Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T10:30:06.704Z Has data issue: false hasContentIssue false

3 - Nectar as fuel for plant protectors

Published online by Cambridge University Press:  15 December 2009

F. L. Wäckers
Affiliation:
Netherlands Institute of Ecology
P. C. J. van Rijn
Affiliation:
Netherlands Institute of Ecology
J. Bruin
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

Nectar is a sweet liquid produced by plants on various parts of the plant body. Most people are familiar with nectar in flowers, collected by bees to make honey, and utilized by a variety of floral visitors, some of whom serve as pollinators for the plant. Less familiar is extrafloral nectar, produced outside the flowers in extrafloral nectaries and usually not associated with pollination. Plants produce nectar in various ways (Elias 1983; Koptur 1992a), and whether they do it purposefully (secretion) or passively (excretion) has been the subject of debate between physiologists and evolutionary ecologists for many years (reviewed in Bentley 1977; see also Sabelis et al., Chapter 4). Over evolutionary time, myriad selective forces have shaped not only the morphology and function of nectaries, but also the composition of the substances secreted and whether or not the structures secrete under different circumstances. Thompson's (1994) synthetic theory of the “co-evolutionary mosaic”, in which different populations of a given species experience different interactions over space and time, helps to explain the variable findings researchers encounter in studying interactions between plants and predatory insects, especially those mediated by nectar (or other direct or indirect food rewards from plants). Carnivorous organisms, which can benefit plants as protectors, may rely on nectar as an energy source. If ants, wasps, other predators, and parasitoids are more likely to encounter their herbivore prey if they utilize a plant's nectar, mutualisms are thus promoted.

Type
Chapter
Information
Plant-Provided Food for Carnivorous Insects
A Protective Mutualism and its Applications
, pp. 75 - 108
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. A. 1998. Leaf damage and associated cues induce aggressive ant recruitment in a neotropical ant-plant. Ecology 79: 2100–2112.CrossRefGoogle Scholar
Agrawal, A. A. and Fordyce, J. A.. 2000. Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism . Proceedings of the Royal Society of London Series B 1455: 1857–1861.CrossRefGoogle Scholar
Agrawal, A. A., and R. Karban. 1999. Why induced defenses may be favored over constitutive strategies in plants. In Tollrian, R. and Harvell, C. D. (eds.) The Ecology and Evolution of Inducible Defenses. Princeton, NJ: Princeton University Press, pp. 45–61.Google Scholar
Agrawal, A. A. and Rutter, M. T.. 1998. Dynamic anti-herbivore defense in ant-plants: the role of induced responses. Oikos 83: 227–236.CrossRefGoogle Scholar
Altshuler, D. L. 1999. Novel interactions of non-pollinating ants with pollinators and fruit consumers in a tropical forest. Oecologia 119: 600–606.CrossRefGoogle Scholar
Apple, J. and Feener, D. J.. 2001. Ant visitation of extrafloral nectaries of Passiflora: the effects of nectary attributes and ant behavior on patterns in facultative ant-plant mutualisms. Oecologia 127: 409–416.CrossRefGoogle ScholarPubMed
Bach, C. E. 1991. Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluchea indica). Oecologia 87: 233–239.CrossRefGoogle Scholar
Baggen, L. R., Gurr, G. M., and Meats, A.. 1999. Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata 91: 155–161.CrossRefGoogle Scholar
Baker, H. G. 1977. Non-sugar chemical constituents of nectar. Apidologie 8: 349–356.CrossRefGoogle Scholar
Baker, H. G., and I. Baker. 1973. Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in nectar. In Heywood, V. H. (ed.) Taxonomy and Ecology. London: Academic Press, pp. 243–264.Google Scholar
Baker, H. G., and I. Baker. 1983. Floral nectar sugar constituents in relation to pollinator type. In Jones, C. E. and Little, R. J. (eds.) Handbook of Experimental Pollination Biology. New York: Van Nostrand Reinhold, pp. 117–141.Google Scholar
Baker, H. G., and Baker, I.. 1986. The occurrence and significance of amino acids in floral nectar. Plant Systematics and Evolution 151: 175–186.CrossRefGoogle Scholar
Baker, H. G. and Baker, I.. 1990. The predictive value of nectar chemistry to the recognition of pollinator types. Israel Journal of Botany 39: 157–166.Google Scholar
Baker, H. G., Opler, P. A., and Baker, I.. 1978. A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette 139: 322–332.CrossRefGoogle Scholar
Barton, A. M. 1986. Spatial variation in the effect of ants on an extrafloral nectary plant. Ecology 67: 495–504.CrossRefGoogle Scholar
Beattie, A. J., Turnbull, C., Knox, R. B., and Williams, E. G.. 1984. Ant inhibition of pollen function: a possible reason why ant pollination is rare. American Journal of Botany 71: 421–426.CrossRefGoogle Scholar
Becerra, J. X. and Venable, D. L.. 1989. Extrafloral nectaries: a defense against ant–homopteran mutualism?Oikos 55: 276–280.CrossRefGoogle Scholar
Bennett, B. and Breed, M. D.. 1985. The association between Pentaclethra macroloba (Mimosaceae) and Paraponera clavata (Hymenoptera: Formicidae) colonies. Biotropica 17: 253–255.CrossRefGoogle Scholar
Bentley, B. 1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics 8: 407–427.CrossRefGoogle Scholar
Blüthgen, N. and Fiedler, K.. 2002. Interactions between weaver ants (Oecophylla smaragdina), homopterans, trees and lianas in an Australian rainforest canopy. Journal of Animal Ecology 71: 793–801.CrossRefGoogle Scholar
Blüthgen, N. and Fiedler, K.. 2003. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. Journal of Animal Ecology 73: 155–166.CrossRefGoogle Scholar
Blüthgen, N. and Reifenrath, K.. 2003. Extrafloral nectaries in an Australian rain forest: structure and distribution. Australian Journal of Botany 51: 515–527.CrossRefGoogle Scholar
Blüthgen, N. and Wesenberg, J.. 2001. Ants induce domatia in a rain forest tree (Vochysia vismiaefolia). Biotropica 33: 637–642.CrossRefGoogle Scholar
Blüthgen, N., Gebauer, G., and Fiedler, K.. 2003. Disentagling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137: 426–435.CrossRefGoogle Scholar
Blüthgen, N., Gottsberger, G., and Fiedler, K.. 2004. Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecology 29: 418–429.CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitia, W., et al. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125: 229–240.CrossRefGoogle ScholarPubMed
Boecklen, W. J. 1984. The role of extrafloral nectaries in the herbivore defence of Cassia fasiculata. Ecological Entomology 9: 243–249.CrossRefGoogle Scholar
Bosch, J., Retana, J., and Cerda, X.. 1997. Flowering phenology, floral traits and pollinator composition in a herbaceous Mediterranean plant community. Oecologia 109: 583–591.CrossRefGoogle Scholar
Bristow, C. M., 1991. Why are so few aphids ant-tended? In Huxley, C. R. and Cutler, D. F. (eds.) Ant–Plant Interactions. Oxford, UK: Oxford University Press, pp. 104–119.Google Scholar
Bronstein, J. L. 1998. The contribution of ant–plant protection studies to our understanding of mutualism. Biotropica 30: 150–161.CrossRefGoogle Scholar
Brouat, C., McKey, D., Bessiere, J. M., Pascal, L., and Hossaert-McKey, M.. 2000. Leaf volatile compounds and the distribution of ant patrolling in an ant–plant protection mutualism: preliminary results on Leonardoxa (Fabaceae: Caesalpinioideae) and Petalomyrmex (Formicidae: Formicinae). Acta Oecologica 21: 349–357.CrossRefGoogle Scholar
Buckley, R., 1982. Ant–Plant Interactions in Australia. The Hague, the Netherlands: Junk.CrossRefGoogle Scholar
Burd, M. 1995. Pollinator behavioural responses to reward size in Lobelia deckenii: no escape from pollen limitation of seed set. Journal of Ecology 83: 865–872.CrossRefGoogle Scholar
Colwell, R. K. 1995. Effects of nectar consumption by the hummingbird flower mite Proctolaelaps kirmsei on nectar availability in Hamelia patens. Biotropica 27: 206–217.CrossRefGoogle Scholar
Colwell, R. K., Betts, B. J., Bunnel, P., Carpenter, F. L., and Feinsinger, P.. 1974. Competition for nectar of Centropogon velerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and its ecological implications. Condor 76: 447–452.CrossRefGoogle Scholar
Compton, S. G., and Robertson, H. G.. 1988. Complex interactious between mutualists: ants tending homopterans protect fig seeds and pollinators. Ecology 69: 1302–1305.CrossRefGoogle Scholar
Compton, S. G., and H. G. Robertson. 1991. Effects of ant–homopteran systems on fig-figwasp interactions. In Huxley, C. R. and Cutler, D. F. (eds.) Ant–Plant Interactions. Oxford, UK: Oxford University Press, pp. 120–130Google Scholar
Corbet, S. A., Unwin, D. M., and Prys-Jones, O. E.. 1979. Humidity, nectar and insect visits to flowers, with special reference to Crataegus, Tilia and Echium. Ecological Entomology 4: 9–22.CrossRefGoogle Scholar
Cruden, R. W., and S. M. Hermann. 1983. Studying nectar? Some observations on the art. In Bentley, B. L. and Elias, T. S. (eds.) The Biology of Nectaries. New York: Columbia University Press, pp. 223–241.Google Scholar
Cuatle, M. and Rico-Gray, V.. 2003. The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Functional Ecology 17: 417–423.CrossRefGoogle Scholar
Cushman, J. H. 1991. Host-plant mediation of insect mutualisms: variable outcomes in herbivore-ant interactions. Oikos 61: 138–144.CrossRefGoogle Scholar
Dansa, C. V. and Rocha, C. F. D.. 1992. An ant–membracid–plant interaction in a cerrado area of Brazil. Journal of Tropical Ecology 8: 339–348.CrossRefGoogle Scholar
Dejean, A., Gibernau, M., Durand, J. L., Abehassera, D., and Orivel, J.. 2000a. Pioneer plant protection against herbivory: impact of different ant species (Hymenoptera: Formicidae) on a proliferation of the variegated locust. Sociobiology 36: 227–236.Google Scholar
Dejean, A., McKey, D., Gibernau, M., and Belin, M.. 2000b. The arboreal ant mosaic in a Cameroonian rainforest (Hymenoptera: Formicidae). Sociobiology 35: 403–424.Google Scholar
Fuente, M. A. S. and Marquis, R. J.. 1999. The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree. Oecologia 118: 192–202.CrossRefGoogle ScholarPubMed
Del-Claro, K. and Oliveira, P. S.. 1993. Ant–Homoptera interaction: do alternative sugar sources distract tending ants?Oikos 68: 202–206.CrossRefGoogle Scholar
Del-Claro, K. and Oliveira, P. S.. 1996. Honeydew flicking by treehoppers provides cues to potential tending ants. Animal Behavior 51: 1071–1075.CrossRefGoogle Scholar
Del-Claro, K. and Oliveira, P. S.. 1999. Ant–Homoptera interactions in a neotropical savanna: the honeydew-producing treehopper, Guayaquila xiphias (Membracidae), and its associated ant fauna on Didymopanax vinosum (Araliaceae). Biotropica 31: 135–144.Google Scholar
Del-Claro, K. and Oliveira, P. S.. 2000. Conditional outcomes in a neotropical treehopper–ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124: 156–165.CrossRefGoogle Scholar
Del-Claro, K., Berto, V., and Reu, W.. 1996. Effect of herbivore deterrence by ants on the fruit set of an extrafloral nectary plant, Qualea multiflora (Vochysiaceae). Journal of Tropical Ecology 12: 887–892.CrossRefGoogle Scholar
DeVries, P. J. and Baker, I.. 1989. Butterfly exploitation of an ant–plant mutualism: adding insult to herbivory. Journal of the New York Entomological Society 97: 332–340.Google Scholar
DeVries, P. J. and Penz, C.. 2000. Entomophagy, behavior, and elongated thoracic legs in the myrmecophilous Neotropical butterfly Ales amesis (Riodinidae). Biotropica 32: 712–721.CrossRefGoogle Scholar
Dominguez, C. A., Dirzo, R., and Bullock, S. H.. 1989. On the function of floral nectar in Croton suberosus (Euphorbiaceae). Oikos 56: 109–114.CrossRefGoogle Scholar
Dress, W. J., Newell, S. J., Nastase, A. J., and Ford, J. C.. 1997. Analysis of amino acids in nectar from pitchers of Sarracenia purpurea (Sarraceniaceae). American Journal of Botany 84: 1701–1706.CrossRefGoogle Scholar
Dyer, L. A. and Letourneau, D. K.. 1999a. Relative strengths of top-down and bottom-up forces in a tropical forest community. Oecologia 119: 265–274.CrossRefGoogle Scholar
Dyer, L. A. and Letourneau, D. K.. 1999b. Trophic cascades in a complex terrestrial community. Proceedings of the National Academy of Sciences of the USA 96: 5072–5076.CrossRefGoogle Scholar
Elias, T. S., 1983. Extrafloral nectaries: their structure and distribution. In Bentley, B. and Elias, T. S. (eds.) The Biology of Nectaries. New York: Columbia University Press, pp. 174–203Google Scholar
Engel, V., Fischer, M. I., Wäckers, F. L., and Voelkl, W.. 2001. Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?Oecologia 129: 577–584.CrossRefGoogle ScholarPubMed
Eskildsen, L. I., Lindberg, A. B., and Olesen, J. M.. 2001. Ants monopolise plant resources by shelter-construction. Acta Amazonica 31: 155–157.CrossRefGoogle Scholar
Eubanks, M. D., Nesci, K. A., Petersen, M. K., Liu, Z., and Sanchez, H. B.. 1997. The exploitation of an ant-defended host plant by a shelter-building herbivore. Oecologia 109: 454–460.CrossRefGoogle ScholarPubMed
Feinsinger, P. and Swarm, L. A.. 1978. How common are ant-repellent nectars?Biotropica 10: 238–239.CrossRefGoogle Scholar
Fiala, B. 1990. Extrafloral nectaries vs. ant–Homoptera mutualisms: a comment on Becerra and Venable. Oikos 59: 281–282.CrossRefGoogle Scholar
Fiala, B. and Linsenmair, K. E.. 1995. Distribution and abundance of plants with extrafloral nectaries in the woody flora of a lowland primary forest in Malaysia. Biodiversity and Conservation 4: 165–182.CrossRefGoogle Scholar
Fiala, B. and Maschwitz, U.. 1991. Extrafloral nectaries in the genus Macaranga (Euphorbiaceae) in Malaysia: comparative studies of their possible significance as predispositions for myrmecophytes. Biological Journal of the Linnean Society 44: 287–305.CrossRefGoogle Scholar
Fiala, B., Grunsky, H., Maschwitz, U., and Linsenmair, K. E.. 1994. Diversity of ant-plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97: 186–192.CrossRefGoogle ScholarPubMed
Fiala, B., Krebs, S. A., Barlow, H. S., and Maschwitz, U.. 1996. Interactions between the climber Thunbergia grandiflora, its pollinator Xylocopa latipes and the ant Dolichoderus thoracicus: the “nectar-thief hypothesis” refuted?Malayan Nature Journal 50: 1–14.Google Scholar
Figueiredo, R. A. 1997. Interactions between stingless meliponine bees, honeydew-producing homopterans, ants and figs in a cerrado area. Naturalia (São Paulo) 22: 159–164.Google Scholar
Fleet, R. R. and Young, B. L.. 2000. Facultative mutualism between imported fire ants (Solenopsis invicta) and a legume (Senna occidentalis). Southwestern Naturalist 45: 289–298.CrossRefGoogle Scholar
Folgarait, P. J. and Davidson, D. W.. 1995. Myrmecophytic Cecropia: antiherbivore defenses under different nutrient treatments. Oecologia 104: 198–206.CrossRefGoogle ScholarPubMed
Fonseca, C. R. 1994. Herbivory and the long-lived leaves of an Amazonian ant-tree. Journal of Ecology 82: 833–842.CrossRefGoogle Scholar
Frankie, G. W., Haber, W. A., Baker, H. G., Baker, I., and Koptur, S.. 1981. Ants like flower nectar. Biotropica 13: 211–214.Google Scholar
Galetto, L. and Bernardello, L. M.. 1992. Extrafloral nectaries that attract ants in Bromeliaceae: structure and nectar composition. Canadian Journal of Botany 70: 1101–1105.CrossRefGoogle Scholar
Gaume, L. and McKey, D.. 1998. Protection against herbivores of the myrmecophyte Leonardoxa africana (Baill.) Aubrev. T3 by its principal ant inhabitant Aphomomyrmex afer Emery. Comptes Rendus de l'Académie des Sciences Pari‘s Series 3 321: 593–601.CrossRefGoogle Scholar
Gaume, L., McKey, D., and Anstett, M. C.. 1997. Benefits conferred by “timid” ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia 113: 209–216.CrossRefGoogle Scholar
Gaume, L., McKey, D., and Terrin, S.. 1998. Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London Series B 265: 569–575.CrossRefGoogle Scholar
Ghazoul, J. 2001. Can floral repellents pre-empt potential ant–plant conflicts?Ecology Letters 4: 295–299.CrossRefGoogle Scholar
Gill, F. B. 1988. Effects of nectar removal on nectar accumulation in flowers of Heliconia imbricata (Heliconiaceae). Biotropica 20: 169–171.CrossRefGoogle Scholar
Glassberg, J., 1999. Butterflies through Binoculars: The East. New York: Oxford University Press.Google Scholar
Gomez, J. M. and Zamora, R.. 1992. Pollination by ants: consequences of the quantitative effects on a mutualistic system. Oecologia 91: 410–418.CrossRefGoogle ScholarPubMed
Gomez, J. M. and Zamora, R.. 2000. Spatial variation in the selective scenarios of Hormathophylla spinosa (Cruciferae). American Naturalist 155: 657–668.CrossRefGoogle Scholar
Gomez, J. M., Zamora, R., Hodar, J. A., and Garcia, D.. 1996. Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia 105: 236–242.CrossRefGoogle ScholarPubMed
Gottsberger, G., Arnold, T., and Linskens, H. F.. 1990. Variation in floral nectar amino acids with aging flowers, pollen contamination, and flower damage. Israel Journal of Botany 39: 167–176.Google Scholar
Guerrant, E. O. and Fiedler, P. L.. 1981. Flower defenses against nectar-pilferage by ants. Biotropica 13 (suppl): 25–33.CrossRefGoogle Scholar
Heads, P. A. and Lawton, J. H.. 1984. Bracken, ants, and extrafloral nectaries. II. The effect of ants on the insect herbivores of bracken. Journal of Animal Ecology 53: 1015–1032.CrossRefGoogle Scholar
Heads, P. A. and Lawton, J. H.. 1985. Bracken, ants, and extrafloral nectaries. III. How insect herbivores avoid ant predation. Ecological Entomology 10: 29–42.CrossRefGoogle Scholar
Heil, M., Fiala, B., Baumann, B., and Linsenmair, K. E.. 2000. Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology 14: 749–757.Google Scholar
Heil, M., Fiala, B., Linsenmair, K. E., et al. 1997. Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via symbiotic ant partners. Journal of Ecology 85: 847–861.CrossRefGoogle Scholar
Heil, M., Fiala, B., Maschwitz, U., and Linsenmair, K. E.. 2001a. On benefits of indirect defence: short- and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395–403.CrossRefGoogle Scholar
Heil, M., Koch, T., Hilpert, A., et al. 2001b. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the USA 98: 1083–1088.CrossRefGoogle Scholar
Heil, M., Hilpert, A., Fiala, B., et al. 2002. Nutrient allocation of Macaranga triloba ant plants to growth, photosynthesis and indirect defense. Functional Ecology 16: 475–483.CrossRefGoogle Scholar
Hickman, J. C. 1974. Pollination by ants: a low-energy system. Science 184: 1290–1292.CrossRefGoogle ScholarPubMed
Hossaert-McKey, M., Orivel, J., Labeyrie, E., et al. 2000. Differential associations with ants of three co-occurring extrafloral nectary-bearing plants. Ecoscience 8: 325–335.CrossRefGoogle Scholar
Hunter, J. C. 1994. Extrafloral nectaries on Arbutus menziesii (Madrone). Madrono 412: 127.Google Scholar
Itino, T., Itioka, T., Hatada, A., and Hamid, A. A.. 2001a. Effects of food rewards offered by ant-plant Macaranga on the colony size of ants. Ecological Research 16: 775–786.CrossRefGoogle Scholar
Itino, T., Davies, S. J., Tada, H., et al. 2001b. Cospeciation of ants and plants. Ecological Research 16: 787–793.CrossRefGoogle Scholar
Janzen, D. H. 1966. Coevolution between ants and acacias in Central America. Evolution 20: 249–275.CrossRefGoogle ScholarPubMed
Janzen, D. H. 1967. Interaction of the bull's horn acacia (Acacia cornigera) with an ant inhabitant (Pseudomyrmex ferruginea) in East Mexico. Kansas University Science Bulletin 47: 315–558.Google Scholar
Janzen, D. H. 1969. Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50: 147–153.CrossRefGoogle Scholar
Joel, D. M. 1988. Mimicry and mutualism in carnivorous pitcher plants (Sarraceniaceae, Nepenthaceae, Cephalotaceae, Bromeliaceae). Biological Journal of the Linnean Society 35: 185–197.CrossRefGoogle Scholar
Jolivet, P. 1983. A hemimyrmecophyte with Chrysomelidae Coleoptera of Southeast Asia, Clerodendrum fragrans (Verbenaceae). Bulletin de la Société Linnéenne (Lyon) 52: 242–261.CrossRefGoogle Scholar
Jolivet, P. 1986. Les Fourmis et Les Plantes. Paris: Société Nouvelle des Editions Boubée.Google Scholar
Jolivet, P. 1998. Interrelationship between Insects and Plants. Boca Raton, FL: CRC Press.Google Scholar
Junqueira, L. K., Diehl, E., and Diehl-Fleig, E.. 2001. Visitor ants (Hymenoptera: Formicidae) of Ilex paraguariensis (Aquifoliaceae). Neotropical Entomology 30: 161–164.CrossRefGoogle Scholar
Karban, R. and Baldwin, I. T.. 1997. Induced Responses to Herbivory. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Karhu, K. J. and Neuvonen, S.. 1998. Wood ants and a geometrid defoliator of birch: predation outweighs beneficial effects through the host plant. Oecologia 113: 509–516.CrossRefGoogle Scholar
Kawano, S., Azuma, H., Ito, M., and Suzuki, K.. 1999. Extrafloral nectaries and chemical signals of Fallopia japonica and Fallopia sachalinensis (Polygonaceae), and their roles as defense systems against insect herbivory. Plant Species Biology 14: 167–178.CrossRefGoogle Scholar
Kelly, C. A. 1986. Extrafloral nectaries: ants, herbivores and fecundity in Cassia fasciculata. Oecologia 69: 600–605.CrossRefGoogle ScholarPubMed
Kenrick, J., Bernhardt, P., Marginson, R., et al. 1987. Pollination-related characteristics in the mimosoid legume Acacia terminalis (Leguminosae). Plant Systematics and Evolution 157: 49–62.CrossRefGoogle Scholar
Kerner, A., 1878. Flowers and their Unbidden Guests. London: C. Kegan Paul and Co.Google Scholar
Knox, R. B., Kenrick, J., P. Bernhardt, , et al. 1985. Extra-floral nectaries as adaptations for bird pollination in Aacia terminalis. American Journal of Botany 72: 1185–1196.CrossRefGoogle Scholar
Koptur, S. 1979. Facultative mutualism between weedy vetches bearing extrafloral nectaries and weedy plants in California. American Journal of Botany 66: 1016–1020.CrossRefGoogle Scholar
Koptur, S. 1983. Flowering phenology and floral biology of Inga. Systematic Botany 8: 354–368.CrossRefGoogle Scholar
Koptur, S. 1984a. Experimental evidence for defense of Inga (Mimosoideae) saplings by ants. Ecology 65: 1787–1793.CrossRefGoogle Scholar
Koptur, S. 1984b. Outcrossing and pollinator limitation of fruit set: breeding systems of Neotropical Inga trees (Fabaceae: Mimosoideae). Evolution 38: 1130–1143.CrossRefGoogle Scholar
Koptur, S. 1985. Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevation gradient. Ecology 66: 1639–1650.CrossRefGoogle Scholar
Koptur, S. 1989. Is extrafloral nectar production an inducible defense? In Bock, J. and Linhart, Y. (eds.) Evolutionary Ecology of Plants. Boulder, CO: Westview Press, pp. 323–339.Google Scholar
Koptur, S. 1992a. Extrafloral nectary-mediated interactions between insects and plants. In Bernays, E. (ed.) Insect–Plant Interactions, vol 4. Boca Raton, FL: CRC Press, pp. 81–129.Google Scholar
Koptur, S. 1992b. Plants with extrafloral nectaries and ants in Everglades habitats. Florida Entomologist 75: 38–50.CrossRefGoogle Scholar
Koptur, S. 1994. Floral and extrafloral nectars of neotropical Inga trees: a comparison of their constituents and composition. Biotropica 26: 276–284.CrossRefGoogle Scholar
Koptur, S. and Lawton, J. H.. 1988. Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69: 278–293.CrossRefGoogle Scholar
Koptur, S. and Truong, N.. 1998. Facultative ant/plant interactions: nectar sugar preferences of introduced pest ant species in South Florida. Biotropica 30: 179–189.CrossRefGoogle Scholar
Koptur, S., Rico-Gray, V., and Palacios-Rios, M.. 1998. Ant protection in neotropical ferns bearing foliar nectaries. American Journal of Botany 85: 736–739.CrossRefGoogle Scholar
Labeyrie, E., Pascal, L., Delabie, J., et al. 2001. Protection of Passiflora glandulosa (Passifloraceae) against herbivory: impact of ants exploiting extrafloral nectaries. Sociobiology 38: 317–322.Google Scholar
Lanza, J. 1988. Ant preferences for Passiflora nectar mimics that contain amino acids. Biotropica 20: 341–344.CrossRefGoogle Scholar
Lanza, J. 1991. Response of fire ants (Formicidae: Solenopsis invicta and S. geminata) to artificial nectars with amino acids. Ecological Entomology 16: 203–210.CrossRefGoogle Scholar
Lanza, J., Vargo, E. L., Pulim, S., and Chang, Y. Z.. 1993. Preference of the fire ants Solenopsis invicta and S. geminata (Hymenoptera: Formicidae) for amino acid and sugar components of extrafloral nectars. Environmental Entomology 22: 411–417.CrossRefGoogle Scholar
Lara, C. and Ornelas, J. F.. 2001. Nectar “theft” by hummingbird flower mites and its consequences for seed set in Moussonia deppeana. Functional Ecology 15: 78–84.Google Scholar
Lawton, J. H. and Heads, P. A.. 1985. Bracken, ants, and extrafloral nectaries. I. The components of the system. Journal of Animal Ecology 53: 995–1015.CrossRefGoogle Scholar
Letourneau, D. K. 1983. Passive aggression: an alternative hypothesis for the Piper–Pheidole association. Oecologia 60: 122–126.CrossRefGoogle ScholarPubMed
Letourneau, D. K. and Dyer, L. A.. 1998. Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology 79: 1678–1687.CrossRefGoogle Scholar
Machado, G. and Freitas, V. L.. 2001. Larval defence against ant predation in the butterfly Smyrna blomfildia. Ecological Entomology 26: 436–439.CrossRefGoogle Scholar
Madden, D. and Young, T. P.. 1992. Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91: 235–238.CrossRefGoogle ScholarPubMed
Majer, J. D., Delabie, J. H. C., and Smith, M. R. B.. 1994. Arboreal ant community patterns in Brazilian cocoa farms. Biotropica 26: 73–83.CrossRefGoogle Scholar
Maloof, J. E. and Inouye, D. W.. 2000. Are nectar robbers cheaters or mutualists?Ecology 81: 2651–2661.CrossRefGoogle Scholar
Martinez del Rio, C. 1990. Sugar preferences in hummingbirds: the influence of subtle chemical differences on food choice. Condor 92: 1022–1030.CrossRefGoogle Scholar
Martinez del Rio, C. and Karasov, W. H.. 1990. Digestion strategies in nectar-eating and fruit-eating birds and the sugar composition of plant rewards. American Naturalist 136: 618–637.CrossRefGoogle Scholar
Martinez del Rio, C. and Stevens, B. R.. 1989. Physiological constraint on feeding behavior: intestinal membrane disaccharidases of the starling. Science 243: 794–796.CrossRefGoogle ScholarPubMed
Martinez del Rio, C., Baker, H. G., and Baker, I.. 1992. Ecological and evolutionary implications of digestive processes, bird preferences, and the sugar constituents of floral nectar and fruit pulp. Experientia 48: 544–551.CrossRefGoogle Scholar
Martinez del Rio, C., Karasov, W. H., and Levey, D. J.. 1989. Physiological basis and ecological consequences of sugar preferences in cedar waxwings. Auk 106: 64–71.Google Scholar
Martinez del Rio, C., Stevens, B. R., Daneke, D. E., and Andreadis, P. T.. 1988. Physiological correlates of preference and aversion for sugars in three species of birds. Physiological Zoology 61: 222–229.CrossRefGoogle Scholar
McKey, D., 1988. Promising new directions in the study of ant–plant mutualisms. Proc. 14th Int. Botanical Congr. Koeltz, Konigstein, Germany, pp. 335–355.
McKey, D. 1991. Phylogenetic analysis of the evolution of a mutualism: Leonardoxa (Caesalpiniaceae) and its associated ants. In Huxley, C. R. and Cutler, D. F. (eds.) Ant-Plant Interactions. Oxford, UK: Oxford University Press, pp. 310–334.Google Scholar
Messina, F. J. 1981. Plant protection as a consequence of an ant–membracid mutualism: interactions on golden rod (Solidago sp.). Ecology 62: 1433–1460.CrossRefGoogle Scholar
Mody, K. and Linsenmair, K. E.. 2004. Plant-attracted ants affect arthropod community structure but not necessarily herbivory. Ecological Entomology 29: 217–225.CrossRefGoogle Scholar
Mondor, E. B. and Addicott, J. F.. 2003. Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecology Letters 6: 495–497.CrossRefGoogle Scholar
Moog, J., Drude, T., and Maschwitz, U.. 1998. Protective function of the plant-ant Cladomyrma maschwitzi to its host, Crypteronia griffithii, and the dissolution of the mutualism (Hymenoptera: Formicidae). Sociobiology 31: 105–130.Google Scholar
Morellato, L. P. C. and Oliveira, P. S.. 1994. Extrafloral nectaries in the tropical tree Guarea macrophylla (Meliaceae). Canadian Journal of Botany 72: 157–160.CrossRefGoogle Scholar
Morris, W. F. 1996. Mutualism denied? Nectar-robbing bumblebees do not reduce female or male success of bluebells. Ecology 77: 1451–1462.CrossRefGoogle Scholar
Moya-Raygoza, G. and Larsen, K. J.. 2001. Temporal resource switching by ants between honeydew produced by the fivespotted gama grass leafhopper (Dalbulus quinquenotatus) and nectar produced by plants with extrafloral nectaries. American Midland Naturalist 146: 311–320.CrossRefGoogle Scholar
Navarro, L. 2000. Pollination ecology of Anthyllis vulneraria subsp. vulgaris (Fabaceae): nectar robbers as pollinators. American Journal of Botany 87: 980–985.CrossRefGoogle ScholarPubMed
O'Brien, S. P. 1995. Extrafloral nectaries in Chamelaucium uncinatum: a first record in the Myrtaceae. Australian Journal of Botany 43: 407–413.CrossRefGoogle Scholar
O'Dowd, D. J. 1982. Pearl bodies as ant food: an ecological role for some leaf emergences of tropical plants. Biotropica 14: 40–49.CrossRefGoogle Scholar
O'Dowd, D. J. and Catchpole, E. A.. 1983. Ants and extrafloral nectaries: no evidence for plant protection in Helichrysum spp.-ant interactions. Oecologia 59: 191–200.CrossRefGoogle ScholarPubMed
Offenberg, J. 2000. Correlated evolution of the association between aphids and ants and the associations between aphids and plants with extrafloral nectaries. Oikos 91: 146–152.CrossRefGoogle Scholar
Oliveira, P. S. 1997. The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Functional Ecology 11: 323–330.CrossRefGoogle Scholar
Oliveira, P. S. and Pie, M. R.. 1998. Interaction between ants and plants bearing extrafloral nectaries in cerrado vegetation. Anais de Sociedade Entomologica do Brasil 27: 161–176.CrossRefGoogle Scholar
Oliveira, P. S., A. V. L. Freitas, and K. Del-Claro. 2002. Ant foraging on plant foliage: contrasting effects on the behavioral ecology of insect herbivores. In Oliveira, P. S. and Marquis, R. J. (eds.) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press, pp. 287–305.CrossRefGoogle Scholar
Oliveira, P. S., Klitzke, C., and Vieira, E.. 1995. The ant fauna associated with the extrafloral nectaries of Ouratea hexasperma (Ochnaceae) in an area of cerrado vegetation in Central Brazil. Entomologist's Monthly Magazine 131: 77–82.Google Scholar
Oliveira, P. S., Rico-Gray, V., Diaz-Castelazo, C., and Castillo-Guevara, C.. 1999. Interaction between ants, extrafloral nectaries and insect herbivores in Neotropical coastal sand dunes: herbivore deterrence by visiting ants increases fruit set in Opuntia stricta. Functional Ecology 13: 623–631.CrossRefGoogle Scholar
Passera, L., Lachaud, J.-P., and Gomel, L.. 1994. Individual food source fidelity in the neotropical ponerine ant Ectatomma ruidum Roger (Hymenoptera Formicidae). Ethology, Ecology, and Evolution 6: 13–21.CrossRefGoogle Scholar
Peakall, R., S. N. Handel, and A. J. Beattie. 1991. The evidence for, and importance of, ant pollination. In Huxley, C. R. and Cutler, D. F. (eds.) Ant–Plant Interactions. Oxford, UK: Oxford University Press, pp. 421–429.Google Scholar
Pemberton, R. W. 1993. Extrafloral nectar feeding by the Japanese white-eye. Tropics 2: 183–186.CrossRefGoogle Scholar
Perfecto, I. and Sediles, A.. 1992. Vegetational diversity, ants (Hymenoptera: Formicidae), and herbivorous pests in a Neotropical agroecosystem. Environmental Entomology 21: 61–67.CrossRefGoogle Scholar
Pickett, C. H. and Clark, W. D.. 1979. The function of extrafloral nectaries in Opuntia acanthocarpa (Cactaceae). American Journal of Botany 66: 618–625.CrossRefGoogle Scholar
Pinheiro, M. C. B., Ormond, W. T., Lima, H. A., and Correia, M. C. R.. 1995. Biology of reproduction of Norantea brasiliensis Choisy (Marcgraviaceae). Revista Brasileira de Biologia 55 (suppl. 1): 79–88.Google Scholar
Prys-Jones, O. E. and Willmer, P. G.. 1992. The biology of alkaline nectar in the purple toothwort (Lathraea clandestina): ground level defences. Biological Journal of the Linnean Society 45: 373–388.CrossRefGoogle Scholar
Puterbaugh, M. N. 1998. The roles of ants as flower visitors: experimental analysis in three alpine plant species. Oikos 83: 36–46.CrossRefGoogle Scholar
Pyke, G. H., 1991. What does it cost a plant to produce floral nectar? Nature 350: 58–59.CrossRefGoogle Scholar
Rashbrook, V. K., Compton, S. G., and Lawton, J. H.. 1992. Ant-herbivore interactions: reasons for the absence of benefits to a fern with foliar nectaries. Ecology 73: 2167–2174.Google Scholar
Ratnieks, F. L. W. and Anderson, C.. 1999. Task partitioning in insect societies. Insectes Sociaux 46: 95–108.CrossRefGoogle Scholar
Ricks, B. L. and Vinson, S. B.. 1970. Feeding acceptibility of certain insects and various water soluble compounds to two varieties of the imported fire ant. Journal of Economic Entomology 63: 145–148.CrossRefGoogle Scholar
Rickson, F. R. and Rickson, M. M.. 1998. The cashew nut, Anacardium occidentale (Anacardiaceae), and its perennial association with ants: extrafloral nectary location and the potential for ant defense. American Journal of Botany 85: 835–849.CrossRefGoogle ScholarPubMed
Rico-Gray, V. 1993. Use of plant-derived food resources by ants in the dry tropical lowlands of coastal Veracruz, Mexico. Biotropica 25: 301–315.CrossRefGoogle Scholar
Rico-Gray, V. 2001. Interspecific interaction. In Encyclopedia of Life Sciences. London: Macmillan; available at http://www.els.net.Google Scholar
Rico-Gray, V., Palacios-Rios, M., Garcia-Franco, J. G., and MacKay, W. P.. 1998. Richness and seasonal variation of ant–plant associations mediated by plant-derived food resources in the semiarid Zapotitlan Valley, Mexico. American Midland Naturalist 140: 21–26.CrossRefGoogle Scholar
Risch, S. J. and Rickson, F. R.. 1981. Mutualism in which ants must be present before plants produce food bodies. Nature 291: 149–150.CrossRefGoogle Scholar
Roces, F., Y. Winter, and O. V. Helversen. 1993. Nectar concentration preference and water balance in a flower visiting bat, Glossophaga soricina antillarum. In Barthlott, W., Naumann, C., Schmidt-Loske, C., and Schuhmann, K. (eds.) Animal–Plant Interactions in Tropical Environments. Bonn, Germany: Museum Alexander Koenig, pp. 159–165.Google Scholar
Rocha, C. R. and Bergallo, H. G.. 1992. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia 91: 249–252.CrossRefGoogle ScholarPubMed
Rodriguez, M. C., 1995. Interactions between Lysiloma bahamensis Benth. (Fabaceae: Mimosoideae) and herbivorous insects in the Everglades. M.S. thesis, Florida International University, Miami.
Ruhren, S. and Handel, S. N.. 1999. Jumping spiders (Salticidae) enhance the seed production of a plant with extrafloral nectaries. Oecologia 119: 227–230.CrossRefGoogle ScholarPubMed
Rusterholz, H. P. and Erhardt, A.. 1997. Preferences for nectar sugars in the peacock butterfly, Inachis io. Ecological Entomology 22: 220–224.CrossRefGoogle Scholar
Sakata, H. and Hashimoto, Y.. 2000. Should aphids attract or repel ants? Effect of rival aphids and extrafloral nectaries on ant-aphid interactions. Population Ecology 42: 171–178.CrossRefGoogle Scholar
Sazima, I., Buzato, S., and Sazima, M.. 1993. The bizarre inflorescence of Norantea brasiliensis (Marcgraviaceae): visits of hovering and perching birds. Botanica Acta 106: 507–513.CrossRefGoogle Scholar
Sazima, M. and Sazima, I.. 1980. Bat visits to Marcgravia myriostigma Tr. et Planch. (Marcgraviaceae) in Southeastern Brazil. Flora 169: 84–88.CrossRefGoogle Scholar
Schemske, D. W. 1982. Ecological correlates of a neotropical mutualism: ant assemblages at Costus extrafloral nectaries. Ecology 63: 932–941.CrossRefGoogle Scholar
Schimper, A. F. W. 1903. Plant-Geography upon a Physiological Basis. Oxford, UK: Clarendon Press.Google Scholar
Schuerch, S., Pfunder, M., and Roy, B. A.. 2000. Effects of ants on the reproductive success of Euphorbia cyparissias and associated pathogenic rust fungi. Oikos 88: 6–12.CrossRefGoogle Scholar
Schupp, E. W. 1986. Azteca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia 70: 379–385.CrossRefGoogle ScholarPubMed
Schupp, E. W., and D. H. Feener. 1991. Phylogeny, lifeform, and habitat dependence of ant-defended plants in a Panamanian forest. In Huxley, C. R. and Cutler, D. F. (eds.) Ant-Plant Interactions. Oxford, UK: Oxford University Press, pp. 175–197.Google Scholar
Seufert, P. and Fiedler, K.. 1996. The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106: 127–136.CrossRefGoogle Scholar
Stapel, J. O., Cortesero, A. M., Moraes, C. M., Tumlinson, J. H., and Lewis, W. J.. 1997. Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environmental Entomology 26: 617–623.CrossRefGoogle Scholar
Stephenson, A. G. 1982. The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology 63: 663–669.CrossRefGoogle Scholar
Stettmer, C. 1993. [Flower-visiting beneficial insects on extrafloral nectaries of the cornflower Centaurea cyanus (Asteraceae).] Mitteilungen der schweizischen entomologischen Gesellschaft 66: 1–8. (In German)Google Scholar
Stevens, J. A., 1990. Response of Campsis radicans (Bignoniaceae) to simulated herbivory and ant visitation. M.S. thesis, University of Missouri, St. Louis.
Tempel, A. S. 1983. Bracken fern (Pteridium aquilinum) and nectar-feeding ants: a nonmutualistic interaction. Ecology 64: 1411–1422.CrossRefGoogle Scholar
Thompson, J. N., 1994. The Coevolutionary Process. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Thorp, R. W. and Sugden, E. A.. 1990. Extrafloral nectaries producing rewards for pollinator attraction in Acacia longifolia (Andr.) Willd. Israel Journal of Botany 39: 177–186.Google Scholar
Torres-Hernandez, L., Rico-Gray, V., Castillo-Guevara, C., and Vergara, J. A.. 2000. Effect of nectar-foraging ants and wasps on the reproductive fitness of Turnera ulmifolia (Turneraceae) in a coastal sand dune in Mexico. Acta Zoologica Mexicana 81: 13–21.Google Scholar
Valenzuela-Gonzalez, J., Lopez-Mendez, A., and Garcia-Ballinas, A.. 1994. [Activity patterns and foraging habits of Pachycondyla villosa (Hymenoptera, Formicidae) in cacao plantations of Soconusco, Chiapas, Mexico.]Folia Entomologica Mexicana 91: 9–21. (In Spanish)Google Scholar
Vandermeer, R. K., Lofgren, C. S., and Seawright, J. A.. 1995. Specificity of the red imported fire ant (Hymenoptera: Formicidae) phagostimulant response to carbohydrates. Florida Entomologist 78: 144–154.Google Scholar
Vasconcelos, H. L. 1991. Mutualism between Maieta guianensis Aubl., a myrmecophytic melastome, and one of its ant inhabitants: ant protection against insect herbivores. Oecologia 87: 295–298.CrossRefGoogle ScholarPubMed
Wäckers, F. L. and Wunderlin, R.. 1999. Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomologia Experimentalis et Applicata 91: 149–154.CrossRefGoogle Scholar
Wäckers, F. L., Zuber, D., Wunderlin, R., and Keller, F.. 2001. The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Annals of Botany 87: 365–370.CrossRefGoogle Scholar
Wagner, D. 1997. The influence of ant nests on Acacia seed production, herbivory and soil nutrients. Journal of Ecology 85: 83–93.CrossRefGoogle Scholar
Wagner, D. 2000. Pollen viability reduction as a potential cost of ant association for Acacia constricta (Fabaceae). American Journal of Botany 87: 711–715.CrossRefGoogle Scholar
Wagner, D. and Kay, A.. 2002. Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research 4: 293–305.Google Scholar
Wagner, D. and Kurina, L.. 1997. The influence of ants and water availability on oviposition behaviour and survivorship of a facultatively ant-tended herbivore. Ecological Entomology 22: 352–360.CrossRefGoogle Scholar
Way, M. J. 1963. Mutualism between ants and honeydew producing Homoptera. Annual Review of Entomology 8: 307–344.CrossRefGoogle Scholar
Weseloh, R. M. 1995. Ant traffic on different tree species in Connecticut. Canadian Entomologist 127: 569–575.CrossRefGoogle Scholar
Willmer, P. G. and Corbet, S. A.. 1981. Temporal and microclimatic partitioning of the floral resources of Justicea aurea amongst a concourse of pollen vectors and nectar robbers. Oecologia 51: 67–78.CrossRefGoogle Scholar
Willmer, P. G. and Stone, G. N.. 1997. How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388: 165–167.CrossRefGoogle Scholar
Wunnachit, W., Jenner, C. F., and Sedgley, M.. 1992. Floral and extrafloral nectar production in Anacardium occidentale L. (Anacardiaceae): an andromonoecious species. International Journal of Plant Sciences 153: 413–420.CrossRefGoogle Scholar
Yano, S. 1994. Flower nectar of an autogamous perennial Rorippa indica as an indirect defense mechanism against herbivorous insects. Researches on Population Ecology 36: 63–71.CrossRefGoogle Scholar
Young, T. P., Stubblefield, C. H., and Isbell, L. A.. 1997. Ants on swollen-thorn acacias: species coexistence in a simple system. Oecologia 109: 98–107.CrossRefGoogle Scholar
Zachariades, C. and Midgley, J. J.. 1999. Extrafloral nectaries of South African Proteaceae attract insects but do not reduce herbivory. African Entomology 7: 67–76.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×