Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T13:35:06.714Z Has data issue: false hasContentIssue false

4 - Interval probe graphs and sandwich problems

Published online by Cambridge University Press:  11 August 2009

Martin Charles Golumbic
Affiliation:
University of Haifa, Israel
Ann N. Trenk
Affiliation:
Wellesley College, Massachusetts
Get access

Summary

Physical mapping of DNA

The use of interval models in molecular biology dates back to the original studies on the linearity of genes by the well-known biologist Seymore Benzer. In Benzer (1959), interval graphs were defined in order to study overlap data on sub-elements inside the gene. The question at that time was whether the overlap data was consistent with the hypothesis that genes are linear structures with the sub-elements being intervals on that line. If perfect and complete data were to be available for of all pairs of these sub-elements, then the problem would be that of recognizing an interval graph. However, with only partial data, as is always the case in experimental genetics, the problems involve embedding the data in a larger consistent set (e.g., interval graph completion). This will generally require inferring additional intersections (e.g., selectively adding chords to a cycle), and using additional biological information or assumptions to test consistency and propose the possible linear orderings.

During the ensuing years, research in genetics has involved many combinatorial problems on intervals. One of these is DNA physical mapping, in which one wishes to find the linear order of segments (physically contiguous units) of the chromosome. It is an essential part of most sequencing, gene locating, and cloning projects. One of the main goals set for the Human Genome Project is to obtain a detailed mapping of all human chromosomes.

Type
Chapter
Information
Tolerance Graphs , pp. 63 - 83
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×