Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T00:52:37.731Z Has data issue: false hasContentIssue false

6 - Modelling and mapping timber yield and its value

Published online by Cambridge University Press:  22 September 2009

Ian J. Bateman
Affiliation:
University of East Anglia
Andrew A. Lovett
Affiliation:
University of East Anglia
Julii S. Brainard
Affiliation:
University of East Anglia
Get access

Summary

Introduction

In this chapter we present various models of timber production for the two species under consideration: Sitka spruce and beech. In the next section we present a brief review of previous studies. These have exclusively been based upon relatively small-scale surveys of tree growth; furthermore, they have also generally been confined to comparatively small areas and often to one topographic region, e.g. upland areas. Our study differs from these previous models in that it employs a GIS to utilise large-scale existing databases covering a very large and diverse study area: the whole of Wales. The subsequent section presents details regarding the various datasets used in this study and discusses how these data were transformed for the purposes of subsequent regression analysis. Subsequently, results from our models of Sitka spruce and beech growth rates are presented, while the following section presents and analyses GIS-created map images of predicted yield class. The final section applies the findings of the previous chapter to produce monetised equivalents of these results.

Literature review and methodological overview

Literature review

It is clear that tree growth rates depend upon a variety of species, environmental and silvicultural factors. Early work in this field relied on simple rules of thumb based upon relatively little supporting data (Busby, 1974) or analyses of single factors. Reviews across this literature provide a number of clues regarding the specification of a yield class model. An early focus of interest was the impact of elevation upon productivity (Malcolm, 1970; Mayhead, 1973; Blyth, 1974).

Type
Chapter
Information
Applied Environmental Economics
A GIS Approach to Cost-Benefit Analysis
, pp. 158 - 183
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×