R., Misko, I. S., and Argaet, V. P. (1995). T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen. J. Exp. Med., 182, 1703–1715.CrossRefGoogle ScholarPubMed
Carr, D. J., Chodosh, J., Ash, J., and Lane, T. E. (2003). Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J. Virol., 77, 10037–10046.CrossRefGoogle ScholarPubMed
Cartier, A., Broberg, E., Komai, T., Henriksson, M., and Masucci, M. G. (2003). The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death Differ.CrossRef
Casrouge, A., Zhang, S. Y., Eidenschenk, C.Herpes simplex virus encephalitis in human UNC-93B deficiency. Science, 314, 308–312.CrossRef
Chatenoud, L., Salomon, B., and Bluestone, J. A. (2001). Suppressor T cells-they're back and critical for regulation of autoimmunity! Immunol. Rev., 182, 149–163.CrossRefGoogle Scholar
Chehimi, J., Campbell, D. E., Azzoni, L.et al. (2002). Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J. Immunol., 168, 4796–4801.CrossRefGoogle ScholarPubMed
Chen, H. and Hendricks, R. L. (1998). B7 costimulatory requirements of T cells at an inflammatory site. J. Immunol., 160, 5045–5052.Google ScholarPubMed
Chen, S. H., Garber, D. A., Schaffer, P. A., Knipe, D. M., and Coen, D. M. (2000). Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation. Virology, 278, 207–216.CrossRefGoogle ScholarPubMed
Chou, J., Kern, E. R., Whitley, R. J., and Roizman, B. (1990). Mapping of herpes simplex virus 1 neurovirulence to gamma 1 34.5, a gene nonessential for growth in cell culture. Science, 252, 1262–1266.CrossRefGoogle Scholar
Cohen, F., Kemeny, M. E., Zegans, L. S., Neuhaus, J. M., and Conant, M. A. (1999). Persistent stress as a predictor of genital herpes recurrence. Arch. Intern. Med., 159, 2330–2336.CrossRefGoogle ScholarPubMed
Coles, R. M., Mueller, S. N., Heath, W. R., Carbone, F. R., and Brooks, A. G. (2002). Progression of armed CTL from draining lympth node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol., 168, 834–838.CrossRefGoogle Scholar
Colonna, M., Krug, A., and Cella, M. (2002). Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol., 14, 373–379.CrossRefGoogle ScholarPubMed
Connell, E. V., Cerruti, R. L., and Trown, P. W. (1985). Synergistic activity of combinations of recombinant human alpha interferon and acyclovir, administered concomitantly and in sequence, against a lethal herpes simplex type 1 infection in mice. Antimicrob. Agents Chemother., 28, 1–4.CrossRefGoogle ScholarPubMed
Corey, L., Langenberg, A. G. M., Ashley, R.et al. (1999). Two double-blind, placebo-controlled trials of a vaccine containing recombinant gD2 and gB2 antigens in MF59 adjuvant for the prevention of genital HSV-2 acquisition. J. Am. Med. Assoc., 282, 331–340.CrossRefGoogle Scholar
Cose, S. C., Kelly, J. M., and Carbone, F. R. (1995). Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential V beta bias. J. Virol., 69, 5849–5852.Google ScholarPubMed
Cose, S. C., Jones, C. M., Wallace, M. E., Heath, W. R., and Carbone, F. R. (1997). Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur. J. Immunol., 27, 2310–2316.CrossRefGoogle ScholarPubMed
Croen, K. D. (1993). Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest., 91, 2446–2452.CrossRefGoogle ScholarPubMed
Croft, M. (2003). Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol., 3, 609–620.CrossRefGoogle ScholarPubMed
Cunningham, A. L., Turner, R. R., Miller, A. C., Para, M. F., and Merigan, T. C. (1985). Evolution of recurrent herpes simplex lesions: an immunohistologic study. J. Clin. Invest., 75, 226–233.CrossRefGoogle Scholar
Daheshia, M., Kuklin, N., Kanangat, S., Manickan, E., and Rouse, B. T. (1997). Suppression of ongoing ocular inflammatory disease by topical administration of plasmid encoding IL-10. J. Immunol., 159, 1945–1952.Google ScholarPubMed
Haan, J. M., Lehar, S. M., and Bevan, M. J. (2000). CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med., 192, 1685–1696.CrossRefGoogle Scholar
Diaz, G. A. and Koelle, D. M. (2006). Human CD4+ CD25high cells suppress proliferative memory lymphocyte responses to herpes simplex virus type 2. J. Virol. 80, 8271.CrossRefGoogle Scholar
Diebold, S. S., Montoya, M., Unger, H.et al. (2003). Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature, 424, 324–328.CrossRefGoogle ScholarPubMed
Doukas, J. and Pober, J. S. (1990). IFN-gamma enhances endothelial activation induced by tumor necrosis factor but not IL-1. J. Immunol., 145, 1727–1733.Google Scholar
Dupuis, S., Jouanguy, E., Al-Hajjar, S . et al. (2003). Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet., 33, 388–391.CrossRefGoogle ScholarPubMed
Edelmann, K. H. and Wilson, C. B. (2001). Role of CD28/CD80–86 and CD40/CD154 costimulatory interactions in host defense to primary herpes simplex virus infection. J. Virol., 75, 612–621.CrossRefGoogle ScholarPubMed
Eidson, K. M., Hobbs, W. E., Manning, B. J., Carlson, P., and DeLuca, N. A. (2002). Expression of herpes simplex virus ICPO inhibits the induction of interferon-stimulated genes by viral infection. J. Virol., 76, 2180–2191.CrossRefGoogle Scholar
Feldman, L. T., Ellison, A. R., Voytek, C. C., Yang, L., Krause, P., and Margolis, T. P. (2002). Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc. Natl Acad. Sci. USA, 99, 978–983.CrossRefGoogle ScholarPubMed
Feldman, S. B., Ferraro, M., Zheng, H.-M., Patel, N., Gould-Fogerite, S . and Fitzgerald, Bocarsly P. (1994). Viral induction of low frequency interferon-à producing cells. Virology, 204, 1–7.CrossRefGoogle ScholarPubMed
Fieschi, C. and Casanova, J. L. (2003). The role of interleukin-12 in human infectious diseases: only a faint signature. Eur. J. Immunol., 33, 1461–1464.CrossRefGoogle Scholar
Fieschi, C., Dupuis, S., Catherinot, E.et al. (2003). Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta 1 deficiency: medical and immunological implications. J. Exp. Med., 197, 527–535.CrossRefGoogle Scholar
Finberg, R. W., Kurt-Jones, E. A., Zhu, J., Arnold, M., and Knipe, D. (2003). Presented at the 28th International Herpesvirus Workshop, July 2003.
Fitzgerald-Bocarsly, P. (2002). Natural interferon-alpha producing cells: the plasmacytoid dendritic cells. Biotechniques Suppl, 16–20, 22, 24–29.Google Scholar
Fitzgerald-Bocarsly, P., Howell, D. M., Pettera, L., Tehrani, S., and Lopez, C. (1991). Immediate-early gene expression is sufficient for induction of natural killer cell-mediated lysis of herpes simplex virus type 1-infected fib roblasts. J. Virol., 65, 3151–3160.Google Scholar
Flo, J., Tismintezky, S., and Baralle, F. (2000). Modulation of the immune response to DNA vaccina by co-delivery of costimulatory molecules. Immunology, 100, 259–267.CrossRefGoogle Scholar
Io, J F., Tismintezky, S., and Baralle, F. (2001). Codelivery of DNA coding for the soluble form of CD86 results in the down-regulation of the immune response to DNA vaccines. Cell. Immunol., 209, 120–131.Google Scholar
Fonteneau, J. F., Gilliet, M., Larsson, M.et al. (2003). Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood, 101, 3520–3526.CrossRefGoogle ScholarPubMed
Frenkel, L., Pineda, E., Hall, H., Dillon, M., and Bryson, Y. (1989). A prospective study of the effects of acyclovir treatment on the HSV-2 lymphoproliferative response of persons with frequently recurring HSV-2 genital infections. J. Infect. Dis., 159, 845–850.CrossRefGoogle ScholarPubMed
Friedman, H. M. (2000). (letter) Immunologic strategies for herpes vaccination. J. Am. Med. Assoc., 283, 746.CrossRefGoogle ScholarPubMed
Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M., and Kurimoto, M. (1999). Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J. Virol., 73, 2401–2409.Google ScholarPubMed
Fuleihan, R. L. (2001). Hyper IgM syndrome: the other side of the coin. Curr. Opin. Pediatr., 13, 528–532.CrossRefGoogle ScholarPubMed
Fuller, A. O. and Spear, P. G. (1985). Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. J. Virol., 55, 475–482.Google ScholarPubMed
Fuller, A. O. and Spear, P. G. (1987), Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proc. Natl Acad. Sci. USA, 84, 5454–5458.CrossRefGoogle ScholarPubMed
Fuller, A. O., Santos, R. E., and Spear, P. G. (1989). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J. Virol., 63, 3435–3443.Google ScholarPubMed
Gangappa, S., Manickan, E., and Rouse, B. T. (1998). Control of herpetic stromal keratitis using CTLA 4Ig fusion protein. Clin. Immunol. Immunopathol., 86, 88–94.CrossRefGoogle Scholar
Garcia-Perez, M. A., Paz-Artal, E., Correll, A.et al. (2003). Mutations of CD40L ligand in two patients with hyper-IgM syndrome. Immunobiology, 207, 285–294.CrossRefGoogle ScholarPubMed
Gary-Gouy, H., Lebon, P., and Dalloul, A. H. (2002). Type I interferon production by plasmacytoid dendritic cells and monocytes is triggered by viruses, but the level of production is controlled by distinct cytokines. J. Interferon Cytokine Res., 22, 653–659.CrossRefGoogle ScholarPubMed
Gierynska, M., Kumaraguru, U., Eo, S. K. (2002). Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J. Virol., 76, 6568–6576.CrossRefGoogle ScholarPubMed
Gilliet, M. and Liu, Y. J. (2002). Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med., 195, 695–704.CrossRefGoogle Scholar
Goldsmith, K., Chen, W., Johnson, D. C., and Hendricks, R. L. (1998). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8 T cell response. J. Exp. Med., 187, 341–348.CrossRefGoogle ScholarPubMed
Gonzalez, A. M., Jaimes, M. C., Cajiao, I.et al. (2003). Rotavirus-specific B cells induced by recent infection in adults and children predominantly express the intestinal homing receptor alpha4beta7. Virology, 305, 93–105.CrossRefGoogle ScholarPubMed
Gonzalez, J. C., Kwok, W. W., Wald, A., McClurkan, C. L., and Koelle, D. M. (2005). Programmed expression of cutaneous lymphocyte-associated antigen amongst circulating memory T-cells specific for HSV-2. J. Infect. Dis., 191, 243–254.CrossRefGoogle Scholar
Grubor-Bauk, B., Simmons, A., Mayrhofer, G., and Speck, P. G. (2003). Impaired clearance of herpes simplex virus type 1 from mice lacking CD 1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J. Immunol., 170, 1430–1434.CrossRefGoogle ScholarPubMed
Haahr, S., Rasmussen, L., and Merigan, T. C. (1976). Lymphocyte transformation and inter interferon production in human mononuclear cell microcultures for assay of cellular immunity to herpes simplex virus. Infect. Immunol., 14, 47–54.Google Scholar
Halford, W. P., Gebhardt, B. M., and Carr, D. J. (1996). Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J. Immunol., 157, 3542–3549.Google ScholarPubMed
Halford, W. P., Gebhardt, B. M., and Carr, D. J. J. (1997). Acyclovir blocks cytokine gene expression in trigeminal ganglia latently infected with herpes simplex virus type 1. Virology, 238, 53–63.CrossRefGoogle ScholarPubMed
Halstead, E. S., Mueller, Y. M., Altman, J. D., and Katsikis, P. D. (2002). In vivo stimulation of CD 137 broadens primary antiviral CD8+ T cell responses. Nat. Immunol., 3, 536–541.CrossRefGoogle Scholar
Hamann, D., Baars, P. A., Rep, M. H.et al. (1997). Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med., 186, 1407–1418.CrossRefGoogle ScholarPubMed
Harandi, A. M., Svennerholm, B., Holmgren, J., and Eriksson, K. (2001a). Interleukin-12 (IL-12) and IL-18 are important in innate defense against genital herpes simplex virus type 2 infection in mice but are not required for the development of acquired gamma interferonmediated protective immunity. J. Virol., 75, 6705–6709.CrossRefGoogle Scholar
Harandi, A. M., Svennerholm, B., Holmgren, J., and Eriksson, K. (2001b). Protective vaccination against genital herpes simplex virus type 2 (HSV-2) infection in mice is associated with a rapid induction of local IFN-gamma-dependent RANTES production following a vaginal viral challenge. Am. J. Reprod. Immunol., 46, 420–424.CrossRefGoogle Scholar
Harandi, A., Eriksson, K M.., and Holmgren, J. (2003). A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J. Virol., 77, 953–962.CrossRefGoogle Scholar
Harle, P., Sainz, B. Jr.. and Halford, W. P. (2002). The immediate-early protein, ICPO is essential for the resistance of herpes simplex virus to interferon-alpha/beta. Virology, 293, 295–304.CrossRefGoogle Scholar
Hemmi, H., Kaisho, T., Takeuchi, O.et al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol., 3, 196–200.CrossRefGoogle ScholarPubMed
Hendricks, R. L. (2006). Stress-induced dysregulation of HSV-specific immunity in latently-infected sensory ganglia. In 31st International Herpesvirus Workshop, Seattle, Washington, USA, p. Abstract 9.57.
Hill, A., Jugovic, P., York, I.et al. (1995). Herpes simplex virus turns off the TAP to evade host immunity. Nature, 375, 411–415.CrossRefGoogle ScholarPubMed
Holterman, A.-X., Rogers, K., Edelmann, K., Koelle, D. M., Corey, L., and Wilson, C. B. (1999). An important role for MHC class I restricted T cells, and limited role for IFN-gamma, in protection against herpes simplex virus infection in C57BL/6 mice. J. Virol., 73, 2058–2063.Google Scholar
Hornung, V., Rothenfusser, S., Britsch, S.et al. (2002). Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol., 168, 4531–4537.CrossRefGoogle ScholarPubMed
Hosken, N., McGowan, P.Meier, A.et al. (2006). Diversity of the CD8+ T cell response to herpes simpolex virus type 2 proteins among persons with genital herpes. J. Virol. 80, 5509.CrossRefGoogle ScholarPubMed
Huard, B. and Fruh, K. (2000). A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol., 30, 509–515.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Hurme, M., Haanpaa, M., Nurmikko, T.et al. (2003). IL-10 gene polymorphism and herpesvirus infections. J. Med. Virol., 70 Suppl 1, S48–S50.CrossRefGoogle ScholarPubMed
Inagaki-Ohara, K., Kawabe, T., Hasegawa, Y., Hashimoto, N., and Nishiyama, Y. (2002). Critical involvement of CD40 in protection against herpes simplex virus infection in a murine model of genital herpes. Arch. Virol., 147, 187–194.CrossRefGoogle Scholar
Iyoda, T., Shimoyama, S., Liu, K.et al. (2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med., 195, 1289–1302.CrossRefGoogle ScholarPubMed
Jawahar, S., Moody, C., Chan, M., Finberg, R., Geha, R., and Chatila, T. (1996). Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIA (CD16-II). Clin. Exp. Immunol., 103, 408–413.CrossRefGoogle Scholar
Jerome, K. R., Tait, J. F., Koelle, D. M., and Corey, L. (1998). Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J. Virol., 72, 436–441.Google ScholarPubMed
Johansson, E. L., Rudin, A., Wassen, L., and Holmgren, J. (1999). Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology, 96, 272–277.CrossRefGoogle ScholarPubMed
Jones, C. A., Fernandez, M., Herc, K.et al. (2003). Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J. Virol., 77, 11139–11149.CrossRefGoogle ScholarPubMed
Jones, S. M., Cose, S. C., Coles, R. M.et al. (2000). Herpes simplex virus type 1-specific cytotoxic T-lymphocyte arming occurs within lymph nodes draining the site of cutaneous infection. J. Virol., 74, 2414–2419.CrossRefGoogle ScholarPubMed
Kadowaki, N., Ho, S., Antonenko, S.et al. (2001). Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med., 194, 863–869.CrossRefGoogle ScholarPubMed
Kanangat, S., Thomas, J., Gangappa, S., Babu, J. S., and Rouse, B. T. (1996). Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J. Immunol., 156, 1110–1116.Google ScholarPubMed
Kaushic, C., Ashkar, A. A., Reid, L. A., and Rosenthal, K. L. (2003). Progesterone increases susceptibility and decreases immune responses to genital herpes infection. J. Virol., 77, 4558–4565.CrossRefGoogle ScholarPubMed
Kawamoto, S., Oritani, K., Asada, H.et al. (2003). Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J. Virol., 77, 9622–9631.CrossRefGoogle ScholarPubMed
Keadle, T. L., Usui, N., Laycock, K. A., Miller, J. K., Pepose, J. S., and Stuart, P. M. (2000). IL-1 and TNF-alpha are important factors in the pathogenesis of murine recurrent herpetic stromal keratitis. Invest. Ophthalmol. Visual. Sci., 41, 96–102.Google ScholarPubMed
Khanna, K. M., Bonneau, R. H., Kinchington, P. R., and Hendricks, R. L. (2003). Herpes simplex virus-specific memory CD8(+) T cells are selectively activated and retained in latently infected sensory Ganglia. Immunity, 18, 593–603.CrossRefGoogle ScholarPubMed
Kodukula, P., Liu, T., Rooijen, N. V., Jager, M. J., and Hendricks, R. L. (1999). Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J. Immunol., 162, 2895–2905.Google ScholarPubMed
Koelle, D. M. and Corey, L. (1995). Role of cellular immune response to human genital herpes. Herpes, 2, 83–88.Google Scholar
Koelle, D. M. and Corey, L. (2003). Recent progress in herpes simplex virus immunobiology and vaccine research. Clin. Microbiol. Rev., 16, 96–113.CrossRefGoogle ScholarPubMed
Koelle, D. M., Tigges, M. A., Burke, R. L.et al. (1993). Herpes simplex virus infection of human fibroblasts and keratinocytes inhibits recognition by cloned CD8+ cytotoxic T lymphocytes. J. Clin. Invest., 91, 961–968.CrossRefGoogle ScholarPubMed
Koelle, D. M., Frank, J. M., Johnson, M. L., and Kwok, W. W. (1998a). Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J. Virol., 72, 7476–7483.Google Scholar
Koelle, D. M., Posavad, C. M., Barnum, G. R., Johnson, M. L., Frank, J. M., and Corey, L. (1998). Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest., 101, 1500–1508.CrossRefGoogle ScholarPubMed
Koelle, D. M., Reymond, S. N., Chen, H.et al. (2000a). Tegument-specific, virus-reactive CD4 T-cells localize to the cornea in herpes simplex virus interstitial keratitis in humans. J. Virol., 74, 10930–10938.CrossRefGoogle Scholar
Koelle, D. M., Schomogyi, M., and Corey, L. (2000b). Recovery of antigen-specific T-cells from the uterine cervix of women with genital herpes simplex virus type 2 virus infection. J. Infect. Dis., 182, 662–670.CrossRefGoogle Scholar
Koelle, D. M., Schomogyi, M., McClurkan, C., Reymond, S. N., and Chen, H. B. (2000c). CD4 T-cell responses to herpes simplex virus type 2 major capsid protein VP5: comparison with responses to tegument and envelope glycoproteins. J. Virol., 74, 11422–11425.CrossRefGoogle Scholar
Koelle, D. M., Chen, H., Gavin, M. A., Wald, A., Kwok, W. W., and Corey, L. (2001). CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J. Immunol., 166, 4049–4058.CrossRefGoogle ScholarPubMed
Koelle, D. M., Chen, H. B., McClurkan, C. M., and Petersdorf, E. W. (2002a). Herpes simplex virus type 2-specific CD8 cytotoxic T lymphocyte cross-reactivity against prevalent HLA class I alleles. Blood, 99, 3844–3847.CrossRefGoogle Scholar
Koelle, D. M., Liu, Z., McClurkan, C. M.et al. (2002b). Expression of cutaneous lymphocyte-associated antigen by CD8+ T-cells specific for a skin-tropic virus. J. Clin. Invest., 110, 537–548.CrossRefGoogle Scholar
Koelle, D. M., Liu, Z., McClurkan, C. L.et al. (2003). Immunodominance among herpes simplex virus-specific CD8 T-cells expressing a tissue-specific homing receptor. Proc. Natl Acad. Sci. USA, 100, 12899–12904.CrossRefGoogle ScholarPubMed
Koelle, D. M., Huang, J., Hensel, M. T., and McClurkan, C. L. (2006). Innate immune responses to herpes simplex virus type 2 influence skin homing molecule expression by memory CD4+ lymphocytes. J. Virol. 80, 2863.CrossRefGoogle ScholarPubMed
Kohl, S. (1991). Role of antibody-dependent cellular cytotoxiciy in defense aganist herpes simplex virus infections. Rev. Infect. Dis., 13, 108–114.CrossRefGoogle Scholar
Kohl, S. (1992). The role of antibody in herpes simplex virus infection in humans. Curr. Top. Microbiol. Immunol., 179, 75–88.Google ScholarPubMed
Kohl, S., Loo, L. S., Schmalstieg, F. S., and Anderson, D. C. (1986). The genetic deficiency of leukocyte surface glyoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex infection in vivo. J. Immunol., 137, 1688–1694.Google Scholar
Kohl, S., Charlebois, E. D., Sigouroudinia, M.et al. (2000). Limited antibody-dependent cellular cytotoxicity antibody response induced by a herpes simplex virus type 2 subunit vaccine. J. Infect. Dis., 181, 335–339.CrossRefGoogle ScholarPubMed
Kokuba, H., Aurelian, L., and Burnett, J . (1999). Herpes simplex virus associated erythema multiforme (HAEM) is mechanistically distinct from drug-induced erythema multiforme: interferon-gamma is expressed in HAEM lesions and tumor necrosis factor-alpha in druginduced erythema multiforme lesions. J. Invest. Dermatol., 113, 808–815.CrossRefGoogle Scholar
Kramer, M. F. and Coen, D. M. (1995). Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J. Virol., 69, 1389–1399.Google ScholarPubMed
Kriesel, J. D., Araneo, B., Petajan, J. P., Spruance, S. L., and Stromatt, S. (1994). Herpes labialis associated with recombinant human ciliary neurotrophic factor. J. Infect. Dis., 170, 1046.CrossRefGoogle ScholarPubMed
Kriesel, J. D., Gebhardt, B. M., Hill, J. M.et al. (1997a). Anti-interleukin-6 antibodies inhibit herpes simplex virus reactivation. J. Infect. Dis., 175, 821–827.CrossRefGoogle Scholar
Kriesel, J. D., Ricigliano, J., Spruance, S. L., Garza, H. H. Jr., and Hill, J. M. (1997b). Neuronal reactivation of herpes simplex virus may involve interleukin-6. J Neurovirol, 3, 441–448.CrossRefGoogle Scholar
Kronenberg, M. and Gapin, L. (2002). The unconventional lifestyle of NKT cells. Nat. Rev. Immunol., 2, 557–568.Google Scholar
Krug, A., Luker, G. D., Barchet, W., Leib, D. A., Akira, S., and Colonna, M. (2003). Herpes simplex virus type 1 (HSV-1) activates murine natural interferon-producing cells through tolllike receptor 9. Blood, In Press.CrossRefGoogle Scholar
Kruse, M., Rosorius, O., Kratzer, F.et al. (2000). Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J. Virol., 74, 7127–7136.CrossRefGoogle ScholarPubMed
Kumaraguru, U. and Rouse, B. T. (2002). The IL-12 response to herpes simplex virus is mainly a paracrine response of reactive inflammatory cells. J. Leukoc. Biol., 72, 564–570.Google ScholarPubMed
Kuwana, M., Kaburaki, J., Wright, T. M., Kawakami, Y., and Ikeda, Y. (2001). Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur. J. Immunol., 31, 2547–2557.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Kwok, W. W., Liu, A. W., Novak, E. J.et al. (2000). HLA-DQ tetramers identify epitope-specific T-cells in peripheral blood of herpes simplex virus-2-infected individuals: direct detection of immunodominant antigen responsive cells. J. Immunol., 164, 4244–4249.CrossRefGoogle Scholar
La, S., Kim, J., and Kwon, B. S., Kwon, B. (2002). Herpes simplex virus type 1 glycoprotein D inhibits T-cell proliferation. Mol. Cells, 14, 398–403.Google ScholarPubMed
Lebon, P. (1985). Inhibition of herpes simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol., 66, (Pt 12):2781–2786.CrossRefGoogle Scholar
Lebwohl, M., Sacks, S., Conant, M.et al. (1992). Recombinant alpha-2 interferon gel treatment of recurrent herpes genitalis. Antiviral. Res., 17, 235–243.CrossRefGoogle ScholarPubMed
Lee, S., Zheng, M., Deshpande, S., Eo, S. K., Hamilton, T. A., and Rouse, B. T. (2002a). IL-12 suppresses the expression of ocular immunoinflammatory lesions by effects on angiogenesis. J. Leukoc. Biol., 71, 469–476.Google Scholar
Lee, S., Zheng, M., Kim, B., and Rouse, B. T. (2002b). Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J. Clin. Invest., 110, 1105–1111.CrossRefGoogle Scholar
Lee, S., Gierynska, M., Eo, S. K., Kuklin, N., and Rouse, B. T. (2003). Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus. Microbes Infect., 5, 571–578.CrossRefGoogle ScholarPubMed
Leib, D. A. (2002). Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr. Top. Microbiol. Immunol., 269, 171–185.Google ScholarPubMed
Leib, D. A., Harrison, T. E., Laslo, K. M., Machalek, M. A., Moorman, N. J., and Virgin, H. W. (1999). Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J. Exp. Med., 189, 663–672.CrossRefGoogle ScholarPubMed
Leib, D. A., Machalek, M. A., Williams, B. R., Silverman, R. H., and Virgin, H. W. (2000). Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl Acad. Sci., 97, 6097–6101.CrossRefGoogle ScholarPubMed
Lekstrom-Himes, J. A., Hohman, P., Warren, T.et al. (1999). Association of major histocompatibility complex determinants with the development of symptomatic and asymptomatic genital herpes simplex virus type 2 infections. J. Infect. Dis., 179, 1077–1085.CrossRefGoogle ScholarPubMed
Leo, N. A. and Bonneau, R. H. (2000). Chemical sympathectomy alters cytotoxic T lymphocyte responses to herpes simplex virus infection. Ann. NY Acad. Sci., 917, 923–934.CrossRefGoogle ScholarPubMed
Lewandowski, G. A., Lo, D., and Bloom, F. E. (1993). Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1; a possible mechanism of evasion of the immune system. Proc. Natl Acad. Sci. USA., 90, 2005–2009.CrossRefGoogle Scholar
Lieberman, J. and Fan, Z. (2003). Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol., 15, 553–559.CrossRefGoogle ScholarPubMed
Lin, X., Lubinksi, J. M., and Friedman, H. M. (2003). Presented at the 28th International Herpesvirus Workshop.
Lin, X., Lubinski, J. M., and Friedman, H. M. (2004). Immunization strategies to block the herpes simplex virus type 1 immunoglobulin G Fc receptor. J. Virol. 78, 2562.CrossRefGoogle ScholarPubMed
Litman, G. W., Anderson, M. K., and Rast, J. P. (1999). Evolution of antigen binding receptors. Annu. Rev. Immunol., 17, 109–147.CrossRefGoogle ScholarPubMed
Liu, T., Tang, Q., and Hendricks, R. L. (1996). Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J. Virol., 70, 264–271.Google ScholarPubMed
Liu, T., Khanna, K. M., Chen, X., Fink, D. J., and Hendricks, R. L. (2000). CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivaton from latency in sensory neurons. J. Exp. Med., 191, 1459–1466.CrossRefGoogle Scholar
Liu, T., Khanna, K. M., Carriere, B. N., and Hendricks, R. L. (2001). Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol., 75, 11178–11184.CrossRefGoogle ScholarPubMed
Lopez, C. (1975). Genetics of natural resistance to herpes virus infections in mice. Nature, 258, 1352–1353.CrossRefGoogle ScholarPubMed
Lopez, C., Kirkpatrick, D., Fitzgerald, P. A.et al. (1982). Studies of the cell lineage of the effector cells that spontaneously lyse HSV-1 infected fibroblasts (NK(HSV-1)). J. Immunol., 129, 824–828.Google Scholar
Lopez, C., Kirkpatrick, D., Read, S. E.et al. (1983). Correlation between low natural killing of fibroblasts infected with herpes simplex virus type 1 and susceptibility to herpesvirus infections. J. Infect. Dis., 147, 1030–1035.CrossRefGoogle ScholarPubMed
Lopez, C., Arvin, A. M., and Ashley, R. (1993). Immunity to herpesvirus infections in humans, p. 397–425. In Roizman, B., Whitley, R. J., and Lopez, C., (ed.). The Human Herpesviruses.New York: Raven Press.Google Scholar
Lu, Z., Yuan, L., Zhou, X., Sotomayor, E ., Levitsky, H. I., and Pardoll, D. M. (2000). CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J. Exp. Med., 191, 541–550.CrossRefGoogle ScholarPubMed
Lubinski, J., Wang, L., Mastellos, D., Sahu, A., Lambris, J. H., and Friedman, H. M. (1999). In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J. Exp. Med., 190, 1637–1646.CrossRefGoogle ScholarPubMed
Lubinski, J. M., Jiang, M., Hook, L.et al. (2002). Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J. Virol., 76, 9232–9241.CrossRefGoogle ScholarPubMed
Luker, G. D., Prior, J. L., Song, J., Pica, C. M., and Leib, D. A. (2003). Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J. Virol., 77, 11082–11093.CrossRefGoogle ScholarPubMed
Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, H. (2003). Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 198, 513–520.CrossRefGoogle ScholarPubMed
Lundberg, P., Welander, P., Openshaw, H.et al. (2003). A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J. Virol., 77, 11661–11673.CrossRefGoogle ScholarPubMed
Maccario, R., Revello, M. G., Comoli, P., Montagna, D., Locatelli, F., and Gerna, G. (1993). HLA-unrestricted killing of HSV-1-infected mononuclear cells. J. Immunol., 150, 1437–1445.Google ScholarPubMed
Maccario, R., Comoli, P., Percivalle, E., Montagna, D., Locatelli, F., and Gerna, G. (1995). Herpes simplex virus-specific human cytotoxic T-cell colonies expressing either gamma-delta or alpha-beta T-cell receptor: role of accessory molecules on HLA-unrestricted killing of virus-infected targets. Immunology, 85, 49–56.Google ScholarPubMed
Maertzdorf, J., Osterhaus, A. D., and Verjans, G. M. (2002). IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J. Immunol., 169, 5897–5903.CrossRefGoogle ScholarPubMed
Malmgaard, L. and Paludan, S. R. (2003). Interferon (IFN)-alpha/beta, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-gamma during infection with herpes simplex virus type 2. J. Gen. Virol., 84, 2497–2500.CrossRefGoogle ScholarPubMed
Mandelboim, O., Lieberman, N., Lev, M.et al. (2001). Recognition of haemagglutinins on virus-infected cells by NK p46 activates lysis by human NK cells. Nature, 409:1055–1060.CrossRefGoogle Scholar
Manickan, E. and Rouse, B. T. (1995). Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse models. J. Virol., 69, 8178–8179.Google ScholarPubMed
Manickan, E., Francotte, M., Kuklin, N.et al. (1995a). Vaccination with recombinant vaccinia viruses expressing ICP27 induces protecting immunity against herpes simplex virus through CD4+ Th1+ T cells. J. Virol., 69, 4711–4716.Google Scholar
Manickan, E., Rouse, R. J., Yu, Z., Wire, W. S., and Rouse, B. T. (1995b). Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J. Immunol., 155, 259–265.Google Scholar
McGeoch, D. J., Dalrymple, M. A., Davison, A. J.et al. (1988). The complete DNA sequence of the long unique region of herpes simplex virus type 1. J. Gen. Virol., 69, 1531–1574.CrossRefGoogle Scholar
McGowan, P., Wagener, F., Posavad, C. et al. (2003). Presented at the 28th International Herpesvirus Workshop, Madison, WI.
McKenna, D. B., Neill, W. A., and Norval, M. (2001). Herpes simplex virus-specific immune responses in subjects with frequent and infrequent orofacial recurrences. Br. J. Dermatol., 144, 459–464.CrossRefGoogle Scholar
Memar, O. M., Arany, I., and Tyring, S. K. (1995). Skin-associated lymphoid tissue in human immunodeficiency virus-1, human papillomavirus, and herpes simplex virus infections. J. Invest. Dermatol., 105, 99S-104S.CrossRefGoogle ScholarPubMed
Menten, P., Wuyts, A., and Damme, J. (2002). Macrophage inflammatory protein-1. Cytokine Growth Factor Rev., 13, 455–481.CrossRefGoogle ScholarPubMed
Messaoudi, I., Patino, Guevara J. A., Dyall, R., LeMaoult, J., and Nikolich-Zugich, J. (2002). Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science, 298, 1797–1800.CrossRefGoogle ScholarPubMed
Metcalf, J. F., Hamilton, D. S., and Reichert, R. W. (1979). Herpetic keratitis in athymic (nude) mice. Infect. Immun., 26, 1164–1171.Google ScholarPubMed
Mikloska, A., Kesson, A. M., Penfold, M. E. T., and Cunningham, A. L. (1996). Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J. Infect. Dis., 173, 7–17.CrossRefGoogle ScholarPubMed
Mikloska, Z., Danis, V. A., Adams, S., Lloyd, A. R., Adrian, D. L., and Cunningham, A. L. (1998). In vivo production of cytokines and beta (C-C) chemokines in human recurrent herpes simplex lesions-do herpes simplex virus-infected keratinocytes contribute to their production?J. Infect. Dis., 177, 827–838.CrossRefGoogle Scholar
Mikloska, Z., Sanna, P. P., and Cunningham, A. L. (1999). Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro. J. Virol., 73, 5934–5944.Google ScholarPubMed
Mikloska, Z., Ruckholdt, M., Ghadiminejad, I. Denis, M., and Cunningham, A. L. (2001). Monophosphosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. J. Immunol., 164, 5167–5176.CrossRefGoogle Scholar
Mikloska, Z., Bosnjak, L., and Cunningham, A. L. (2001). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J. Virol., 75, 5958–5964.CrossRefGoogle ScholarPubMed
Milligan, G. N. (1999). Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J. Virol., 73, 6380–6386.Google ScholarPubMed
Milligan, G. N., Bernstein, D. I., and Bourne, N. (1998). T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. J. Immunol., 160, 6093–6100.Google ScholarPubMed
Milligan, G. N., Bourne, N., and Dudley, K. L. (2001). Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J. Reprod. Immunol., 49, 49–65.CrossRefGoogle ScholarPubMed
Milone, M. C. and Fitzgerald-Bocarsly, P. (1998). The mannose receptor mediates induction of IFN-alpha in peripheral blood dendritic cells by enveloped RNA and DNA viruses. J. Immunol., 161, 2391–2399.Google ScholarPubMed
Moser, J. M., Byers, A. M. and Lukacher, A. E. (2002). NK cell receptors in antiviral immunity. Curr. Opin. Immunol. 14, 509–516.CrossRefGoogle ScholarPubMed
Mossman, K. L., Macgregor, P. F., Rozmus, J. J., Goryachev, A. B., Edwards, A. M., and Smiley, J. R. (2001). Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol., 75, 750–758.CrossRefGoogle ScholarPubMed
Mueller, S. N., Jones, C. M., Smith, C. M., Health, W. R., and Carbone, F. R. (2002). Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med., 195, 651–656.CrossRefGoogle Scholar
Mueller, S. N., Jones, C. M., Chen, W. (2003). The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J. Virol., 77, 2445–2451.CrossRefGoogle ScholarPubMed
Mullick, J., Kadam, A., and Sahu, A. (2003). Herpes and pox viral complement control proteins: ‘the mask of self’. Trends Immunol., 24, 500–507.CrossRefGoogle ScholarPubMed
Nagashunmugam, T., Lubinski, J., Wang, L.et al. (1998). In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J. Virol., 72, 5351–5359.Google ScholarPubMed
Nash, A. A. (2000). T cells and the regulation of herpes simplex virus latency and reactivation. J. Exp. Med., 191, 1455–1458.CrossRefGoogle ScholarPubMed
Nass, P. H., Elkins, K. L., and Weir, J. P. (2001). Protective immunity against herpes simplex virus generated by DNA vaccination compared to natural infection. Vaccine, 19, 1538–1546.CrossRefGoogle ScholarPubMed
Neumann, J., Eis-Hubinger, A. M., and Kock, N. (2003). Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J. Immunol., 171, 3075–3083.CrossRefGoogle ScholarPubMed
Nicholl, M. J., Robinson, L. H., and Preston, C. M. (2000). Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J. Gen. Virol., 81, 2215–2218.CrossRefGoogle ScholarPubMed
O'Keeffe, M., Hochrein, H., Vremec, D.et al. (2002). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J. Exp. Med., 196, 1307–1319.CrossRefGoogle ScholarPubMed
Ongkosuwito, J. V., Feron, E. J., Doornik, C. E.et al. (1998) Analysis of immunoregulatory cytokines in ocular fluid samples from patients with uveitis. Invest. Ophthalmol. Vis. Sci., 39, 2659–2665.Google ScholarPubMed
Osterhaus, A. D., Hintzen, R. Q., van Dun, J. M., Poot, A, Verjans, G. M. (2006). Selective accumulation of differentiated HSV serotype-specific CD8+ T cells within human HSV-1 latently infected trigeminal ganglia. In 31st International Herpesvirus Workshop, Seattle, Washington, USA, p. Abstract 9.02.
Overall, J. C., Spruance, S. L., and Green, J. A. (1981). Viral-induced leukocyte interferon in vesicle fluid from lesions of recurrent herpes labialis. J. Infect. Dis., 143, 543–547.CrossRefGoogle ScholarPubMed
Paludan, S. R., Ellerman-Eriksen, S., Kruys, V., and Mogensen, S. C. (2001). Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa-B and activating transcription factor 2/jun and translational regulation through the AU-rich region of the 3' untranslated region. J. Immunol., 167, 2202–2208.CrossRefGoogle ScholarPubMed
Parr, M. B. and Parr, E. L. (2000). Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2. Immunology, 99, 540–545.CrossRefGoogle ScholarPubMed
Parr, M. B. and Parr, E. L. (2003). Vaginal immunity in the HSV-2 mouse model. Int. Rev. Immunol., 22, 43–63.CrossRefGoogle ScholarPubMed
Payvandi, F., Amrute, S., and Fitzgerald-Bocarsly, P. (1998). Exogenous and endogenous IL-10 regulate IFN-alpha production by peripheral blood mononuclear cells in response to viral stimulation. J. Immunol., 160, 5861–5868.Google ScholarPubMed
Peek, R., Verjans, G. M., and Meek, B. (2002). Herpes simples virus infection of the human eye induces a compartmentalized virus-specific B cell response. J. Infect. Dis., 186, 1539–1546.CrossRefGoogle Scholar
Pereira, R. A. and Simmons, A. (1999). Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. J. Virol., 73, 6484–6489.Google Scholar
Pereira, R. A., Tscharke, D. C., and Simmons, A. (1994). Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells in mice in response to acute but not latent herpes simplex virus infection in vivo. J. Exp. Med., 180, 841–850.CrossRefGoogle Scholar
Pereira, R. A., Simon, M. M., and Simmons, A. (2000). Granzyme A, anoncytolytic component of CD8(+) cell granules, restricts the spread of herpes simples virus in the peripheral nervous systems of experimentally infected mice. J. Virol., 74, 1029–1032.CrossRefGoogle Scholar
Pereira, R. A., Scalzo, A., and Simmons, A. (2001). Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol., 166, 5869–5873.CrossRefGoogle Scholar
Pietra, G., Semino, C., Cagnoni, F.et al. (2000). Natural killer cells lyse autologous herpes simplex virus infected targets using cytolytic mechanisms distributed clonotypically. J. Med. Virol., 62, 354–363.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Pollara, G., Speidel, K., Samady, L.et al. (2003). Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J. Infect. Dis. 187, 165–178.CrossRefGoogle ScholarPubMed
Posavad, C. M., Koelle, D. M., and Corey, L. C. (1996). High frequency of CD8+ cytotoxic Tlymphocyte precursors specific for herpes simplex viruses in persons with genital herpes. J. Virol., 70, 8165–8168.Google Scholar
Posavad, C. M., Koelle, D. M., Shaughnessy, M. F., and Corey, L. (1997). Severe genital herpes infections in HIV-infected individuals with impaired HSV-specific CD8+ cytotoxic T lymphocyte responses. Proc. Nat. Acad. Sci., 94, 10289–10294.CrossRefGoogle ScholarPubMed
Posavad, C. M., Wald, A., Hosken, N., Huang, M.-L., Koelle, D. M., and Corey, L. (2003). T cell immunity to herpes simplex virus in seronegative persons: silent infection or acquired immunity. J. Immunol., 170, 4380–4388.CrossRefGoogle ScholarPubMed
Prasad, D. V., Richards, S., Mai, X. M., and Dong, C. (2003). B7S1, a novel B7 family member that negatively regulates T cell function. Immunity, 18, 863–873.CrossRefGoogle Scholar
Pyles, R. B., Higgins, D., Chalk, C.et al. (2002). Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection. J. Virol., 76, 11387–11396.CrossRefGoogle ScholarPubMed
Raftery, M. J., Behrens, C. K., Muller, A., Krammer, A., Walczak, H., and Schonrich, G. (1999). Herpes simplex virus type 1 infection of activated cytotoxic T cells: induction of fratricide as a mechanism of viral immune evasion. J. Exp. Med., 190, 1103–1114.CrossRefGoogle ScholarPubMed
Rager-Zisman, B., Quan, P. C ., Rosner, M., Moller, J. R., and Bloom, B. R. (1987). Role of NK cells in protection of mice against herpes simplex virus-1 infection. J. Immunol., 138, 884–888.Google ScholarPubMed
Randolph, G. J. (2006). Migratory dendritic cells: sometimes simply ferries?Immunity 25, 15.CrossRefGoogle ScholarPubMed
Rogge, L., D'Ambrosio, D., Biffi, M., Penna, G., Minetti, L. J., Presky, D. H., Adorini, L., and Sinigaglia, F. (1998). The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol., 161, 6567–6574.Google ScholarPubMed
Roizman, B. and Pellett, P. E. (2001). The family herpesviridae: a brief introduction, p. 2381–2397. In Howley, P. M., (ed.), Fields Virology, Fourth ed, vol. 2. Lippincott, Philadelphia.Google Scholar
Rong, Q., Alexander, T. S., Koski, G. K., and Rosenthal, K. S. (2003). Multiple mechanisms for HSV-1 induction of interferon alpha production by peripheral blood mononuclear cells. Arch. Virol., 148, 329–344.CrossRefGoogle ScholarPubMed
Roopenian, D., Chio, E. Y., and Brown, A. (2002). The immunogenomics of minor histocompatibility antigens. Immunol. Rev., 190, 86–94.CrossRefGoogle ScholarPubMed
Rosler, A., Pohl, M., Braune, H. J., Oertel, W. H., Gemsa, D., and Sprenger, H. (1998). Time course of chemokines in the cerebrospinal fluid and serum during herpes simplex type 1 encephalitis. J. Neurol. Sci., 157, 82–89.CrossRefGoogle ScholarPubMed
Rudd, C. E. and Schneider, H. (2003). Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nature ReviewsImmunology, 3, 544–556.Google Scholar
Salio, M., Cella, M., Suter, M., and Lanzavecchia, A. (1999). Inhibition of dendritic cell maturation by herpes simplex virus. Eur. J. Immunol., 29, 3245–3253.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Salio, M., Cella, M., Vermi, W.et al. (2003). Plasmacytoic dendritic cells prime IFN-gammasecreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur. J. Immunol., 33, 1052–1062.CrossRefGoogle Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 401, 708–712.CrossRefGoogle ScholarPubMed
Samady, L., Costigliola, E., MacCormac, L.et al. (2003). Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs- HSV vectors for dendritic cell-mediated immunotherapy. J. Virol., 77, 3768–3776.CrossRefGoogle ScholarPubMed
Sanchez-Pescador, L., Paz, P., Navarro, D., Pereira, L., and Kohl, S. (1992). Epitopes of herpes simplex virus type 1 glycoprotein B that bind type-common neutralizing antibodies elicit type-specific antibody-dependent cellular cytotoxicity. J. Infect. Dis., 166, 623–627.CrossRefGoogle ScholarPubMed
Sauerbrei, A., Eichhorn, U., Hottenrott, G., and Wutzler, P. (2000). Virological diagnosis of herpes simplex encephalitis. J. Clin. Virol., 17, 31–63.CrossRefGoogle ScholarPubMed
Schacker, T., Zeh, J., Hu, H.-L., Hill, E., and Corey, L. (1998). Frequency of symptomatic and asymptomatic herpes simplex virus type 2 reactivations among human immunodeficiency virus-infected men, J. Infect. Dis., 178, 1616–1622.CrossRefGoogle ScholarPubMed
Schmid, D. S. and Rouse, B. T. (1992). The role of T cell immunity in control of herpes simplex virus. Curr. Top. Microbiol. Immuno., 179, 57–74.Google ScholarPubMed
Schmid, D. S., Thieme, M. L., Gary, H. E., and Reeves, W. C. (1997). Characterization of T cell responses to herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) using a TNF-beta ELISpot cytokine assay. Arch. Virol., 142, 1659–1671.CrossRefGoogle ScholarPubMed
Schmitt, C., Fohrer, H., Beaudet, S.et al. (2000). Identification of mature and immature human thymic dendritic cells that differentially express HLA-DR and interleukin-3 receptor in vivo. J. Leukoc. Biol., 68, 836–844.Google ScholarPubMed
Sciammas, R. and Bluestone, J. A. (1998). HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner. J. Immunology, 161, 5187–5192.Google Scholar
Sciammas, R., Kodukula, P., Tang, Q., Hendricks, R. L., and Bluestone, J. A. (1997). T cell receptor-gamma-delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J. Exp. Med., 185, 1969–1975.CrossRefGoogle ScholarPubMed
Seo, S. K., Park, H. Y., Choi, J. H.et al. (2003). Blocking 4–1 BB/4–1BB ligand interactions prevents herpetic stromal keratitis. J. Immunol., 171, 576–583.CrossRefGoogle Scholar
Servet-Delprat, C., Vidalain, P. O., Valentin, H., and Rabourdin-Combe, C. (2003). Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr. Top. Microbiol. Immuno., 276, 103–123.Google ScholarPubMed
Shukla, D. and Spear, P. G. (2001). Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest., 108, 503–510.CrossRefGoogle ScholarPubMed
Siebens, H., Tevethia, S. S., and Babior, B. M. (1979). Neutrophil-mediated antibody-dependent killing of herpes-simplex-virus-infected cells. Blood, 54, 88–94.Google ScholarPubMed
Siegal, F. P., Kadowaki, N., Shodell, M.et al. (1999). The nature of the principle type 1 interferon-producing cells in human blood. Science, 284, 1835–1837.CrossRefGoogle Scholar
Simmons, A. and Tscharke, D. C. (1992). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J. Exp. Med., 175, 1337–1344.CrossRefGoogle ScholarPubMed
Simmons, A., Tscharke, D., and Speck, P. (1992). The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr. Top. Microbiol. Immunol., 179, 31–56.Google ScholarPubMed
Sin, J. I., Kim, J. J., Boyer, J. D., Ciccarelli, R. B., Higgins, T. J., and Weiner, D. B. (1999). In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex type 2 mouse model. J. Virol., 73, 501–509.Google Scholar
Sin, J. I., Kim, J. J., Zhang, D., and Weiner, D. B. (2001). Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum. Gene Ther., 12, 1091–1102.CrossRefGoogle Scholar
Singh, R., Kumar, A., Creery, W. D., Ruben, M., Guiluvi, A., and Diaz-Mitoma, F. (2003a). Dysregulated expression of IFN-gamma and IL-10 and imparied IFN-gamma-mediated responses at different disease stages in patients with genital herpes simplex virus-2 infection. Clin. Exp. Immunol, 133, 97–107.CrossRefGoogle Scholar
Singh, R., Kumar, A., and Diaz-Mitoma, F. (2003b). Augmentation of B7 expression by herpes simplex virus antigen. Hum. Immunol., 64, 780–786.CrossRefGoogle Scholar
Sinha, S., Cheshenko, N., Lehrer, R. I., and Herold, B. C. (2003). NP-1, a rabbit alphadefensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob. Agents Chemother., 47, 494–500.CrossRefGoogle Scholar
Sirianni, M. C., Bonomo, R., Scarpati, B.et al. (1986). Immunological responses of patients with recurrent herpes genitalis. Diagn. Immunol., 4, 294–298.Google ScholarPubMed
Smith, C. M., Belz, G. T., Wilson, N. S.et al. (2003). Cutting edge: conventional CD8alpha(+) dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol., 170, 4437–4440.CrossRefGoogle ScholarPubMed
Spatz, M., Wolf, H. M., Thon, V., Gampfer, J. M., and Eibl, M. M. (2000). Immune response to the herpes simplex type 1 regulatory proteins ICP8 and VP16 in infected persons. J. Med. Virol., 62, 29–36.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Spear, P. G., Eisenberg, R. J., and Cohen, G. H. (2000). Three classes of surface receptors for alphaherpesvirus entry. Virol., 275, 1–8.CrossRefGoogle ScholarPubMed
Speck, P. and Simmons, A. (1998). Precipitous clearance of herpes simplex virus antigens from the peripheral nervous systems of experimentally infected C57BL/10 mice. J. Gen. Virol., 79, 561–564.CrossRefGoogle ScholarPubMed
Spruance, S. L., Evans, T. G., McKeough, M. B.et al. (1995). Th1/Th2-like immunity and resistance to herpes simplex labialis. Antiviral Res., 28, 39–55.CrossRefGoogle ScholarPubMed
Spruance, S. L., Tyring, S. K., Smith, M. H., and Meng, T. C. (2001). Application of a topical immune response modifier, resiquimod gel, to modify the recurrence rate of recurrent genital herpes: a pilot study. J. Infect. Dis., 184, 196–200.CrossRefGoogle ScholarPubMed
Stanberry, L. R., Spruance, S., Cunningham, A. L.et al. (2002). Prophylactic vaccination against genital herpes with adjuvanted recombinant glycoprotein D vaccine: two randomized contolled trials. N. Engl. J. Med., 347, 1652–1661.CrossRefGoogle Scholar
Stumpf, T. H., Case, R., Shimeld, C., Easty, D. L., and Hill, T. J. (2002). Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J. Gen. Virol., 83, 1579–1590.CrossRefGoogle ScholarPubMed
Su, Y. H., Yan, X. T., Oakes, J. E., and Lausch, R. N. (1996). Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J. Virol., 70, 1277–1281.Google ScholarPubMed
Sun, M.-Y., Brown, J., Liu, B. et al. (2003). Presented at the AIDS Vaccine 2003, New York, New York.
Suvas, S., Kumaraguru, U., Pack, C. D., Lee, S., and Rouse, B. T. (2003). CD4+ CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J. Exp. Med., 198, 889–901.CrossRefGoogle ScholarPubMed
Suvas, S., Azkur, A. K., Kim, B. S., Kumaraguru, U., and Rouse, B. T. (2004). CD4(+)CD25(+) regulatory T cells control the severity of viral immunoinflammatory lesions. J. Immunol. 172; 4123.CrossRefGoogle ScholarPubMed
Sylwester, A. W., Mitchell, B. L., Edgar et al. (2005). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673.CrossRefGoogle ScholarPubMed
Taddesse-Heath, L., Feldman, J. I., Fahle, G. A.et al. (2003). Florid CD4+, CD56+ T-cell infiltrate associated with herpes simplex infection simulating nasal NK-/T-cell lymphoma. Mod. Pathol., 16, 166–172.CrossRefGoogle Scholar
Takeuchi, O. and Akira, S. (2002). MyD88 as a bottle neck in Toll/IL-1 signaling. Curr. Top. Microbiol. Immunol., 270, 155–167.Google ScholarPubMed
Thebeau, L. G. and Morrison, L. A. (2002). B7 costimulation plays an important role in protection from herpes simplex type 2-mediated pathology. J. Virol., 76, 2563–2566.CrossRefGoogle ScholarPubMed
Thebeau, L. G. and Morrison, L. A. (2003). Mechanism of reduced T-cell effector functions and class-switched antibody responses to herpes simplex virus type 2 in the absence of B7 costimulation. J. Virol., 77, 2426–2435.CrossRefGoogle ScholarPubMed
Tigges, M. A., Koelle, D. M., Hartog, K., Sekulovich, R. E., Corey, L., and Burke, R. L. (1992). Human CD8+ herpes simplex virus-specific cytotoxic T lymphocyte clones recognize diverse virion protein antigens. J. Virol., 66, 1622–1634.Google ScholarPubMed
Tigges, M. A., Leng, S., Johnson, D. C., and Burke, R. L. (1996). Human herpes simplex (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J. Immunol., 156, 3901–3910.Google ScholarPubMed
Tomazin, R., Schoot, N. E., Goldsmith, K.et al. (1998). Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol., 72, 2560–2563.Google Scholar
Trachtenberg, E., Korber, B., Sollars, C.et al. (2003). Advantage of rare HLA supertype in HIV disease progression. Nat. Med., 9, 928–935.CrossRefGoogle ScholarPubMed
Trgovcich, J., Johnson, D., and Roizman, B. (2002). Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpex simplex virus 1. J. Virol., 76, 6974–6986.CrossRefGoogle Scholar
Tscharke, D. C. and Simmons, A. (1999). Anti-CD8 treatment alters interleukin-4 but not interferon-gamma mRNA levels in murine sensory ganglia during herpes simplex virus infection. Brief report. Arch. Virol., 144, 2229–2238.CrossRefGoogle Scholar
Tsunobuchi, H., Nishimura, H., Goshima, F.et al. (2000). A protective role of interleukin-15 in a mouse model for systemic infection with herpes simplex virus. Virology, 275, 57–66.CrossRefGoogle Scholar
Tumpey, T. M., Cheng, H., Cook, D. N., Smithies, O., Oakes, J. E., and Lausch, R. N. (1998). Absence of macrophage inflammatory protein-1 alpha prevents the development of blinding herpes stromal keratitis. J. Virol., 72, 3705–3710.Google ScholarPubMed
Vaidya, S. A. and Cheng, G. (2003). Toll-like receptors and innate antiviral responses. Curr. Opin. Immunol., 15, 402–407.CrossRefGoogle ScholarPubMed
Strijp, J. A., Miltenburg, L. A., Rol, M. E., Kessel, K. P., Fluit, A. C., and Verhoef, J. (1990). Degradation of herpes simplex virions by human polymorphonuclear leukocytes and monocytes. J. Gen. Virol., 71, 1205–1209.CrossRefGoogle ScholarPubMed
Voorhis, W. C., Barrett, L. K., Koelle, D. M., Nasio, J. M., Plummer, F. A., and Lukehart, S. A. (1996). Primary and secondary syphillis lesions contain mRNA for Th1 cytokines and activated cytolytic T cells. J. Infect. Dis., 173:491–495.CrossRefGoogle Scholar
Verjans, G. M., Baarmsa, G. S., Lelij, A., Kijaltra, A., and Osterhaus, A. D. M. E. (1996). Characterization of herpes simplex virus (HSV) specific T cell clones from vitreous fluid of a patient with HSV mediated acute retinal necrosis. Invest. Ophthalmol. Vis. Sci., 37, S45.Google Scholar
Verjans, G. M. G. M., Remeijer, L., and Binnendijk, R. S. (1998). Identification and characterization of herpes simplex virus-specific CD4+ T cells in corneas of herpetic stromal keratitis patients. J. Infect. Dis., 177, 484–488.CrossRefGoogle ScholarPubMed
Vestey, J. P., Norval, M., Howie, S. E. M., Manigay, J. P., and Neill, W. (1990). Antigen presentation in patients with recrudescent orofacial herpes simplex virus infections. Br. J. Dermatol., 122, 33–42.CrossRefGoogle ScholarPubMed
Wakimoto, H., Johnson, P. R., Knipe, D. M., and Chiocca, E. A. (2003). Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther., 10, 983–990.CrossRefGoogle ScholarPubMed
Wald, A., Zeh, J., Selke, S.et al. (2000). Reactivation of genital herpes type 2 infection in asymptomatic seropositive persons. N. Engl. J. Med., 342, 844–850.CrossRefGoogle ScholarPubMed
Wallace, M. E., Keating, R., Heath, W. R., and Carbone, F. R. (1999). The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J. Virol., 73, 7619–7626.Google ScholarPubMed
Walport, M. J. (2001). Complement. First of two parts. N. Engl. J. Med., 344, 1058–1066.CrossRefGoogle ScholarPubMed
Whaley, K. J., Zeitlin, L., Barratt, R. A., Hoen, T. E., and Cone, R. A. (1994). Passive transfer of the vagina protects mice against vaginal transfer of genital herpes infections. J. Infect. Dis., 144, 142–146.Google Scholar
Whitbeck, J. C., Muggeridge, M. I., Rux, A. H.et al. (1999). The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J. Virol., 73, 9879–9890.Google ScholarPubMed
Wickham, S., Lu, B., Ash, J. and Carr, D. J. (2005). Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J. Neuroimmunol. 162, 51.CrossRefGoogle ScholarPubMed
Wollenberg, A., Wagner,. M., Gunther, S.et al. (2002). Plamacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J. Invest. Dermatol., 119, 1096–1102.CrossRefGoogle Scholar
Wong, G. H. and Goeddel, D. V. (1986). Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature, 323, 819–822.CrossRefGoogle ScholarPubMed
Wonnacott, K. M. and Bonneau, R. H. (2002). The effects of stress on memory cytotoxic T lymphocyte-medicated protection against herpes simplex virus infection at mucosal sites. Brain Behav. Immunol., 116, 104–117.CrossRefGoogle Scholar
Xia, P., Gamble, J. R., Rye, K. A.et al. (1998). Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl Acad. Sci. USA, 95, 14196–14201.CrossRefGoogle ScholarPubMed
Yang, O. O., Sarkis, P. T., Trocha, A., Kalams, S. A., Johnson, R. P., and Walker, B. D. (2003). Impacts of avidity and specificity on the antiviral efficiency of HIV-1-specific CTL. J. Immunol., 171, 3718–3724.CrossRefGoogle ScholarPubMed
Yasukawa, M. and Kobayashi, Y. (1985). Inhibition of herpes simplex virus replication in vitro by human cytotoxic T cell clones and natural killer cell clones. J. Gen. Virol., 66, 2225–2229.CrossRefGoogle ScholarPubMed
Yasukawa, M. and Zarling, J. M. (1983). Autologous herpes simplex virus-infected cells are lysed by human natural killer cells. J. Immunol., 131, 2011–2016.Google ScholarPubMed
Yasukawa, M. and Zarling, J. M. (1984). Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA Class II MB and DR antigens. J. Immunol., 133, 422–427.Google ScholarPubMed
Yasukawa, M., Inatsuki, A., and Kobayashi, Y. (1988). Helper activity in antigen-specific antibody production mediated by CD4+ human cytotoxic T cell clones directed against herpes simplex virus. J. Immunol., 140, 3419–3425.Google ScholarPubMed
Yasukawa, M., Inatsuki, A., and Kobayashi, Y. (1989). Differential in vitro activation of CD4+CD8- and CD8+CD4- herpes simplex virus-specific human cytotoxic T cells. J. Immunol., 143, 2051–2057.Google ScholarPubMed
Yasukawa, M., Ohminami, H., Yakushijin, Y.et al. (1999). Fas-independent cytotoxicity mediated by CD4+ CTL directed against herpes simplex virus-infected cells. J. Immunol., 162, 6100–6106.Google ScholarPubMed
Yoneyama, H., Matsuno, K., Toda, E.et al. (2005). Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425.CrossRefGoogle ScholarPubMed
Zak-Prelich, M., Halliday, K. E., Walker, C., Yates, C. M., Norval, M., and McKenzie, R. C. (2001). Infection of murine keratinocytes with herpes simplex virus type 1 induces the expression of interleukin-10, but not interleukin-1 alpha or tumour necrosis factor-alpha. Immunology, 104, 468–475.CrossRefGoogle ScholarPubMed
Zhao, X., Deak, E., Soderberg, K.et al. (2003). Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med., 197, 153–162.CrossRefGoogle Scholar
Zorrilla, E. P., Luborsky, L., McKay, J. R.et al. (2001). The relationship of depression and stressors to immunological assay: a meta-analytic review. Brain Behav. Immun., 15, 199–226.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×