Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T13:32:55.402Z Has data issue: false hasContentIssue false

11 - Tolerance models of paths and subtrees of a tree

Published online by Cambridge University Press:  11 August 2009

Martin Charles Golumbic
Affiliation:
University of Haifa, Israel
Ann N. Trenk
Affiliation:
Wellesley College, Massachusetts
Get access

Summary

Introduction

We began this book by introducing the class of tolerance graphs, which generalize the intersection graphs of intervals on the line (interval graphs), adding an edge between two vertices in the tolerance graph when the size of the intersection of their intervals exceeds at least one of the tolerances. Subsequently, we studied a further generalization defined by allowing separate right and left tolerances on the intervals (bitolerance graphs).

In this chapter, we present a totally different approach to generalizing tolerance graphs by replacing the real line by a tree and replacing the role of intervals by either paths or other types of subtree. Several classical results are known for classes of intersection graphs of paths and subtrees of a tree, which we review in the next three sections. We then present results on tolerance versions.

Intersection models

Let T be a tree and let T = {Ti} be a collection of subtrees (connected subgraphs) of T. We may think of the host tree T either as a continuous model of a tree embedded in the plane, thus generalizing the real line from the one dimensional case, or as a finite discrete model of a tree, namely, a connected graph of vertices and edges having no cycles, thus generalizing the path Pk from the one-dimensional case. Making a distinction between these two models will become important when we measure the size of the intersection of two subtrees.

Type
Chapter
Information
Tolerance Graphs , pp. 164 - 192
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×