Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T16:16:32.296Z Has data issue: false hasContentIssue false

59 - Neuroacanthocytosis

from Part X - Other neurodegenerative diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Alexander Storch
Affiliation:
Department of Neurology, Technical University of Dresden, Germany
Get access

Summary

Acanthocytes (acanthos = thorny or spiny in Greek language) are mature red blood cells with multiple protrusions or spicules, often with terminal bulbs, which are irregular in shape, orientation, and distribution. Consequently, acanthocytosis is defined as an increased amount of such misshaped erythrocytes in peripheral blood. Acanthocytes should not be present in the peripheral blood, but in some general and neurological conditions, such as uremia, advanced hepatic disease, post-splenomegaly, advanced malnutrition or spur cell anemia, significant elevations of acanthocyte levels are reported (Brin, 1993; Stevenson & Hardie, 2001). The association of acanthocytosis with neurological syndromes is found in at least three hereditary neurological disorders that are generally referred to as neuroacanthocytosis syndromes (Table 59.1). The first recognized association was that of “malformation of the erythrocyte” in a sporadic case of progressive ataxia and pigmentary retinopathy by Bassen and Kornzweig in 1950 (Bassen & Kornzweig, 1950), but the underlying inherited metabolic abnormality of abetalipoproteinemia with secondary vitamin E deficiency was established years ago. Since then two other fairly distinct syndromes have emerged: the McLeod syndrome and autosomal recessive chorea-acanthocytosis.

Chorea-acanthocytosis (ChAc)

Chorea-acanthocytosis (ChAc; also referred to as Critchley–Levine syndrome; OMIM #200150) is a multisystem degenerative neurological disorder associated with acanthocytosis in the absence of any lipid abnormalities. ChAc was first described in the late 1960s by Estes and co-workers (1967) as well as by Critchley et al. (1968) and Levine et al. (1968) in two American kindreds with very similar features.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 871 - 879
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H., Krabbe, S. M. R. & Corcoran, P. A. (1961). A new phenotype (McLeod) in the Kell blood-group system. Vox Sang, 6, 555–60CrossRefGoogle ScholarPubMed
Asano, K., Osawa, Y., Yanagisawa, N., Takahashi, Y. & Oshima, M. (1985). Erythrocyte abnormalities in patients with amyotrophic chorea with acanthocytosis. Part II. Abnormalities of membrane proteins. J. Neurol. Sci., 68, 161–73CrossRefGoogle Scholar
Bassen, F. A. & Kornzweig, A. L. (1950). Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood, 5, 381–7Google Scholar
Bertelson, C. J., Pogo, A. O., Chaudhuri, A.et al. (1988). Localization of the McLeod locus (XK) within Xp21 by deletion analysis. Am. J. Hum. Genet., 42(5), 703–11Google ScholarPubMed
Bird, T. B., Cederbaum, S., Valpey, R. W. & Stahl, W. L. (1978). Familial degeneration of the basal ganglia with acanthocytosis: a clinical, neuropathological and neurochemical study. Ann. Neurol., 3, 253–8CrossRefGoogle ScholarPubMed
Bishara, S., Merin, S., Cooper, M., Azizi, E., Delpre, G. & Deckelbaum, R. J. (1982). Combined vitamin A and E therapy prevents retinal electrophysiological deterioration in abetalipoproteinaemia. Br. J. Ophthalmol., 66(12), 767–70CrossRefGoogle Scholar
Bohlega, S., Al-Jishi, A., Dobson-Stone, C.et al. (2003). Chorea-acanthocytosis: clinical and genetic findings in three families from the Arabian peninsula. Mov. Disord., 18(4), 403–7CrossRefGoogle ScholarPubMed
Bostantjopoulou, S., Katsarou, Z., Kazis, A. & Vadikolia, C. (2000). Neuroacanthocytosis presenting as parkinsonism. Mov. Disord., 15, 1271–23.0.CO;2-T>CrossRefGoogle ScholarPubMed
Branch, D. R., Sy Siok Hian, A. L. & Petz, L. D. (1985). Unmasking of Kx antigen by reduction of disulphide bonds on normal and McLeod red cells. Br. J. Haematol., 59(3), 505–12CrossRefGoogle ScholarPubMed
Brin, M. F. (1993). Acanthocytosis. In Handbook of Clinical Neurology, Vol. 19(63), ed. C. G. Goetz, C. M. Tanner & M. J. Aminoff, Amsterdam: Elsevier, pp. 271–99
Brooks, D. J., Ibanez, V., Playford, E. D.et al. (1991). Presynaptic and postsynaptic striatal dopaminergic function in neuroacanthocytosis: A positron emssion tomographic study. Ann. Neurol., 30, 166–71CrossRefGoogle ScholarPubMed
Ching, K. H. L., Westaway, S. K., Gitschier, J., , Higgins, J. J. & Hayflick, S. J. (2002). HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology, 58, 1673–4CrossRefGoogle ScholarPubMed
Clark, M. R., Aminoff, M. J., Chiu, D. T., Kuypers, F. A. & Friend, D. S. (1989). Red cell deformability and lipid composition in two forms of acanthocytosis: enrichment of acanthocytic populations by density gradient centrifugation. J. Lab. Clin. Med., 113(4), 469–81Google ScholarPubMed
Carter, N. D., Morgan, J. E., Monaco, A. P., Schwartz, M. S. & Jeffery, S. (1990). Dystrophin expression and genotypic analysis of two cases of benign X linked myopathy (McLeod's syndrome). J. Med. Genet., 27(6), 345–7CrossRefGoogle Scholar
Cooper, R. A., Durocher, J. R. & Leslie, M. H. (1977). Decreased fluidity of red cell membrane lipids in abetalipoproteinemia. J. Clin. Invest., 60(1), 115–21CrossRefGoogle ScholarPubMed
Critchley, E. M. R., Clark, D. B. & Wikler, A. (1968). Acanthocytosis and neurological disorder without abetalipoproteinemia. Arch. Neurol., 18, 134–40CrossRefGoogle Scholar
Danek, A., Rubio, J. P., Rampoldi, L.et al. (2001). McLeod neuroacanthocytosis: genotype and phenotype. Ann. Neurol., 50(6), 755–64CrossRefGoogle ScholarPubMed
Danek, A., Witt, T. N., Stockmann, H. B., Weiss, B. J., Schotland, D. L. & Fischbeck, K. H. (1990). Normal dystrophin in McLeod myopathy. Ann. Neurol., 28(5), 720–2CrossRefGoogle Scholar
Danek, A., Uttner, U., Vogl, T., Tatsch, K. & Witt, T. N. (1994). Cerebral involvement in McLeod syndrome. Neurology, 44, 117–20CrossRefGoogle ScholarPubMed
Danek, A., Tierney, M., Sheesley, L. & Grafman, J. (2001). Cognitive findings in patients with chorea-acanthocytosis. Mov. Disord., 16(Suppl 1), S30Google Scholar
Delecluse, F., Deleval, J., Gerard, J. M., Michotte, A. & Zegers de Beyl, D. (1991). Frontal impairment and hypoperfusion in neuroacanthocytosis. Arch. Neurol., 48(2), 232–4CrossRefGoogle ScholarPubMed
Dexter, D. T., Brooks, D. J., Harding, A. E.et al. (1994). Nigrostriatal function in vitamin E deficiency: clinical, experimental, and positron emission tomographic studies. Ann. Neurol., 35(3), 298–303CrossRefGoogle ScholarPubMed
Yebenes, J. G., Brin, M. F., Mena, M. A.et al. (1988). Neurochemical findings in Neuroacanthocytosis. Mov. Disord., 3, 300–12CrossRefGoogle ScholarPubMed
Dobson-S tone, C., Danek, C., Rampoldi, L.et al. (2002). Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur. J. Hum. Genet., 10(11), 773–81CrossRefGoogle Scholar
Dotti, M. T., Battisti, C., Malandrini, A.et al. (2000). McLeod syndrome and neuroacanthocytosis with a novel mutation in the XK gene. Mov. Disord., 15(6), 1282–43.0.CO;2-2>CrossRefGoogle ScholarPubMed
Dubinsky, R. M., Hallett, M., Levey, R. & Di Chiro, G. (1989). Regional brain glucose metabolism in neuroacanthocytosis. Neurology, 39(9), 1253–5CrossRefGoogle ScholarPubMed
Estes, J. W., Morley, T. J., Levine, I. M. & Emerson, C. P. (1967). A new hereditary acanthocytosis syndrome. Am. J. Med., 42, 868–88CrossRefGoogle ScholarPubMed
Eto, Y. & Kitagawa, T. (1970). Wolman's disease with hypolipoproteinemia and acanthocytosis: clinical and biochemical observations. J. Pediat., 77, 862–7CrossRefGoogle Scholar
Farese, R. V., Garg, A., , Peirotti, V. R., Veega, G. L. & Young, S. G. (1992). A truncated species of apolipoprotein B, B-83, associated with hypolipoproteinemia. J. Lipid Res., 33, 569–77Google Scholar
Feinberg, T. E., Cianci, C. D., Morrow, J. S.et al. (1991). Koroshetz, W. J.Diagnostic test for choreoacanthocytosis. Neurology, 41, 1000–6CrossRefGoogle Scholar
Hardie, R. J., Pullon, H. W., Harding, A. E.et al. (1991). Neuroacanthocytosis: a clinical, hematological and pathological study of 19 cases. Brain, 114, 13–49Google Scholar
Harding, A. E. (1987). Vitamin E and the nervous system. Crit. Rev. Neurobiol., 3, 89–103Google Scholar
Hayflick, S. J. (2003). Pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome). J. Neurol. Sci., 207, 106–7CrossRefGoogle Scholar
Higgins, J. J., Patterson, M. C., Papadopoulos, N. M., Brady, R. O., Pentchev, P. G. & Barton, N. W. (1992). Hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa and pallidal degeneration (HARP syndrome). Neurology, 42, 194–8CrossRefGoogle Scholar
Ho, M. F., Monaco, A. P., Blonden, L. A.et al. (1992). Fine mapping of the McLeod locus (XK) to a 150–380-kb region in Xp21. Am. J. Hum. Genet., 50(2), 317–30Google ScholarPubMed
Ho, M., Chelly, J., Carter, N., Danek, A., Crocker, P. & Monaco, A. P. (1994). Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell, 77(6), 869–80CrossRefGoogle ScholarPubMed
Ho, M. F., Chalmers, R. M., Davis, M. B., Harding, A. E. & Monaco, A. P. (1996). A novel point mutation in the McLeod syndrome gene in neuroacanthocytosis. Ann. Neurol., 39(5), 672–5CrossRefGoogle ScholarPubMed
Holmes, S. E., O'Hearn, E., Rosenblatt, A.et al. (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat. Genet., 29(4), 377–8CrossRefGoogle ScholarPubMed
Iida, H., Takashima, Y., Maeda, S.et al. (1984). Alterations in erythrocyte membrane lipids in abetalipoproteinemia: phospholipid and fatty acyl composition. Biochem. Med., 32(1), 79–87CrossRefGoogle ScholarPubMed
Jamil, H., Chu, C. H., Dickson, J. K. Jr. et al. (1998). Evidence that microsomal triglyceride transfer protein is limiting in the production of apolipoprotein B-containing lipoproteins in hepatic cells. J. Lipid Res., 39(7), 1448–54Google ScholarPubMed
Jung, H. H., Hergersberg, M., Kneifel, S.et al. (2001). McLeod syndrome: a novel mutation, predominant psychiatric manifestations, and distinct striatal imaging findings. Ann. Neurol., 49(3), 384–92CrossRefGoogle ScholarPubMed
Jung, H. H., Hergersberg, M., Vogt, M.et al. (2003). Kollias, S. S., Russo, D. & Frey, B. M. (2003). McLeod phenotype associated with a XK missense mutation without hematologic, neuromuscular, or cerebral involvement. Transfusion, 43, 923–8CrossRefGoogle ScholarPubMed
Kartsounis, L. D. & Hardie, R. J. (1996). The pattern of cognitive impairments in neuroacanthocytosis. Arch. Neurol., 53, 77–80CrossRefGoogle ScholarPubMed
Kayden, H. J. & Traber, M. G. (1993). Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J. Lipid Res., 43, 343–58Google Scholar
Kazis, A., Kimiskidis, V., Georgiadis, G. & Voloudaki, E. (1995). Neuroacanthocytosis presenting with epilepsy. J. Neurol., 242, 415–17CrossRefGoogle ScholarPubMed
Khamlichi, S., Bailly, P., Blanchard, D., Goossens, D., Cartron, J. P. & Bertrand, O. (1995). Purification and partial characterization of the erythrocyte Kx protein deficient in McLeod patients. Eur. J. Biochem., 228(3), 931–4CrossRefGoogle ScholarPubMed
Köhler, B. (1989). Hallervorden–Spatz syndrome with acanthocytosis. Monatsschr. Kinderheilkund., 137, 616–19Google ScholarPubMed
Lee, S., Lin, M., Mele, A.et al. (1999). Proteolytic processing of big endothelin-3 by the kell blood group protein. Blood, 94(4), 1440–50Google ScholarPubMed
Lerche, H., Storch, A., Pekrun, A.et al. (2000). A novel form of autosomal dominant neuroacanthocytosis with exertion-induced paroxysmal dyskinesias. J. Neurol., 247(Suppl 1), S43Google Scholar
Levine, I. M., Estes, J. W. & Looney, J. M. (1968). Hereditary neurological disease with acanthocytosis. Arch. Neurol., 19, 403–9CrossRefGoogle ScholarPubMed
Liang, J., & Ginsberg, H. N. (2001). Microsomal triglyceride transfer protein binding and lipid transfer activities are independent of each other, but both are required for secretion of apolipoprotein B lipoproteins from liver cells. J. Biol. Chem., 276(30), 28606–12CrossRefGoogle Scholar
Linton, M. F., Farese, R. V. & Young, S. G. (1993). Familial hypobetalipoproteinemia. J. Lipid Res., 34, 521–41Google ScholarPubMed
Luckenbach, M. W., Green, W. R., Miller, N. R., Moser, H. W., Clark, A. W. & Tennekoon, G. (1983). Ocular clinicopathologic correlation of Hallervorden–Spatz syndrome with acanthocytosis and pigmentary retinopathy. Am. J. Ophthalmol., 95, 369–82CrossRefGoogle ScholarPubMed
Malandrini, A., Fabrizi, G. M., Palmeri, S. (1993). Choreo-acanthocytosis like phenotype without acanthocytes: clinicopathological case report. A contribution to the knowledge of the functional pathology of the caudate nucleus. Acta Neuropathol. (Berl.), 86(6), 651–8CrossRefGoogle ScholarPubMed
Malandrini, A., Fabrizi, G. M., Truschi, F.et al. (1994). Atypical McLeod syndrome manifested as X-linked chorea-acanthocytosis, neuromyopathy and dilated cardiomyopathy: report of a family. J. Neurol. Sci., 124(1), 89–94CrossRefGoogle ScholarPubMed
Malandrini, A., Cesaretti, S., Mulinari, M.et al. (1996). Acanthocytosis, retinitis pigmentosa, pallidal degeneration. Report of two cases without serum lipid abnormalities. J. Neurol. Sci., 140, 129–31CrossRefGoogle ScholarPubMed
Marson, A. M., Bucciantini, E., Gentile, E. & Geda, C. (2003). Neuroacanthocytosis: clinical, radiological, and neurophysiological findings in an Italian family. Neurol. Sci., 24(3), 188–9CrossRefGoogle Scholar
Morrow, J. & Andersen, R. (1986). Shaping the too fluid bilayer. Lab. Invest., 54, 237–9Google ScholarPubMed
Muller, D. P., Lloyd, J. K. & Wolff, O. H. (1985). The role of vitamin E in the treatment of the neurological features of abetalipoproteinaemia and other disorders of fat absorption. J. Inherit. Metab. Dis., 8(Suppl 1), 88–92CrossRefGoogle ScholarPubMed
Nakayama, K. (1997). Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J., 327, 625–35CrossRefGoogle ScholarPubMed
Nelson, J. S., Fitch, C. D., Fischer, V. W., Broun, G. O. Jr. & Chou, A. C. (1981). Progressive neuropathologic lesions in vitamin E-deficient rhesus monkeys. J. Neuropathol. Exp. Neurol., 40(2), 166–86CrossRefGoogle ScholarPubMed
O'Brien, C. F., Schwartz, H. & Kurlan, R. (1990). Neuroacanthocytosis without acanthocytes. Mov. Disord., 5(Suppl 1), 98Google Scholar
Ohashi, K., Ishibashi, S., Osuga, J.et al. (2000). Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J. Lipid Res., 41(8), 1199–204Google ScholarPubMed
Okamoto, K., Ito, J., Furusawa, T.et al. (1997). CT and MR findings of neuroacanthocytosis. J. Comput. Assist. Tomogr., 21(2), 221–2CrossRefGoogle Scholar
Orrell, R. W., Amrolia, P. J., Heald, A.et al. (1995). Acanthocytosis, retinitis pigmentosa, and pallidal degeneration: a report of three cases, including the second reported case with hypoprebetalipoproteinemia (HARP syndrome). Neurology, 45, 487–92CrossRefGoogle Scholar
Oshima, M., Osawa, Y., Asano, K. & Saito, T. (1985). Erythrocyte membrane abnormalities in patients with amyotrophic chorea with acanthocytosis. I. Spin labeling studies and lipid analyses. J. Neurol. Sci., 68, 147–60CrossRefGoogle ScholarPubMed
Rampoldi, L., Dobson-Stone, C., Rubio, J. P.et al. (2001). A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat. Genet., 28(2), 119–20CrossRefGoogle ScholarPubMed
Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. (1992). Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cel., 3(12), 1389–402CrossRefGoogle ScholarPubMed
Rinne, J. O., Daniel, S. E., Scaravilli, F., Pires, M., , Harding, A. E. & Marsden, C. D. (1994). The neuropathological features of neuroacanthocytosis. Mov. Disord., 9, 297–304CrossRefGoogle ScholarPubMed
Ross, R. S., Gregg, R. E., Law, S. W.et al. (1988). Homozygous hypobetalipoproteinemia: a disease distinct from abetalipoproteinemia at the molecular level. J. Clin. Invest., 81, 590–5CrossRefGoogle ScholarPubMed
Roth, A. M., Helper, R. S., Mukoyama, M., Cancilla, P. A. & Foos, R. Y. (1971). Pigmentary retinal dystrophy in Hallervorden–Spatz disease. Clinicopathological report of a case. Surv. Ophthalmol., 16, 24–35Google Scholar
Rubio, J. P., Danek, A., Stone, C.et al. (1997). Chorea-acanthocytosis: genetic linkage to chromosome 9q21. Am. J. Hum. Genet., 61, 899–908CrossRefGoogle ScholarPubMed
Russo, D. C., Lee, S., Reid, M. & Redman, C. M. (1994). Topology of Kell blood group protein and the expression of multiple antigens by transfected cells. Blood, 84(10), 3518–23Google ScholarPubMed
Russo, D. C., Lee, S. & Redman, C. M. (1999). Intracellular assembly of Kell and XK blood group proteins. Biochim. Biophys. Act., 1461(1), 10–18CrossRefGoogle ScholarPubMed
Russo, D., Wu, X., Redman, C. M. & Lee, S. (2000). Expression of Kell blood group protein in nonerythroid tissues. Blood, 96(1), 340–6Google ScholarPubMed
Saiki, S., Sakai, K., Kitagawa, Y., Saiki, M., Kataoka, S. & Hirose, G. (2003). Mutation in the CHAC gene in a family of autosomal dominant chorea-acanthocytosis. Neurology, 61, 1614–6CrossRefGoogle Scholar
Sakai, T., Antoku, Y., Iwashita, H., Goto, I., Nagamatsu, K. & Shii, H. (1991). Chorea-acanthocytosis: abnormal composition of covalently bound fatty acids of erythrocyte membrane proteins. Ann. Neurol., 29, 664–9CrossRefGoogle ScholarPubMed
Sharp, D., Blinderman, L., Combs, K. A.et al. (1993). Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature, 365, 65–9CrossRefGoogle ScholarPubMed
Shoulders, C. C., Brett, D. J., Bayliss, J. D.et al. (1993). Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum. Mol. Genet., 2, 2109–16CrossRefGoogle ScholarPubMed
Sorrentino, G., Renzo, A., Miniello, S., Nori, O. & Bonavita, V. (1999). Late appearance of acanthocytes during the course of chorea-acanthocytosis. J. Neurol. Sci., 163, 175–8CrossRefGoogle ScholarPubMed
Spencer, S. E., Walker, F. O. & Moore, S. A. (1987). Chorea-amyotrophy with chronic hemolytic anemia. A variant of chorea-amyotrophy with acanthocytosis. Neurology, 37, 645–9CrossRefGoogle ScholarPubMed
Spitz, M. C., Jankovic, J., & Killian, J. M. (1985). Familian tic disorder, parkinsonism, motor neuron disease and acanthocytosis: a new syndrome. Neurology, 35, 366–70CrossRefGoogle Scholar
Stanfield, G. M. & Horvitz, H. R. (2000). The ced-8 gene controls the timing of programmed cell deaths in C. elegans. Mol. Cel., 5(3), 423–3CrossRefGoogle ScholarPubMed
Stege, J. T., Laub, M. T. & Loomis, W. F. (1999). tip genes act in parallel pathways of early Dictyostelium development. Dev. Genet., 25(1), 64–773.0.CO;2-1>CrossRefGoogle ScholarPubMed
Stevenson, V. L. & Hardie, R. J. (2001). Acanthocytosis and neurological disorders. J. Neurol., 248, 87–94CrossRefGoogle ScholarPubMed
Storch, A., Kornhass, M. & Schwarz, J. (2004). Testing for acanthocytosis: a prospective reader-blinded study in movement disorder patients. J. Neurol., in press
Storch, A., , Ludolph, A. C. & Schwarz, J. (1998). The importance of standardized blood investigations for acanthocytosis in patients with unusual movement disorders. Neurology, 50(Suppl 4), A252Google Scholar
Storch, A. & Schwarz, J. Diagnostic test for neuroacanthocytosis: quantitative measurement of red cell morphology. In Neuroacanthocytosis Syndromes, ed. A. Danek, New York: Kluwer Academic Press, pp. 71–8
Swisher, C. N., Menkes, J. H., Cancilla, P. A. & Dodge, P. R. (1972). Co-existence of Hallervorden-Spatz disease with acanthocytosis. Trans. Am. Neurol. Assoc., 97, 212–16Google Scholar
Tanaka, M., Hirai, S., Kondo, S.et al. (1998). Cerebral hypoperfusion and hypometabolism with altered striatal signal intensity in chorea-acanthocytosis: a combined PET and MRI study. Mov. Disord., 13(1), 100–7CrossRefGoogle ScholarPubMed
Terada, N., Fujii, Y., Ueda, H.et al. (1999). Ultrastructural changes of erythrocyte membrane skeletons in chorea-acanthocytosis and McLeod syndrome revealed by the quick-freezing and deep-etching method. Acta Haematol., 101(1), 25–31CrossRefGoogle ScholarPubMed
Ueno, S., Maruki, Y., Nakamura, M.et al. (2001). The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat. Genet., 28(2), 121–2CrossRefGoogle ScholarPubMed
Ueno, E., Oguchi, K. & Yanagisawa, N. (1982). Morphological abnormalities of erythrocyte membrane in the hereditary neurological disease with chorea, areflexia and acanthocytosis. J. Neurol. Sci., 56(1), 89–97CrossRefGoogle ScholarPubMed
Walker, R. H., Morgello, S., Davidoff-Feldman, B.et al. (2002). Autosomal dominant chorea-acanthocytosis with polyglutamine-containing neuronal inclusions. Neurology, 58(7), 1031–7CrossRefGoogle ScholarPubMed
Walker, R. H., Davidoff-Feldman, B., , Rudnicki, D., , Holmes, S. E. & Margolis, R. L. (2003). Huntington's disease-like type 2 with and without acanthocytosis. Neurology, 60(Suppl 1), A287Google Scholar
Welty, F. K., Lahoz, C., , Tucker, K. L., Ordovas, J. M., Wilson, P. W. & Schaefer, E. J. (1998). Frequency of ApoB and ApoE gene mutations as causes of hypobetalipoproteinemia in the Framingham offspring population. Arterioscler. Thromb. Vasc. Biol., 18(11), 1745–51CrossRefGoogle ScholarPubMed
Wetterau, J. R., Aggerbeck, L. P., Bouma, M. E.et al. (1992). Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science, 258, 999–1001CrossRefGoogle ScholarPubMed
Wimer, B. M., Marsh, W. L., Taswell, H. F. & Galey, W. R. (1977). Haematological changes associated with the McLeod phenotype of the Kell blood group system. Br. J. Haematol., 36(2), 219–24CrossRefGoogle ScholarPubMed
Witt, T. N., Danek, A., , Reiter, M., , Heim, M. U., Dirschinger, J., & Olsen, E. G. (1992). McLeod syndrome: a distinct form of neuroacanthocytosis. Report of two cases and literature review with emphasis on neuromuscular manifestations. J. Neurol., 239(6), 302–6CrossRefGoogle ScholarPubMed
Wolman, M. (1995). Wolman disease and its treatment. Clin. Pediatr., 34(4), 207–12CrossRefGoogle ScholarPubMed
Wu, J., Kim, J., Li, Q.et al. (1999). Known mutations of apoB account for only a small minority of hypobetalipoproteinemia. J. Lipid Res., 40(5), 955–9Google Scholar
Young, S. G., Berties, S. J., Curtiss, L. K. & Witztum, J. L. (1987). Characterisation of an abnormal species of apolipoprotein B, apolipoprotein B-37, associated with familial hypobetalipoproteinemia. J. Clin. Invest., 79, 1831–41CrossRefGoogle Scholar
Young, S. G., Narthey, S. T. & McCarthy, B. J. (1988). Low plasma cholesterol levels caused by a short deletion in the apolipoprotein B gene. Science, 241, 591–3CrossRefGoogle Scholar
Yuan, B., Neuman, R., Duan, S. H.et al. (2000). Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1–22. Am. J. Hum. Genet., 66(5), 1699–704CrossRefGoogle ScholarPubMed
Zhou, B., Westaway, S. K., Levinson, B., , Johnson, M. A., Gitschier, J. & Hayflick, S. J. (2001). A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat. Genet., 28, 345–9CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×