Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2007
  • Online publication date: December 2009

34 - HSV-1 and 2: immunobiology and host response

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2



Herpesviruses began to evolve prior to the development of acquired immunity (Arzul et al., 2002). It is therefore likely that evasion of innate immunity is an ancient function of alphaherpesviruses. Additional immune evasion functions have developed to adapt to the diverse repertoires of B- and T-cell immune receptors that characterize acquired immunity (Roizman and Pellet, 2001; Littman et al., 1999). Immune evasion is covered in detail elsewhere in this volume. The innate and acquired immune responses to HSV are relevant to preventative and therapeutic vaccines for HSV, HSV-induced immunopathology, and the use of modified HSV for gene or cancer therapy. While human studies are, of necessity, observational or ex vivo in nature and seldom access sites of neuronal latency, we review them in detail because of their medical relevance. The excellent tools available for murine studies, including exquisite control of the DNA sequence of HSV challenge strains, and of the phenotype and genotype of recipient animals, are yielding dramatic new insights as well. Reactivation of HSV from neuronal latency is less frequent in mice than in humans, limiting immunologic studies of this challenging phenomenon. Readers are referred to excellent reviews (Schmid and Rouse, 1992; Nash, 2000; Lopez et al., 1993, Simmons et al., 1992; Kohl,1992) for models and materials that cannot be covered in detail.

HSV interactions with dendritic cells

Dendritic cells (DC) are a major link between innate and acquired immunity. DC are mobile cells that can potently initiate acquired immunity.

Adler, H., Beland, J. L., Del-Pan, N. al. (1997). Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J. Exp. Med., 185, 1533–1540.
Ahmad, A., Sharif-Askari, E., Fawaz, L., and Menezes, J. (2000). Innate immune response of the human host to exposure with herpes simplex virus type 1: in vitro control of the virus infection by enhanced natural killer activity via interleukin-15 induction. J. Virol., 74, 7196–7203.
Ahmad-Nejad, P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M., and Wagner, H. (2002). Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. I. Immunol., 32, 1958–1968.
Allan, R. S., Smith, C. M., Belz, G. al. (2003). Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science, 301, 1925–1928.
Allan, R. S., Waithman, J., Bedoui, al. (2006). Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153.
Andersen, H., Dempsey, D., Chervenak, R., and Jennings, S. R. (2000). Expression of intracellular IFN-gamma in HSV-1-specific CD8+ T cells identifies distinct responding subpopulations during the primary response to infection. J. Immunol., 165, 2101–2107.
Andrews, T., and Sullivan, K. E. (2003). Infections in patients with inherited defects in phagocytic functions. Clin. Microbiol. Rev., 16, 597–621.
Ankel, H., Westra, D. F., Welling-Wester, S., and Lebon, P. (1998). Induction of interferonalpha by glycoprotein D of herpes simplex virus: a possible role of chemokine receptors. Virology, 251, 317–326.
Arany, I., Tyring, S. K., Stanley, M. al. (1999). Enhancement of the innate and cellular immune response in patients with genital warts treated with topical imiquimod cream 5%. Antiviral Res., 43, 55–63.
Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B., and Lanier, L. L. (2002). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science, 296, 1323–1326.
Arzul, I., Renault, T., Thebault, A., and Gerard, A. (2002). Detection of oyster herpesvirus DNA and proteins in asymptomatic Crassostrea gigas adults. Virus Res., 84, 151–160.
Asanuma, H., Sharp, M., Maecker, H. T., Maino, V. C., and Arvin, A. M. (2000). Frequencies of memory T cells specific for varicella-zoster virus, herpes simplex virus and cytomegalovirus determined by intracellular detection of cytokine expression. J. Infect. Dis., 181, 859–866.
Ashkar, A. A., and Rosenthal, K. L. (2003). Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J. Virol., 77, 10168–10171.
Ashkar, A. A., Bauer, S., Mitchell, W. J., Vieira, J., and Rosenthal, K. L. (2003). Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J. Virol., 77, 8948–8956.
Ashley, R. L., Corey, L., Dalessio, al. (1994). Protein-specific cervical antibody responses to primary genital herpes simplex virus type 2 infections. J. Infect. Dis., 170, 20–26.
Asselin-Paturel, C., Boonstra, A., Dalod, al. (2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol., 2, 1144–1150.
Bacon, K., Baggiolini, M., Broxmeyer, al. (2002). Chemokine/ chemokine receptor nomenclature. J. Interferon Cytokine Res., 22, 1067–1068.
Balachandran, N., Bacchetti, S., and Rawls, W. E. (1982). Protection against lethal challenge of Balb/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect. Immun., 37, 1132–1137.
Barcy, S. and Corey, L. (2001). Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells. J. Immunology, 166, 6242–6249.
Barouch, D. H. and Letvin, N. L. (2001). CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr. Opin. Immunol., 13, 479–482.
Becker, Y. (2003). Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells – a review. Virus Genes, 26, 119–130.
Beland, J. L., Alder, H., Del-Pan, N. al. (1998). Recombinant CD40L treatment protects allogeneic murine bone marrow transplant recipients from death caused by herpes simplex virus-1 infection. Blood, 92, 4472–4478.
Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the NK T cell lineage. Science, 296, 553–555.
BenMohamed, L., Bertrand, G., McNamara, C. al. (2003). Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol., 77, 9463–9473.
Betts, M. R., Casazza, J. P., Patterson, B. al. (2000). Putative immunodominant human immunodeficiency virus-specific CD8+ T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J. Virol., 74, 9144–9151.
Biron, C. A., Byron, K. S., and Sullivan, J. L. (1989). Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med., 320, 1731–1735.
Bishop, G. A., Marlin, S. D., Schwartz, S. A., and Glorioso, J. C. (1984). Human natural killer cell recognition of herpes simplex virus type 1 glycoproteins: specificity analysis with the use of monoclonal antibodies and antigenic variants. J. Immunol., 133, 2206–2214.
Bishop, G. A., Kumel, G., Schwartz, S. A., and Glorioso, J. C. (1986). Specificity of human natural killer cells in limiting dilution culture for determinants of herpes simplex virus type 1 glycoproteins. J. Virol., 57, 294–300.
Blaney, J. E., Nobusawa, E., Brehm, M. al. (1998). Immunization with a single major histocompatibility class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J. Virol., 72, 9567–9574.
Boggess, K. A., Watts, D. H., Hobson, A. C., Ashely, R. L., Brown, Z. A., and Corey, L. (1997). Herpes simplex virus type 2 detection by culture and polymerase chain reaction and relationship to genital symptoms and cervical antibody status during the third trimester of pregnancy. Am. J. Obstet. Gynecol., 176, 443–451.
Bonneau, R. H., Sheridan, J. F., Feng, N. G., and Glaser, R. (1991). Stress-induced suppression of herpes simplex virus (HSV)-specific cytotoxic T lymphocyte and natural killer cell activity and enhancement of acute pathogenesis following local HSV infection. Brain Behav. Immun., 5, 170–192.
Bonneau, R. H., Brehm, M. A., and Kern, A. M. (1997). The impact of psychological stress on the efficacy of anti-viral adoptive immunotherapy in an immunocompromised host. J. Neuroimmunol., 78, 19–33.
Boonstra, A., Asselin-Paturel, C., Gilliet, al. (2003). Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med., 197, 101–109.
Brehm, M. A., Pinto, A. K., Daniels, K. A., Schneck, J. P., Welsh, R. M., and Selin, L. K. (2002). T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol., 3, 627–634.
Bresnihan, B. and Cunnane, G. (2003). Infection complications associated with the use of biologic agents. Rheum. Dis. Clin. North Am., 29, 185–202.
Brown, Z. A., Wald, A., Morrow, R. A., Selke, S., Zeh, J., and Corey, L. (2003). Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. J. Am. Med. Assoc., 289, 203–209.
Brunetti, C. R., Burke, R. L., Hoflack, B., Ludwig, T., Dingwell, K. S., and Johnson, D. C. (1995). Role of mannose-6-phosphate receptors in herpes simplex virus entry into cells and cell-to-cell transmission. J. Virol., 69, 3517–3528.
Bukowski, J. F. and Welsh, R. M. (1986). The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1. J. Immunol., 136, 3481–3485.
Burrows, S. R., Silins, S. L., Moss, D. J., Khanna, R., Misko, I. S., and Argaet, V. P. (1995). T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen. J. Exp. Med., 182, 1703–1715.
Carr, D. J., Chodosh, J., Ash, J., and Lane, T. E. (2003). Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J. Virol., 77, 10037–10046.
Cartier, A., Broberg, E., Komai, T., Henriksson, M., and Masucci, M. G. (2003). The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B. Cell Death Differ.
Casrouge, A., Zhang, S. Y., Eidenschenk, C.Herpes simplex virus encephalitis in human UNC-93B deficiency. Science, 314, 308–312.
Chatenoud, L., Salomon, B., and Bluestone, J. A. (2001). Suppressor T cells-they're back and critical for regulation of autoimmunity! Immunol. Rev., 182, 149–163.
Chehimi, J., Campbell, D. E., Azzoni, al. (2002). Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J. Immunol., 168, 4796–4801.
Chen, H. and Hendricks, R. L. (1998). B7 costimulatory requirements of T cells at an inflammatory site. J. Immunol., 160, 5045–5052.
Chen, S. H., Garber, D. A., Schaffer, P. A., Knipe, D. M., and Coen, D. M. (2000). Persistent elevated expression of cytokine transcripts in ganglia latently infected with herpes simplex virus in the absence of ganglionic replication or reactivation. Virology, 278, 207–216.
Chou, J., Kern, E. R., Whitley, R. J., and Roizman, B. (1990). Mapping of herpes simplex virus 1 neurovirulence to gamma 1 34.5, a gene nonessential for growth in cell culture. Science, 252, 1262–1266.
Cohen, F., Kemeny, M. E., Zegans, L. S., Neuhaus, J. M., and Conant, M. A. (1999). Persistent stress as a predictor of genital herpes recurrence. Arch. Intern. Med., 159, 2330–2336.
Coles, R. M., Mueller, S. N., Heath, W. R., Carbone, F. R., and Brooks, A. G. (2002). Progression of armed CTL from draining lympth node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol., 168, 834–838.
Colonna, M., Krug, A., and Cella, M. (2002). Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol., 14, 373–379.
Connell, E. V., Cerruti, R. L., and Trown, P. W. (1985). Synergistic activity of combinations of recombinant human alpha interferon and acyclovir, administered concomitantly and in sequence, against a lethal herpes simplex type 1 infection in mice. Antimicrob. Agents Chemother., 28, 1–4.
Corey, L., Langenberg, A. G. M., Ashley, al. (1999). Two double-blind, placebo-controlled trials of a vaccine containing recombinant gD2 and gB2 antigens in MF59 adjuvant for the prevention of genital HSV-2 acquisition. J. Am. Med. Assoc., 282, 331–340.
Cose, S. C., Kelly, J. M., and Carbone, F. R. (1995). Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential V beta bias. J. Virol., 69, 5849–5852.
Cose, S. C., Jones, C. M., Wallace, M. E., Heath, W. R., and Carbone, F. R. (1997). Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur. J. Immunol., 27, 2310–2316.
Croen, K. D. (1993). Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest., 91, 2446–2452.
Croft, M. (2003). Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat. Rev. Immunol., 3, 609–620.
Cunningham, A. L., Turner, R. R., Miller, A. C., Para, M. F., and Merigan, T. C. (1985). Evolution of recurrent herpes simplex lesions: an immunohistologic study. J. Clin. Invest., 75, 226–233.
Daheshia, M., Kuklin, N., Kanangat, S., Manickan, E., and Rouse, B. T. (1997). Suppression of ongoing ocular inflammatory disease by topical administration of plasmid encoding IL-10. J. Immunol., 159, 1945–1952.
Haan, J. M., Lehar, S. M., and Bevan, M. J. (2000). CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med., 192, 1685–1696.
Diaz, G. A. and Koelle, D. M. (2006). Human CD4+ CD25high cells suppress proliferative memory lymphocyte responses to herpes simplex virus type 2. J. Virol. 80, 8271.
Diebold, S. S., Montoya, M., Unger, al. (2003). Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature, 424, 324–328.
Doukas, J. and Pober, J. S. (1990). IFN-gamma enhances endothelial activation induced by tumor necrosis factor but not IL-1. J. Immunol., 145, 1727–1733.
Dupuis, S., Jouanguy, E., Al-Hajjar, S . et al. (2003). Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat. Genet., 33, 388–391.
Edelmann, K. H. and Wilson, C. B. (2001). Role of CD28/CD80–86 and CD40/CD154 costimulatory interactions in host defense to primary herpes simplex virus infection. J. Virol., 75, 612–621.
Eidson, K. M., Hobbs, W. E., Manning, B. J., Carlson, P., and DeLuca, N. A. (2002). Expression of herpes simplex virus ICPO inhibits the induction of interferon-stimulated genes by viral infection. J. Virol., 76, 2180–2191.
Feldman, L. T., Ellison, A. R., Voytek, C. C., Yang, L., Krause, P., and Margolis, T. P. (2002). Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc. Natl Acad. Sci. USA, 99, 978–983.
Feldman, S. B., Ferraro, M., Zheng, H.-M., Patel, N., Gould-Fogerite, S . and Fitzgerald, Bocarsly P. (1994). Viral induction of low frequency interferon-à producing cells. Virology, 204, 1–7.
Fieschi, C. and Casanova, J. L. (2003). The role of interleukin-12 in human infectious diseases: only a faint signature. Eur. J. Immunol., 33, 1461–1464.
Fieschi, C., Dupuis, S., Catherinot, al. (2003). Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta 1 deficiency: medical and immunological implications. J. Exp. Med., 197, 527–535.
Finberg, R. W., Kurt-Jones, E. A., Zhu, J., Arnold, M., and Knipe, D. (2003). Presented at the 28th International Herpesvirus Workshop, July 2003.
Fitzgerald-Bocarsly, P. (2002). Natural interferon-alpha producing cells: the plasmacytoid dendritic cells. Biotechniques Suppl, 16–20, 22, 24–29.
Fitzgerald-Bocarsly, P., Howell, D. M., Pettera, L., Tehrani, S., and Lopez, C. (1991). Immediate-early gene expression is sufficient for induction of natural killer cell-mediated lysis of herpes simplex virus type 1-infected fib roblasts. J. Virol., 65, 3151–3160.
Flo, J., Tismintezky, S., and Baralle, F. (2000). Modulation of the immune response to DNA vaccina by co-delivery of costimulatory molecules. Immunology, 100, 259–267.
Io, J F., Tismintezky, S., and Baralle, F. (2001). Codelivery of DNA coding for the soluble form of CD86 results in the down-regulation of the immune response to DNA vaccines. Cell. Immunol., 209, 120–131.
Fonteneau, J. F., Gilliet, M., Larsson, al. (2003). Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood, 101, 3520–3526.
Frenkel, L., Pineda, E., Hall, H., Dillon, M., and Bryson, Y. (1989). A prospective study of the effects of acyclovir treatment on the HSV-2 lymphoproliferative response of persons with frequently recurring HSV-2 genital infections. J. Infect. Dis., 159, 845–850.
Friedman, H. M. (2000). (letter) Immunologic strategies for herpes vaccination. J. Am. Med. Assoc., 283, 746.
Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M., and Kurimoto, M. (1999). Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J. Virol., 73, 2401–2409.
Fuleihan, R. L. (2001). Hyper IgM syndrome: the other side of the coin. Curr. Opin. Pediatr., 13, 528–532.
Fuller, A. O. and Spear, P. G. (1985). Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. J. Virol., 55, 475–482.
Fuller, A. O. and Spear, P. G. (1987), Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proc. Natl Acad. Sci. USA, 84, 5454–5458.
Fuller, A. O., Santos, R. E., and Spear, P. G. (1989). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J. Virol., 63, 3435–3443.
Gangappa, S., Manickan, E., and Rouse, B. T. (1998). Control of herpetic stromal keratitis using CTLA 4Ig fusion protein. Clin. Immunol. Immunopathol., 86, 88–94.
Garcia-Perez, M. A., Paz-Artal, E., Correll, al. (2003). Mutations of CD40L ligand in two patients with hyper-IgM syndrome. Immunobiology, 207, 285–294.
Gary-Gouy, H., Lebon, P., and Dalloul, A. H. (2002). Type I interferon production by plasmacytoid dendritic cells and monocytes is triggered by viruses, but the level of production is controlled by distinct cytokines. J. Interferon Cytokine Res., 22, 653–659.
Gierynska, M., Kumaraguru, U., Eo, S. K. (2002). Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J. Virol., 76, 6568–6576.
Gilliet, M. and Liu, Y. J. (2002). Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med., 195, 695–704.
Goldsmith, K., Chen, W., Johnson, D. C., and Hendricks, R. L. (1998). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8 T cell response. J. Exp. Med., 187, 341–348.
Gonzalez, A. M., Jaimes, M. C., Cajiao, al. (2003). Rotavirus-specific B cells induced by recent infection in adults and children predominantly express the intestinal homing receptor alpha4beta7. Virology, 305, 93–105.
Gonzalez, J. C., Kwok, W. W., Wald, A., McClurkan, C. L., and Koelle, D. M. (2005). Programmed expression of cutaneous lymphocyte-associated antigen amongst circulating memory T-cells specific for HSV-2. J. Infect. Dis., 191, 243–254.
Grubor-Bauk, B., Simmons, A., Mayrhofer, G., and Speck, P. G. (2003). Impaired clearance of herpes simplex virus type 1 from mice lacking CD 1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J. Immunol., 170, 1430–1434.
Haahr, S., Rasmussen, L., and Merigan, T. C. (1976). Lymphocyte transformation and inter interferon production in human mononuclear cell microcultures for assay of cellular immunity to herpes simplex virus. Infect. Immunol., 14, 47–54.
Halford, W. P., Gebhardt, B. M., and Carr, D. J. (1996). Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J. Immunol., 157, 3542–3549.
Halford, W. P., Gebhardt, B. M., and Carr, D. J. J. (1997). Acyclovir blocks cytokine gene expression in trigeminal ganglia latently infected with herpes simplex virus type 1. Virology, 238, 53–63.
Halstead, E. S., Mueller, Y. M., Altman, J. D., and Katsikis, P. D. (2002). In vivo stimulation of CD 137 broadens primary antiviral CD8+ T cell responses. Nat. Immunol., 3, 536–541.
Hamann, D., Baars, P. A., Rep, M. al. (1997). Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med., 186, 1407–1418.
Harandi, A. M., Svennerholm, B., Holmgren, J., and Eriksson, K. (2001a). Interleukin-12 (IL-12) and IL-18 are important in innate defense against genital herpes simplex virus type 2 infection in mice but are not required for the development of acquired gamma interferonmediated protective immunity. J. Virol., 75, 6705–6709.
Harandi, A. M., Svennerholm, B., Holmgren, J., and Eriksson, K. (2001b). Protective vaccination against genital herpes simplex virus type 2 (HSV-2) infection in mice is associated with a rapid induction of local IFN-gamma-dependent RANTES production following a vaginal viral challenge. Am. J. Reprod. Immunol., 46, 420–424.
Harandi, A., Eriksson, K M.., and Holmgren, J. (2003). A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J. Virol., 77, 953–962.
Harle, P., Sainz, B. Jr.. and Halford, W. P. (2002). The immediate-early protein, ICPO is essential for the resistance of herpes simplex virus to interferon-alpha/beta. Virology, 293, 295–304.
Hemmi, H., Kaisho, T., Takeuchi, al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol., 3, 196–200.
Hendricks, R. L. (2006). Stress-induced dysregulation of HSV-specific immunity in latently-infected sensory ganglia. In 31st International Herpesvirus Workshop, Seattle, Washington, USA, p. Abstract 9.57.
Hill, A., Jugovic, P., York, al. (1995). Herpes simplex virus turns off the TAP to evade host immunity. Nature, 375, 411–415.
Holterman, A.-X., Rogers, K., Edelmann, K., Koelle, D. M., Corey, L., and Wilson, C. B. (1999). An important role for MHC class I restricted T cells, and limited role for IFN-gamma, in protection against herpes simplex virus infection in C57BL/6 mice. J. Virol., 73, 2058–2063.
Hornung, V., Rothenfusser, S., Britsch, al. (2002). Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol., 168, 4531–4537.
Hosken, N., McGowan, P.Meier, al. (2006). Diversity of the CD8+ T cell response to herpes simpolex virus type 2 proteins among persons with genital herpes. J. Virol. 80, 5509.
Huard, B. and Fruh, K. (2000). A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol., 30, 509–515.
Hurme, M., Haanpaa, M., Nurmikko, al. (2003). IL-10 gene polymorphism and herpesvirus infections. J. Med. Virol., 70 Suppl 1, S48–S50.
Inagaki-Ohara, K., Kawabe, T., Hasegawa, Y., Hashimoto, N., and Nishiyama, Y. (2002). Critical involvement of CD40 in protection against herpes simplex virus infection in a murine model of genital herpes. Arch. Virol., 147, 187–194.
Iyoda, T., Shimoyama, S., Liu, al. (2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med., 195, 1289–1302.
Jawahar, S., Moody, C., Chan, M., Finberg, R., Geha, R., and Chatila, T. (1996). Natural Killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIA (CD16-II). Clin. Exp. Immunol., 103, 408–413.
Jerome, K. R., Tait, J. F., Koelle, D. M., and Corey, L. (1998). Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. J. Virol., 72, 436–441.
Johansson, E. L., Rudin, A., Wassen, L., and Holmgren, J. (1999). Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology, 96, 272–277.
Jones, C. A., Fernandez, M., Herc, al. (2003). Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J. Virol., 77, 11139–11149.
Jones, S. M., Cose, S. C., Coles, R. al. (2000). Herpes simplex virus type 1-specific cytotoxic T-lymphocyte arming occurs within lymph nodes draining the site of cutaneous infection. J. Virol., 74, 2414–2419.
Kadowaki, N., Ho, S., Antonenko, al. (2001). Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med., 194, 863–869.
Kanangat, S., Thomas, J., Gangappa, S., Babu, J. S., and Rouse, B. T. (1996). Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J. Immunol., 156, 1110–1116.
Kaushic, C., Ashkar, A. A., Reid, L. A., and Rosenthal, K. L. (2003). Progesterone increases susceptibility and decreases immune responses to genital herpes infection. J. Virol., 77, 4558–4565.
Kawamoto, S., Oritani, K., Asada, al. (2003). Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J. Virol., 77, 9622–9631.
Keadle, T. L., Usui, N., Laycock, K. A., Miller, J. K., Pepose, J. S., and Stuart, P. M. (2000). IL-1 and TNF-alpha are important factors in the pathogenesis of murine recurrent herpetic stromal keratitis. Invest. Ophthalmol. Visual. Sci., 41, 96–102.
Khanna, K. M., Bonneau, R. H., Kinchington, P. R., and Hendricks, R. L. (2003). Herpes simplex virus-specific memory CD8(+) T cells are selectively activated and retained in latently infected sensory Ganglia. Immunity, 18, 593–603.
Kodukula, P., Liu, T., Rooijen, N. V., Jager, M. J., and Hendricks, R. L. (1999). Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J. Immunol., 162, 2895–2905.
Koelle, D. M. and Corey, L. (1995). Role of cellular immune response to human genital herpes. Herpes, 2, 83–88.
Koelle, D. M. and Corey, L. (2003). Recent progress in herpes simplex virus immunobiology and vaccine research. Clin. Microbiol. Rev., 16, 96–113.
Koelle, D. M., Tigges, M. A., Burke, R. al. (1993). Herpes simplex virus infection of human fibroblasts and keratinocytes inhibits recognition by cloned CD8+ cytotoxic T lymphocytes. J. Clin. Invest., 91, 961–968.
Koelle, D. M., Frank, J. M., Johnson, M. L., and Kwok, W. W. (1998a). Recognition of herpes simplex virus type 2 tegument proteins by CD4 T cells infiltrating human genital herpes lesions. J. Virol., 72, 7476–7483.
Koelle, D. M., Posavad, C. M., Barnum, G. R., Johnson, M. L., Frank, J. M., and Corey, L. (1998). Clearance of HSV-2 from recurrent genital lesions correlates with infiltration of HSV-specific cytotoxic T lymphocytes. J. Clin. Invest., 101, 1500–1508.
Koelle, D. M., Reymond, S. N., Chen, al. (2000a). Tegument-specific, virus-reactive CD4 T-cells localize to the cornea in herpes simplex virus interstitial keratitis in humans. J. Virol., 74, 10930–10938.
Koelle, D. M., Schomogyi, M., and Corey, L. (2000b). Recovery of antigen-specific T-cells from the uterine cervix of women with genital herpes simplex virus type 2 virus infection. J. Infect. Dis., 182, 662–670.
Koelle, D. M., Schomogyi, M., McClurkan, C., Reymond, S. N., and Chen, H. B. (2000c). CD4 T-cell responses to herpes simplex virus type 2 major capsid protein VP5: comparison with responses to tegument and envelope glycoproteins. J. Virol., 74, 11422–11425.
Koelle, D. M., Chen, H., Gavin, M. A., Wald, A., Kwok, W. W., and Corey, L. (2001). CD8 CTL from genital herpes simplex lesions: recognition of viral tegument and immediate early proteins and lysis of infected cutaneous cells. J. Immunol., 166, 4049–4058.
Koelle, D. M., Chen, H. B., McClurkan, C. M., and Petersdorf, E. W. (2002a). Herpes simplex virus type 2-specific CD8 cytotoxic T lymphocyte cross-reactivity against prevalent HLA class I alleles. Blood, 99, 3844–3847.
Koelle, D. M., Liu, Z., McClurkan, C. al. (2002b). Expression of cutaneous lymphocyte-associated antigen by CD8+ T-cells specific for a skin-tropic virus. J. Clin. Invest., 110, 537–548.
Koelle, D. M., Liu, Z., McClurkan, C. al. (2003). Immunodominance among herpes simplex virus-specific CD8 T-cells expressing a tissue-specific homing receptor. Proc. Natl Acad. Sci. USA, 100, 12899–12904.
Koelle, D. M., Huang, J., Hensel, M. T., and McClurkan, C. L. (2006). Innate immune responses to herpes simplex virus type 2 influence skin homing molecule expression by memory CD4+ lymphocytes. J. Virol. 80, 2863.
Kohl, S. (1991). Role of antibody-dependent cellular cytotoxiciy in defense aganist herpes simplex virus infections. Rev. Infect. Dis., 13, 108–114.
Kohl, S. (1992). The role of antibody in herpes simplex virus infection in humans. Curr. Top. Microbiol. Immunol., 179, 75–88.
Kohl, S., Loo, L. S., Schmalstieg, F. S., and Anderson, D. C. (1986). The genetic deficiency of leukocyte surface glyoprotein Mac-1, LFA-1, p150,95 in humans is associated with defective antibody-dependent cellular cytotoxicity in vitro and defective protection against herpes simplex infection in vivo. J. Immunol., 137, 1688–1694.
Kohl, S., Charlebois, E. D., Sigouroudinia, al. (2000). Limited antibody-dependent cellular cytotoxicity antibody response induced by a herpes simplex virus type 2 subunit vaccine. J. Infect. Dis., 181, 335–339.
Kokuba, H., Aurelian, L., and Burnett, J . (1999). Herpes simplex virus associated erythema multiforme (HAEM) is mechanistically distinct from drug-induced erythema multiforme: interferon-gamma is expressed in HAEM lesions and tumor necrosis factor-alpha in druginduced erythema multiforme lesions. J. Invest. Dermatol., 113, 808–815.
Kramer, M. F. and Coen, D. M. (1995). Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J. Virol., 69, 1389–1399.
Kriesel, J. D., Araneo, B., Petajan, J. P., Spruance, S. L., and Stromatt, S. (1994). Herpes labialis associated with recombinant human ciliary neurotrophic factor. J. Infect. Dis., 170, 1046.
Kriesel, J. D., Gebhardt, B. M., Hill, J. al. (1997a). Anti-interleukin-6 antibodies inhibit herpes simplex virus reactivation. J. Infect. Dis., 175, 821–827.
Kriesel, J. D., Ricigliano, J., Spruance, S. L., Garza, H. H. Jr., and Hill, J. M. (1997b). Neuronal reactivation of herpes simplex virus may involve interleukin-6. J Neurovirol, 3, 441–448.
Kronenberg, M. and Gapin, L. (2002). The unconventional lifestyle of NKT cells. Nat. Rev. Immunol., 2, 557–568.
Krug, A., Luker, G. D., Barchet, W., Leib, D. A., Akira, S., and Colonna, M. (2003). Herpes simplex virus type 1 (HSV-1) activates murine natural interferon-producing cells through tolllike receptor 9. Blood, In Press.
Kruse, M., Rosorius, O., Kratzer, al. (2000). Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J. Virol., 74, 7127–7136.
Kumaraguru, U. and Rouse, B. T. (2002). The IL-12 response to herpes simplex virus is mainly a paracrine response of reactive inflammatory cells. J. Leukoc. Biol., 72, 564–570.
Kuwana, M., Kaburaki, J., Wright, T. M., Kawakami, Y., and Ikeda, Y. (2001). Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur. J. Immunol., 31, 2547–2557.
Kwok, W. W., Liu, A. W., Novak, E. al. (2000). HLA-DQ tetramers identify epitope-specific T-cells in peripheral blood of herpes simplex virus-2-infected individuals: direct detection of immunodominant antigen responsive cells. J. Immunol., 164, 4244–4249.
La, S., Kim, J., and Kwon, B. S., Kwon, B. (2002). Herpes simplex virus type 1 glycoprotein D inhibits T-cell proliferation. Mol. Cells, 14, 398–403.
Lebon, P. (1985). Inhibition of herpes simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol., 66, (Pt 12):2781–2786.
Lebwohl, M., Sacks, S., Conant, al. (1992). Recombinant alpha-2 interferon gel treatment of recurrent herpes genitalis. Antiviral. Res., 17, 235–243.
Lee, S., Zheng, M., Deshpande, S., Eo, S. K., Hamilton, T. A., and Rouse, B. T. (2002a). IL-12 suppresses the expression of ocular immunoinflammatory lesions by effects on angiogenesis. J. Leukoc. Biol., 71, 469–476.
Lee, S., Zheng, M., Kim, B., and Rouse, B. T. (2002b). Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J. Clin. Invest., 110, 1105–1111.
Lee, S., Gierynska, M., Eo, S. K., Kuklin, N., and Rouse, B. T. (2003). Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus. Microbes Infect., 5, 571–578.
Leib, D. A. (2002). Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr. Top. Microbiol. Immunol., 269, 171–185.
Leib, D. A., Harrison, T. E., Laslo, K. M., Machalek, M. A., Moorman, N. J., and Virgin, H. W. (1999). Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J. Exp. Med., 189, 663–672.
Leib, D. A., Machalek, M. A., Williams, B. R., Silverman, R. H., and Virgin, H. W. (2000). Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl Acad. Sci., 97, 6097–6101.
Lekstrom-Himes, J. A., Hohman, P., Warren, al. (1999). Association of major histocompatibility complex determinants with the development of symptomatic and asymptomatic genital herpes simplex virus type 2 infections. J. Infect. Dis., 179, 1077–1085.
Leo, N. A. and Bonneau, R. H. (2000). Chemical sympathectomy alters cytotoxic T lymphocyte responses to herpes simplex virus infection. Ann. NY Acad. Sci., 917, 923–934.
Lewandowski, G. A., Lo, D., and Bloom, F. E. (1993). Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1; a possible mechanism of evasion of the immune system. Proc. Natl Acad. Sci. USA., 90, 2005–2009.
Lieberman, J. and Fan, Z. (2003). Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol., 15, 553–559.
Lin, X., Lubinksi, J. M., and Friedman, H. M. (2003). Presented at the 28th International Herpesvirus Workshop.
Lin, X., Lubinski, J. M., and Friedman, H. M. (2004). Immunization strategies to block the herpes simplex virus type 1 immunoglobulin G Fc receptor. J. Virol. 78, 2562.
Litman, G. W., Anderson, M. K., and Rast, J. P. (1999). Evolution of antigen binding receptors. Annu. Rev. Immunol., 17, 109–147.
Liu, T., Tang, Q., and Hendricks, R. L. (1996). Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J. Virol., 70, 264–271.
Liu, T., Khanna, K. M., Chen, X., Fink, D. J., and Hendricks, R. L. (2000). CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivaton from latency in sensory neurons. J. Exp. Med., 191, 1459–1466.
Liu, T., Khanna, K. M., Carriere, B. N., and Hendricks, R. L. (2001). Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol., 75, 11178–11184.
Lopez, C. (1975). Genetics of natural resistance to herpes virus infections in mice. Nature, 258, 1352–1353.
Lopez, C., Kirkpatrick, D., Fitzgerald, P. al. (1982). Studies of the cell lineage of the effector cells that spontaneously lyse HSV-1 infected fibroblasts (NK(HSV-1)). J. Immunol., 129, 824–828.
Lopez, C., Kirkpatrick, D., Read, S. al. (1983). Correlation between low natural killing of fibroblasts infected with herpes simplex virus type 1 and susceptibility to herpesvirus infections. J. Infect. Dis., 147, 1030–1035.
Lopez, C., Arvin, A. M., and Ashley, R. (1993). Immunity to herpesvirus infections in humans, p. 397–425. In Roizman, B., Whitley, R. J., and Lopez, C., (ed.). The Human Herpesviruses.New York: Raven Press.
Lu, Z., Yuan, L., Zhou, X., Sotomayor, E ., Levitsky, H. I., and Pardoll, D. M. (2000). CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. J. Exp. Med., 191, 541–550.
Lubinski, J., Wang, L., Mastellos, D., Sahu, A., Lambris, J. H., and Friedman, H. M. (1999). In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J. Exp. Med., 190, 1637–1646.
Lubinski, J. M., Jiang, M., Hook, al. (2002). Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J. Virol., 76, 9232–9241.
Luker, G. D., Prior, J. L., Song, J., Pica, C. M., and Leib, D. A. (2003). Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors. J. Virol., 77, 11082–11093.
Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, H. (2003). Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 198, 513–520.
Lundberg, P., Welander, P., Openshaw, al. (2003). A locus on mouse chromosome 6 that determines resistance to herpes simplex virus also influences reactivation, while an unlinked locus augments resistance of female mice. J. Virol., 77, 11661–11673.
Maccario, R., Revello, M. G., Comoli, P., Montagna, D., Locatelli, F., and Gerna, G. (1993). HLA-unrestricted killing of HSV-1-infected mononuclear cells. J. Immunol., 150, 1437–1445.
Maccario, R., Comoli, P., Percivalle, E., Montagna, D., Locatelli, F., and Gerna, G. (1995). Herpes simplex virus-specific human cytotoxic T-cell colonies expressing either gamma-delta or alpha-beta T-cell receptor: role of accessory molecules on HLA-unrestricted killing of virus-infected targets. Immunology, 85, 49–56.
Maertzdorf, J., Osterhaus, A. D., and Verjans, G. M. (2002). IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J. Immunol., 169, 5897–5903.
Malmgaard, L. and Paludan, S. R. (2003). Interferon (IFN)-alpha/beta, interleukin (IL)-12 and IL-18 coordinately induce production of IFN-gamma during infection with herpes simplex virus type 2. J. Gen. Virol., 84, 2497–2500.
Mandelboim, O., Lieberman, N., Lev, al. (2001). Recognition of haemagglutinins on virus-infected cells by NK p46 activates lysis by human NK cells. Nature, 409:1055–1060.
Manickan, E. and Rouse, B. T. (1995). Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse models. J. Virol., 69, 8178–8179.
Manickan, E., Francotte, M., Kuklin, al. (1995a). Vaccination with recombinant vaccinia viruses expressing ICP27 induces protecting immunity against herpes simplex virus through CD4+ Th1+ T cells. J. Virol., 69, 4711–4716.
Manickan, E., Rouse, R. J., Yu, Z., Wire, W. S., and Rouse, B. T. (1995b). Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J. Immunol., 155, 259–265.
McGeoch, D. J., Dalrymple, M. A., Davison, A. al. (1988). The complete DNA sequence of the long unique region of herpes simplex virus type 1. J. Gen. Virol., 69, 1531–1574.
McGowan, P., Wagener, F., Posavad, C. et al. (2003). Presented at the 28th International Herpesvirus Workshop, Madison, WI.
McKenna, D. B., Neill, W. A., and Norval, M. (2001). Herpes simplex virus-specific immune responses in subjects with frequent and infrequent orofacial recurrences. Br. J. Dermatol., 144, 459–464.
Memar, O. M., Arany, I., and Tyring, S. K. (1995). Skin-associated lymphoid tissue in human immunodeficiency virus-1, human papillomavirus, and herpes simplex virus infections. J. Invest. Dermatol., 105, 99S-104S.
Menten, P., Wuyts, A., and Damme, J. (2002). Macrophage inflammatory protein-1. Cytokine Growth Factor Rev., 13, 455–481.
Messaoudi, I., Patino, Guevara J. A., Dyall, R., LeMaoult, J., and Nikolich-Zugich, J. (2002). Direct link between mhc polymorphism, T cell avidity, and diversity in immune defense. Science, 298, 1797–1800.
Metcalf, J. F., Hamilton, D. S., and Reichert, R. W. (1979). Herpetic keratitis in athymic (nude) mice. Infect. Immun., 26, 1164–1171.
Mikloska, A., Kesson, A. M., Penfold, M. E. T., and Cunningham, A. L. (1996). Herpes simplex virus protein targets for CD4 and CD8 lymphocyte cytotoxicity in cultured epidermal keratinocytes treated with interferon-gamma. J. Infect. Dis., 173, 7–17.
Mikloska, Z., Danis, V. A., Adams, S., Lloyd, A. R., Adrian, D. L., and Cunningham, A. L. (1998). In vivo production of cytokines and beta (C-C) chemokines in human recurrent herpes simplex lesions-do herpes simplex virus-infected keratinocytes contribute to their production?J. Infect. Dis., 177, 827–838.
Mikloska, Z., Sanna, P. P., and Cunningham, A. L. (1999). Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro. J. Virol., 73, 5934–5944.
Mikloska, Z., Ruckholdt, M., Ghadiminejad, I. Denis, M., and Cunningham, A. L. (2001). Monophosphosphoryl lipid A and QS21 increase CD8 T lymphocyte cytotoxicity to herpes simplex virus-2 infected cell proteins 4 and 27 through IFN-gamma and IL-12 production. J. Immunol., 164, 5167–5176.
Mikloska, Z., Bosnjak, L., and Cunningham, A. L. (2001). Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J. Virol., 75, 5958–5964.
Milligan, G. N. (1999). Neutrophils aid in protection of the vaginal mucosae of immune mice against challenge with herpes simplex virus type 2. J. Virol., 73, 6380–6386.
Milligan, G. N., Bernstein, D. I., and Bourne, N. (1998). T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. J. Immunol., 160, 6093–6100.
Milligan, G. N., Bourne, N., and Dudley, K. L. (2001). Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. J. Reprod. Immunol., 49, 49–65.
Milone, M. C. and Fitzgerald-Bocarsly, P. (1998). The mannose receptor mediates induction of IFN-alpha in peripheral blood dendritic cells by enveloped RNA and DNA viruses. J. Immunol., 161, 2391–2399.
Moser, J. M., Byers, A. M. and Lukacher, A. E. (2002). NK cell receptors in antiviral immunity. Curr. Opin. Immunol. 14, 509–516.
Mossman, K. L., Macgregor, P. F., Rozmus, J. J., Goryachev, A. B., Edwards, A. M., and Smiley, J. R. (2001). Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol., 75, 750–758.
Mueller, S. N., Jones, C. M., Smith, C. M., Health, W. R., and Carbone, F. R. (2002). Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J. Exp. Med., 195, 651–656.
Mueller, S. N., Jones, C. M., Chen, W. (2003). The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J. Virol., 77, 2445–2451.
Mullick, J., Kadam, A., and Sahu, A. (2003). Herpes and pox viral complement control proteins: ‘the mask of self’. Trends Immunol., 24, 500–507.
Nagashunmugam, T., Lubinski, J., Wang, al. (1998). In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J. Virol., 72, 5351–5359.
Nash, A. A. (2000). T cells and the regulation of herpes simplex virus latency and reactivation. J. Exp. Med., 191, 1455–1458.
Nass, P. H., Elkins, K. L., and Weir, J. P. (2001). Protective immunity against herpes simplex virus generated by DNA vaccination compared to natural infection. Vaccine, 19, 1538–1546.
Neumann, J., Eis-Hubinger, A. M., and Kock, N. (2003). Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J. Immunol., 171, 3075–3083.
Nicholl, M. J., Robinson, L. H., and Preston, C. M. (2000). Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J. Gen. Virol., 81, 2215–2218.
O'Keeffe, M., Hochrein, H., Vremec, al. (2002). Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J. Exp. Med., 196, 1307–1319.
Ongkosuwito, J. V., Feron, E. J., Doornik, C. al. (1998) Analysis of immunoregulatory cytokines in ocular fluid samples from patients with uveitis. Invest. Ophthalmol. Vis. Sci., 39, 2659–2665.
Osterhaus, A. D., Hintzen, R. Q., van Dun, J. M., Poot, A, Verjans, G. M. (2006). Selective accumulation of differentiated HSV serotype-specific CD8+ T cells within human HSV-1 latently infected trigeminal ganglia. In 31st International Herpesvirus Workshop, Seattle, Washington, USA, p. Abstract 9.02.
Overall, J. C., Spruance, S. L., and Green, J. A. (1981). Viral-induced leukocyte interferon in vesicle fluid from lesions of recurrent herpes labialis. J. Infect. Dis., 143, 543–547.
Paludan, S. R., Ellerman-Eriksen, S., Kruys, V., and Mogensen, S. C. (2001). Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa-B and activating transcription factor 2/jun and translational regulation through the AU-rich region of the 3' untranslated region. J. Immunol., 167, 2202–2208.
Parr, M. B. and Parr, E. L. (2000). Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2. Immunology, 99, 540–545.
Parr, M. B. and Parr, E. L. (2003). Vaginal immunity in the HSV-2 mouse model. Int. Rev. Immunol., 22, 43–63.
Payvandi, F., Amrute, S., and Fitzgerald-Bocarsly, P. (1998). Exogenous and endogenous IL-10 regulate IFN-alpha production by peripheral blood mononuclear cells in response to viral stimulation. J. Immunol., 160, 5861–5868.
Peek, R., Verjans, G. M., and Meek, B. (2002). Herpes simples virus infection of the human eye induces a compartmentalized virus-specific B cell response. J. Infect. Dis., 186, 1539–1546.
Pereira, R. A. and Simmons, A. (1999). Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. J. Virol., 73, 6484–6489.
Pereira, R. A., Tscharke, D. C., and Simmons, A. (1994). Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells in mice in response to acute but not latent herpes simplex virus infection in vivo. J. Exp. Med., 180, 841–850.
Pereira, R. A., Simon, M. M., and Simmons, A. (2000). Granzyme A, anoncytolytic component of CD8(+) cell granules, restricts the spread of herpes simples virus in the peripheral nervous systems of experimentally infected mice. J. Virol., 74, 1029–1032.
Pereira, R. A., Scalzo, A., and Simmons, A. (2001). Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol., 166, 5869–5873.
Pietra, G., Semino, C., Cagnoni, al. (2000). Natural killer cells lyse autologous herpes simplex virus infected targets using cytolytic mechanisms distributed clonotypically. J. Med. Virol., 62, 354–363.
Pollara, G., Speidel, K., Samady, al. (2003). Herpes simplex virus infection of dendritic cells: balance among activation, inhibition, and immunity. J. Infect. Dis. 187, 165–178.
Posavad, C. M., Koelle, D. M., and Corey, L. C. (1996). High frequency of CD8+ cytotoxic Tlymphocyte precursors specific for herpes simplex viruses in persons with genital herpes. J. Virol., 70, 8165–8168.
Posavad, C. M., Koelle, D. M., Shaughnessy, M. F., and Corey, L. (1997). Severe genital herpes infections in HIV-infected individuals with impaired HSV-specific CD8+ cytotoxic T lymphocyte responses. Proc. Nat. Acad. Sci., 94, 10289–10294.
Posavad, C. M., Wald, A., Hosken, N., Huang, M.-L., Koelle, D. M., and Corey, L. (2003). T cell immunity to herpes simplex virus in seronegative persons: silent infection or acquired immunity. J. Immunol., 170, 4380–4388.
Prasad, D. V., Richards, S., Mai, X. M., and Dong, C. (2003). B7S1, a novel B7 family member that negatively regulates T cell function. Immunity, 18, 863–873.
Pyles, R. B., Higgins, D., Chalk, al. (2002). Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection. J. Virol., 76, 11387–11396.
Raftery, M. J., Behrens, C. K., Muller, A., Krammer, A., Walczak, H., and Schonrich, G. (1999). Herpes simplex virus type 1 infection of activated cytotoxic T cells: induction of fratricide as a mechanism of viral immune evasion. J. Exp. Med., 190, 1103–1114.
Rager-Zisman, B., Quan, P. C ., Rosner, M., Moller, J. R., and Bloom, B. R. (1987). Role of NK cells in protection of mice against herpes simplex virus-1 infection. J. Immunol., 138, 884–888.
Randolph, G. J. (2006). Migratory dendritic cells: sometimes simply ferries?Immunity 25, 15.
Rogge, L., D'Ambrosio, D., Biffi, M., Penna, G., Minetti, L. J., Presky, D. H., Adorini, L., and Sinigaglia, F. (1998). The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol., 161, 6567–6574.
Roizman, B. and Pellett, P. E. (2001). The family herpesviridae: a brief introduction, p. 2381–2397. In Howley, P. M., (ed.), Fields Virology, Fourth ed, vol. 2. Lippincott, Philadelphia.
Rong, Q., Alexander, T. S., Koski, G. K., and Rosenthal, K. S. (2003). Multiple mechanisms for HSV-1 induction of interferon alpha production by peripheral blood mononuclear cells. Arch. Virol., 148, 329–344.
Roopenian, D., Chio, E. Y., and Brown, A. (2002). The immunogenomics of minor histocompatibility antigens. Immunol. Rev., 190, 86–94.
Rosler, A., Pohl, M., Braune, H. J., Oertel, W. H., Gemsa, D., and Sprenger, H. (1998). Time course of chemokines in the cerebrospinal fluid and serum during herpes simplex type 1 encephalitis. J. Neurol. Sci., 157, 82–89.
Rudd, C. E. and Schneider, H. (2003). Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nature ReviewsImmunology, 3, 544–556.
Salio, M., Cella, M., Suter, M., and Lanzavecchia, A. (1999). Inhibition of dendritic cell maturation by herpes simplex virus. Eur. J. Immunol., 29, 3245–3253.
Salio, M., Cella, M., Vermi, al. (2003). Plasmacytoic dendritic cells prime IFN-gammasecreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur. J. Immunol., 33, 1052–1062.
Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 401, 708–712.
Samady, L., Costigliola, E., MacCormac, al. (2003). Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs- HSV vectors for dendritic cell-mediated immunotherapy. J. Virol., 77, 3768–3776.
Sanchez-Pescador, L., Paz, P., Navarro, D., Pereira, L., and Kohl, S. (1992). Epitopes of herpes simplex virus type 1 glycoprotein B that bind type-common neutralizing antibodies elicit type-specific antibody-dependent cellular cytotoxicity. J. Infect. Dis., 166, 623–627.
Sauerbrei, A., Eichhorn, U., Hottenrott, G., and Wutzler, P. (2000). Virological diagnosis of herpes simplex encephalitis. J. Clin. Virol., 17, 31–63.
Schacker, T., Zeh, J., Hu, H.-L., Hill, E., and Corey, L. (1998). Frequency of symptomatic and asymptomatic herpes simplex virus type 2 reactivations among human immunodeficiency virus-infected men, J. Infect. Dis., 178, 1616–1622.
Schmid, D. S. and Rouse, B. T. (1992). The role of T cell immunity in control of herpes simplex virus. Curr. Top. Microbiol. Immuno., 179, 57–74.
Schmid, D. S., Thieme, M. L., Gary, H. E., and Reeves, W. C. (1997). Characterization of T cell responses to herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) using a TNF-beta ELISpot cytokine assay. Arch. Virol., 142, 1659–1671.
Schmitt, C., Fohrer, H., Beaudet, al. (2000). Identification of mature and immature human thymic dendritic cells that differentially express HLA-DR and interleukin-3 receptor in vivo. J. Leukoc. Biol., 68, 836–844.
Sciammas, R. and Bluestone, J. A. (1998). HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner. J. Immunology, 161, 5187–5192.
Sciammas, R., Kodukula, P., Tang, Q., Hendricks, R. L., and Bluestone, J. A. (1997). T cell receptor-gamma-delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J. Exp. Med., 185, 1969–1975.
Seo, S. K., Park, H. Y., Choi, J. al. (2003). Blocking 4–1 BB/4–1BB ligand interactions prevents herpetic stromal keratitis. J. Immunol., 171, 576–583.
Servet-Delprat, C., Vidalain, P. O., Valentin, H., and Rabourdin-Combe, C. (2003). Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr. Top. Microbiol. Immuno., 276, 103–123.
Shukla, D. and Spear, P. G. (2001). Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest., 108, 503–510.
Siebens, H., Tevethia, S. S., and Babior, B. M. (1979). Neutrophil-mediated antibody-dependent killing of herpes-simplex-virus-infected cells. Blood, 54, 88–94.
Siegal, F. P., Kadowaki, N., Shodell, al. (1999). The nature of the principle type 1 interferon-producing cells in human blood. Science, 284, 1835–1837.
Simmons, A. and Tscharke, D. C. (1992). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J. Exp. Med., 175, 1337–1344.
Simmons, A., Tscharke, D., and Speck, P. (1992). The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr. Top. Microbiol. Immunol., 179, 31–56.
Sin, J. I., Kim, J. J., Boyer, J. D., Ciccarelli, R. B., Higgins, T. J., and Weiner, D. B. (1999). In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex type 2 mouse model. J. Virol., 73, 501–509.
Sin, J. I., Kim, J. J., Zhang, D., and Weiner, D. B. (2001). Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum. Gene Ther., 12, 1091–1102.
Singh, R., Kumar, A., Creery, W. D., Ruben, M., Guiluvi, A., and Diaz-Mitoma, F. (2003a). Dysregulated expression of IFN-gamma and IL-10 and imparied IFN-gamma-mediated responses at different disease stages in patients with genital herpes simplex virus-2 infection. Clin. Exp. Immunol, 133, 97–107.
Singh, R., Kumar, A., and Diaz-Mitoma, F. (2003b). Augmentation of B7 expression by herpes simplex virus antigen. Hum. Immunol., 64, 780–786.
Sinha, S., Cheshenko, N., Lehrer, R. I., and Herold, B. C. (2003). NP-1, a rabbit alphadefensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob. Agents Chemother., 47, 494–500.
Sirianni, M. C., Bonomo, R., Scarpati, al. (1986). Immunological responses of patients with recurrent herpes genitalis. Diagn. Immunol., 4, 294–298.
Smith, C. M., Belz, G. T., Wilson, N. al. (2003). Cutting edge: conventional CD8alpha(+) dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol., 170, 4437–4440.
Spatz, M., Wolf, H. M., Thon, V., Gampfer, J. M., and Eibl, M. M. (2000). Immune response to the herpes simplex type 1 regulatory proteins ICP8 and VP16 in infected persons. J. Med. Virol., 62, 29–36.
Spear, P. G., Eisenberg, R. J., and Cohen, G. H. (2000). Three classes of surface receptors for alphaherpesvirus entry. Virol., 275, 1–8.
Speck, P. and Simmons, A. (1998). Precipitous clearance of herpes simplex virus antigens from the peripheral nervous systems of experimentally infected C57BL/10 mice. J. Gen. Virol., 79, 561–564.
Spruance, S. L., Evans, T. G., McKeough, M. al. (1995). Th1/Th2-like immunity and resistance to herpes simplex labialis. Antiviral Res., 28, 39–55.
Spruance, S. L., Tyring, S. K., Smith, M. H., and Meng, T. C. (2001). Application of a topical immune response modifier, resiquimod gel, to modify the recurrence rate of recurrent genital herpes: a pilot study. J. Infect. Dis., 184, 196–200.
Stanberry, L. R., Spruance, S., Cunningham, A. al. (2002). Prophylactic vaccination against genital herpes with adjuvanted recombinant glycoprotein D vaccine: two randomized contolled trials. N. Engl. J. Med., 347, 1652–1661.
Stumpf, T. H., Case, R., Shimeld, C., Easty, D. L., and Hill, T. J. (2002). Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J. Gen. Virol., 83, 1579–1590.
Su, Y. H., Yan, X. T., Oakes, J. E., and Lausch, R. N. (1996). Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J. Virol., 70, 1277–1281.
Sun, M.-Y., Brown, J., Liu, B. et al. (2003). Presented at the AIDS Vaccine 2003, New York, New York.
Suvas, S., Kumaraguru, U., Pack, C. D., Lee, S., and Rouse, B. T. (2003). CD4+ CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J. Exp. Med., 198, 889–901.
Suvas, S., Azkur, A. K., Kim, B. S., Kumaraguru, U., and Rouse, B. T. (2004). CD4(+)CD25(+) regulatory T cells control the severity of viral immunoinflammatory lesions. J. Immunol. 172; 4123.
Sylwester, A. W., Mitchell, B. L., Edgar et al. (2005). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 202, 673.
Taddesse-Heath, L., Feldman, J. I., Fahle, G. al. (2003). Florid CD4+, CD56+ T-cell infiltrate associated with herpes simplex infection simulating nasal NK-/T-cell lymphoma. Mod. Pathol., 16, 166–172.
Takeuchi, O. and Akira, S. (2002). MyD88 as a bottle neck in Toll/IL-1 signaling. Curr. Top. Microbiol. Immunol., 270, 155–167.
Thebeau, L. G. and Morrison, L. A. (2002). B7 costimulation plays an important role in protection from herpes simplex type 2-mediated pathology. J. Virol., 76, 2563–2566.
Thebeau, L. G. and Morrison, L. A. (2003). Mechanism of reduced T-cell effector functions and class-switched antibody responses to herpes simplex virus type 2 in the absence of B7 costimulation. J. Virol., 77, 2426–2435.
Tigges, M. A., Koelle, D. M., Hartog, K., Sekulovich, R. E., Corey, L., and Burke, R. L. (1992). Human CD8+ herpes simplex virus-specific cytotoxic T lymphocyte clones recognize diverse virion protein antigens. J. Virol., 66, 1622–1634.
Tigges, M. A., Leng, S., Johnson, D. C., and Burke, R. L. (1996). Human herpes simplex (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled. J. Immunol., 156, 3901–3910.
Tomazin, R., Schoot, N. E., Goldsmith, al. (1998). Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J. Virol., 72, 2560–2563.
Trachtenberg, E., Korber, B., Sollars, al. (2003). Advantage of rare HLA supertype in HIV disease progression. Nat. Med., 9, 928–935.
Trgovcich, J., Johnson, D., and Roizman, B. (2002). Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpex simplex virus 1. J. Virol., 76, 6974–6986.
Tscharke, D. C. and Simmons, A. (1999). Anti-CD8 treatment alters interleukin-4 but not interferon-gamma mRNA levels in murine sensory ganglia during herpes simplex virus infection. Brief report. Arch. Virol., 144, 2229–2238.
Tsunobuchi, H., Nishimura, H., Goshima, al. (2000). A protective role of interleukin-15 in a mouse model for systemic infection with herpes simplex virus. Virology, 275, 57–66.
Tumpey, T. M., Cheng, H., Cook, D. N., Smithies, O., Oakes, J. E., and Lausch, R. N. (1998). Absence of macrophage inflammatory protein-1 alpha prevents the development of blinding herpes stromal keratitis. J. Virol., 72, 3705–3710.
Vaidya, S. A. and Cheng, G. (2003). Toll-like receptors and innate antiviral responses. Curr. Opin. Immunol., 15, 402–407.
Strijp, J. A., Miltenburg, L. A., Rol, M. E., Kessel, K. P., Fluit, A. C., and Verhoef, J. (1990). Degradation of herpes simplex virions by human polymorphonuclear leukocytes and monocytes. J. Gen. Virol., 71, 1205–1209.
Voorhis, W. C., Barrett, L. K., Koelle, D. M., Nasio, J. M., Plummer, F. A., and Lukehart, S. A. (1996). Primary and secondary syphillis lesions contain mRNA for Th1 cytokines and activated cytolytic T cells. J. Infect. Dis., 173:491–495.
Verjans, G. M., Baarmsa, G. S., Lelij, A., Kijaltra, A., and Osterhaus, A. D. M. E. (1996). Characterization of herpes simplex virus (HSV) specific T cell clones from vitreous fluid of a patient with HSV mediated acute retinal necrosis. Invest. Ophthalmol. Vis. Sci., 37, S45.
Verjans, G. M. G. M., Remeijer, L., and Binnendijk, R. S. (1998). Identification and characterization of herpes simplex virus-specific CD4+ T cells in corneas of herpetic stromal keratitis patients. J. Infect. Dis., 177, 484–488.
Vestey, J. P., Norval, M., Howie, S. E. M., Manigay, J. P., and Neill, W. (1990). Antigen presentation in patients with recrudescent orofacial herpes simplex virus infections. Br. J. Dermatol., 122, 33–42.
Wakimoto, H., Johnson, P. R., Knipe, D. M., and Chiocca, E. A. (2003). Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther., 10, 983–990.
Wald, A., Zeh, J., Selke, al. (2000). Reactivation of genital herpes type 2 infection in asymptomatic seropositive persons. N. Engl. J. Med., 342, 844–850.
Wallace, M. E., Keating, R., Heath, W. R., and Carbone, F. R. (1999). The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J. Virol., 73, 7619–7626.
Walport, M. J. (2001). Complement. First of two parts. N. Engl. J. Med., 344, 1058–1066.
Whaley, K. J., Zeitlin, L., Barratt, R. A., Hoen, T. E., and Cone, R. A. (1994). Passive transfer of the vagina protects mice against vaginal transfer of genital herpes infections. J. Infect. Dis., 144, 142–146.
Whitbeck, J. C., Muggeridge, M. I., Rux, A. al. (1999). The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J. Virol., 73, 9879–9890.
Wickham, S., Lu, B., Ash, J. and Carr, D. J. (2005). Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J. Neuroimmunol. 162, 51.
Wollenberg, A., Wagner,. M., Gunther, al. (2002). Plamacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J. Invest. Dermatol., 119, 1096–1102.
Wong, G. H. and Goeddel, D. V. (1986). Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature, 323, 819–822.
Wonnacott, K. M. and Bonneau, R. H. (2002). The effects of stress on memory cytotoxic T lymphocyte-medicated protection against herpes simplex virus infection at mucosal sites. Brain Behav. Immunol., 116, 104–117.
Xia, P., Gamble, J. R., Rye, K. al. (1998). Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc. Natl Acad. Sci. USA, 95, 14196–14201.
Yang, O. O., Sarkis, P. T., Trocha, A., Kalams, S. A., Johnson, R. P., and Walker, B. D. (2003). Impacts of avidity and specificity on the antiviral efficiency of HIV-1-specific CTL. J. Immunol., 171, 3718–3724.
Yasukawa, M. and Kobayashi, Y. (1985). Inhibition of herpes simplex virus replication in vitro by human cytotoxic T cell clones and natural killer cell clones. J. Gen. Virol., 66, 2225–2229.
Yasukawa, M. and Zarling, J. M. (1983). Autologous herpes simplex virus-infected cells are lysed by human natural killer cells. J. Immunol., 131, 2011–2016.
Yasukawa, M. and Zarling, J. M. (1984). Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA Class II MB and DR antigens. J. Immunol., 133, 422–427.
Yasukawa, M., Inatsuki, A., and Kobayashi, Y. (1988). Helper activity in antigen-specific antibody production mediated by CD4+ human cytotoxic T cell clones directed against herpes simplex virus. J. Immunol., 140, 3419–3425.
Yasukawa, M., Inatsuki, A., and Kobayashi, Y. (1989). Differential in vitro activation of CD4+CD8- and CD8+CD4- herpes simplex virus-specific human cytotoxic T cells. J. Immunol., 143, 2051–2057.
Yasukawa, M., Ohminami, H., Yakushijin, al. (1999). Fas-independent cytotoxicity mediated by CD4+ CTL directed against herpes simplex virus-infected cells. J. Immunol., 162, 6100–6106.
Yoneyama, H., Matsuno, K., Toda, al. (2005). Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425.
Zak-Prelich, M., Halliday, K. E., Walker, C., Yates, C. M., Norval, M., and McKenzie, R. C. (2001). Infection of murine keratinocytes with herpes simplex virus type 1 induces the expression of interleukin-10, but not interleukin-1 alpha or tumour necrosis factor-alpha. Immunology, 104, 468–475.
Zhao, X., Deak, E., Soderberg, al. (2003). Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med., 197, 153–162.
Zorrilla, E. P., Luborsky, L., McKay, J. al. (2001). The relationship of depression and stressors to immunological assay: a meta-analytic review. Brain Behav. Immun., 15, 199–226.