Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T10:43:51.227Z Has data issue: false hasContentIssue false

9 - Plasma Actuator

Published online by Cambridge University Press:  14 December 2018

Jinjun Wang
Affiliation:
Beijing University of Aeronautics and Astronautics
Lihao Feng
Affiliation:
Beijing University of Aeronautics and Astronautics
Get access

Summary

The plasma actuator is an effective device that could be used for active flow control. There are different kinds of plasma actuators, such as DBD plasma actuator, surface corona discharge actuator, and plasma spark-jet actuator, and the DBD plasma actuators are paid particular attention. The two main features of the DBD plasma actuator are that it can induce a wall jet and a starting vortex. Firstly, the conventional applications of the plasma actuators are introduced. The plasma actuator can delay laminar to turbulence transition. It can also delay or eliminate flow separation, and thus improve aerodynamic performance of airfoils, straight wings, delta wings, aircraft, and bluff bodies. On the other hand, some novel flow control conceptions based on plasma actuators are also introduced, including plasma synthetic jet, plasma Gurney flap, plasma circulation control, plasma vortex generator. It has been indicated that those techniques could achieve similar control effects to traditional techniques. Meanwhile, plasma-based techniques are easier to conduct in real-time and unsteady active control, and more convenient to implement than conventional techniques. Finally, the disadvantages of DBD plasma actuators and their solutions are discussed.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barckmann, K., Tropea, C., and Grundmann, S. Attenuation of Tollmien–Schlichting waves using plasma actuator vortex generators. AIAA Journal, 2015, 53(5): 13841388CrossRefGoogle Scholar
Benard, N., Jolibois, J., and Moreau, E. Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. Journal of Electrostatics, 2009, 67(2–3): 133139Google Scholar
Bhattacharya, S. and Gregory, J. W. Effect of three-dimensional plasma actuation on the wake of a circular cylinder. AIAA Journal, 2015a, 53(4): 958967Google Scholar
Bhattacharya, S. and Gregory, J. W. Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator. Physics of Fluids, 2015b, 27(1): 014102Google Scholar
Boesch, G., Vo, H. D., Savard, B., Wanko-Tchatchouang, C., and Mureithi, N. W. Flight control using wing-tip plasma actuation. Journal of Aircraft, 2010, 47(6): 18361846Google Scholar
Corke, T. C., Enloe, C. L., and Wilkinson, S. P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annual Review of Fluid Mechanics, 2010, 42(42): 505529Google Scholar
Cybyk, B. Z., Wilkerson, J. T., Grossman, K. R., and Van Wie, D. M. Computational assessment of the sparkjet flow control actuator. AIAA Paper 2003–3711Google Scholar
Duchmann, A., Simon, B., Tropea, C., and Grundmann, S. Dielectric barrier discharge plasma actuators for in-flight transition delay. AIAA Journal, 2014, 52(2): 358367Google Scholar
Feng, L. H., Choi, K. S., and Wang, J. J. Control of flow around a circular cylinder by plasma synthetic jet. 11th International Conference on Fluid Control, Measurements and Visualization, December 5–9, 2011, Taiwan, ChinaGoogle Scholar
Feng, L. H., Choi, K. S., and Wang, J. J. Flow control over an airfoil using virtual Gurney flaps. Journal of Fluid Mechanics, 2015, 767: 595626Google Scholar
Feng, L. H., Jukes, T. N., Choi, K. S., and Wang, J. J. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Experiments in Fluids, 2012, 52(6): 15331546Google Scholar
Feng, L. H., Wang, J. J., and Choi, K. S. A novel concept on the plasma Gurney flap. 29th Congress of the International Council of the Aeronautical Sciences, September 7–12, 2014, St. Petersburg, RussiaGoogle Scholar
Feng, L. H., Wang, J. J., and Choi, K. S. Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical & Applied Mechanics, 2013, 45(6): 815821 (in Chinese)Google Scholar
Feng, L. H. and Wang, J. J. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. Journal of Fluid Mechanics, 2010, 662(7): 232259Google Scholar
Greenblatt, D., Kastantin, Y., Nayeri, C. N., and Paschereit, C. O. Delta-wing flow control using dielectric barrier discharge actuators. AIAA Journal, 2008, 46(6): 15541560Google Scholar
Gregory, J. W., Porter, C. O., and McLaughlin, T. E. Circular cylinder wake control using spatially distributed plasma forcing. AIAA Paper 2008–4198Google Scholar
Grundmann, S. and Tropea, C. Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Experiments in Fluids, 2008, 44(5): 795806Google Scholar
Grundmann, S. and Tropea, C. Experimental transition delay using glow-discharge plasma actuators. Experiments in Fluids, 2007, 42(4): 653657Google Scholar
Huang, X., Zhang, X., and Li, Y. Broadband flow-induced sound control using plasma actuators. Journal of Sound & Vibration, 2010, 329(13): 24772489Google Scholar
Im, S., Do, H., and Cappelli, M. A. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow. Applied Physics Letters, 2010, 97(4): 041503Google Scholar
Jukes, T. N. Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators. Renewable Energy, 2015, 80: 644654CrossRefGoogle Scholar
Jukes, T. N. and Choi, K. S. Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Experiments in Fluids, 2012, 52(2): 329345Google Scholar
Jukes, T. N. and Choi, K. S. Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma. Physics of Fluids, 2009a, 21(9): 094106Google Scholar
Jukes, T. N. and Choi, K. S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Physics of Fluids, 2009b, 21(8): 084103Google Scholar
Jukes, T. N. and Choi, K. S. Long lasting modifications to vortex shedding using a short plasma excitation. Physical Review Letters, 2009c, 102(25): 254501Google Scholar
Jukes, T. N. and Choi, K. S. On the formation of streamwise vortices by plasma vortex generators. Journal of Fluid Mechanics, 2013, 733(6): 370393Google Scholar
Jukes, T. N., Segawa, T., and Furutani, H. Flow control on a NACA 4418 using dielectric barrier discharge vortex generators. AIAA Journal, 2013, 51(2): 452464Google Scholar
Kozlov, A. V. and Thomas, F. O. Bluff-body flow control via two types of dielectric barrier discharge plasma actuation. AIAA Journal, 2011a, 49(9): 19191931Google Scholar
Kozlov, A. V. and Thomas, F. O. Plasma flow control of cylinders in a tandem configuration. AIAA Journal, 2011b, 49(10): 21832193Google Scholar
Léger, L., Moreau, E., Artana, G., and Touchard, G. Influence of a DC corona discharge on the airflow along an inclined flat plate. Journal of Electrostatics, 2001, 51(1): 300306Google Scholar
Li, Y., Zhang, X., and Huang, X. The use of plasma actuators for bluff body broadband noise control. Experiments in Fluids, 2010, 49(2): 367377Google Scholar
Liu, A. B., Zhang, P. F., Yan, B., Dai, C. F., and Wang, J. J. Flow characteristics of synthetic jet induced by plasma actuator. AIAA Journal, 2011, 49(3): 544553Google Scholar
Mabe, J. H., Calkins, F. T., Wesley, B., Woszidlo, R., Taubert, L., and Wygnaanski, L. Single dielectric barrier discharge plasma actuators for improved airfoil performance. Journal of Aircraft, 2009, 46(3): 847855Google Scholar
McLaughlin, T. E., Munska, M. D., Vaeth, J. P., Dauwalter, T. E., Goode, J. R., and Siegel, S. Plasma-based actuators for cylinder wake vortex control. AIAA Paper 2004–2129Google Scholar
McLaughlin, T., Felker, B., Avery, J., and Enloe, C. Further experiments in cylinder wake modification with dielectric barrier discharge forcing. AIAA Paper 2006–1409Google Scholar
Moreau, E., Léger, L., and Touchard, G. Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s. Journal of Electrostatics, 2006, 64(3–4): 215225Google Scholar
Moreau, E. Airflow control by non-thermal plasma actuators. Journal of Physics D: Applied Physics, 2007, 40(3): 605Google Scholar
Munska, M. D. and McLaughlin, T. E. Circular cylinder flow control using plasma actuators. AIAA Paper 2005–141Google Scholar
Rizzetta, D. P. and Visbal, M. R. Large eddy simulation of plasma-based control strategies for bluff body flow. AIAA Journal, 2009, 47(3): 717729Google Scholar
Roth, J. R., Tsai, P. P., Liu, C., Laroussi, M., and Spence, P. D. One atmosphere, uniform glow discharge plasma. United States Patent 5414324, 1995Google Scholar
Sidorenko, A. A., Budovskiy, A. D., Maslov, A. A., Postnikov, B. V., Zanin, B. Y., Zverkov, I. D., and Kozlov, V. V. Plasma control of vortex flow on a delta wing at high angles of attack. Experiments in Fluids, 2013, 54(8): 1585Google Scholar
Sosa, R. and Artana, G. Steady control of laminar separation over airfoils with plasma sheet actuators. Journal of Electrostatics, 2006, 64(7–9): 604610Google Scholar
Sosa, R., Artana, G., Benard, N., and Moreau, E. Mean lift generation on cylinders induced with plasma actuators. Experiments in Fluids, 2011, 51(3): 853860Google Scholar
Sosa, R., Artana, G., Moreau, E., and Touchard, G. Stall control at high angle of attack with plasma sheet actuators. Experiments in Fluids, 2007, 42(1): 143167Google Scholar
Roupassov, D. V., Nikipelov, A. A., and Nudnova, M., and Starikovskii, A. Flow separation control by plasma actuator with nanosecond pulse discharge. AIAA Journal, 2009, 47(1): 168185Google Scholar
Sung, Y., Kim, W., Mungal, M. G., and Cappelli, M. A. Aerodynamic modification of flow over bluff objects by plasma actuation. Experiments in Fluids, 2006, 41(3): 479486Google Scholar
Thomas, F. O., Kozlov, A., and Corke, T. C. Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 2008, 46(8): 19211931Google Scholar
Traub, L. W., Miller, A. C., and Rediniotis, O. Comparisons of a Gurney and jet-flap for hinge-less control. Journal of Aircraft, 2004, 41(2): 420423Google Scholar
Vinogradov, I. andHuang, X. Bluff body flow-induced noise control with sliding plasma actuators. Chinese Science Bulletin, 2011, 56(28–29): 30793081Google Scholar
Vorobiev, A. N., Rennie, R. M., Jumper, E. J., and McLaughlin, T. E. Experimental investigation of lift enhancement and roll control using plasma actuators. Journal of Aircraft, 2008, 45(4): 13151321Google Scholar
Wang, J. J., Choi, K. S., Feng, L. H., Jukes, T. N., and Whalley, R. D. Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 2013, 62(4): 5278Google Scholar
Wang, L., Xia, Z., Luo, Z., and Chen, J. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA Journal, 2014, 52(4): 879882Google Scholar
Whalley, R. D. and Choi, K. S. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. Journal of Fluid Mechanics, 2012, 703(1): 192203CrossRefGoogle Scholar
Wu, Y. andLi, Y. H. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381405 (in Chinese)Google Scholar
Wu, Y., Li, Y. H., Jia, M., Liang, H., and Song, H. M. Experimental investigation of nanosecond discharge plasma aerodynamic actuation. Chinese Physics B, 2012, 21(4): 045202Google Scholar
Wu, Y., Li, Y. H., Jia, M., Song, H. M., and Liang, H. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma. Journal of Applied Physics, 2013, 113(3): 033303Google Scholar
Zhang, P. F., Wang, J. J., Feng, L. H., and Wang, G. Z. Experimental study of plasma flow control on highly swept delta wing. AIAA Journal, 2010a, 48(1): 249252Google Scholar
Zhang, P. F., Yan, B., Liu, A. B., and Wang, J. J. Numerical simulation on plasma circulation control airfoil. AIAA Journal, 2010b, 48(10): 22132226Google Scholar
Zhang, P. F., Liu, A. B., and Wang, J. J. Aerodynamic modification of NACA 0012 airfoil by trailing-edge plasma Gurney flap. AIAA Journal, 2009, 47(10): 24672474Google Scholar
Zhang, P. F., Liu, A. B., and Wang, J. J. Numerical simulation of flow induced by plasma actuator based on phenomenological model. Journal of Beijing University of Aeronautics and Astronautics, 2010c, 36(1): 5256 (in Chinese)Google Scholar
Zhao, G. Y., Li, Y. H., Hua, W. Z., Liang, H., Han, M. N., and Niu, Z. G. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators. Journal of Aerospace Engineering, 2015a, 229(11): 19661974Google Scholar
Zhao, G., Li, Y., Liang, H., Han, M. H., and Hua, W. Z. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge. Experiments in Fluids, 2015b, 56(1): 1864Google Scholar
Zhao, G. Y., Li, Y. H., Liang, H., Han, M. H., and Wu, Y. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators. Chinese Journal of Aeronautics, 2015c, 28(2): 368376Google Scholar
Zhao, G. Y., Li, Y. H., Liang, H., Hua, W. Z., and Han, M. H. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015d, 64(1): 015101Google Scholar
Zhu, Y. F., Wu, Y., Cui, W., Li, Y. H., and Jia, M. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. Journal of Physics D: Applied Physics, 2013, 46(35): 355205Google Scholar
Zong, H. H., Cui, W., Wu, Y., Zhang, Z. B., Liang, H., Jia, M., and Li, Y. H. Influence of capacitor energy on performance of a three-electrode plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2015, 222: 114121Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Plasma Actuator
  • Jinjun Wang, Lihao Feng
  • Book: Flow Control Techniques and Applications
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781316676448.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Plasma Actuator
  • Jinjun Wang, Lihao Feng
  • Book: Flow Control Techniques and Applications
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781316676448.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Plasma Actuator
  • Jinjun Wang, Lihao Feng
  • Book: Flow Control Techniques and Applications
  • Online publication: 14 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781316676448.010
Available formats
×