Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T08:39:22.470Z Has data issue: false hasContentIssue false

Section 1 - The fluids

Published online by Cambridge University Press:  05 June 2016

Robert G. Hahn
Affiliation:
Linköpings Universitet, Sweden
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

GIFTASUP (2007) – British Consensus Guidelines on Intravenous Fluid Therapy for Adult Surgical Patients; http://www.bapen_pubs/giftasup.pdf (last visited on 18 March 2016)Google Scholar
NICE (2013) – Intravenous fluid therapy in adults in hospital; http://www.nice.org.uk/guidance/cg174Google Scholar

References

Guyton, AC, Hall, JE. Textbook of Medical Physiology, 9th edn. Philadelphia: WB Saunders Company, 1996; 185–6, 298313.Google Scholar
Scheingraber, S, Rehm, M, Sehmisch, C, Finisterer, U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999; 90: 1265–70.CrossRefGoogle ScholarPubMed
Williams, EL, Hildebrand, KL, McCormick, SA, Bedel, MJ. The effect of intravenous lactated Ringer's solution vs. 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 1999; 88: 9991003.Google Scholar
Wilkes, NJ, Woolf, R, Mutch, M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 2001; 93: 811–16.CrossRefGoogle ScholarPubMed
Drobin, D, Hahn, RG. Kinetics of isotonic and hypertonic plasma volume expanders. Anesthesiology 2002; 96: 1371–80.CrossRefGoogle ScholarPubMed
Chowdbury, AH, Cox, EF, Francis, ST, Lobo, DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012; 256: 1824.CrossRefGoogle Scholar
Shaw, AD, Bagshaw, SM, Goldstein, SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 2012; 255: 821–9.CrossRefGoogle ScholarPubMed
Ahlborg, G, Hagenfeldt, L, Wahren, J. Influence of lactate infusion on glucose and FFA metabolism in man. Scand J Clin Lab Invest 1976; 36: 193201.CrossRefGoogle ScholarPubMed
Thomas, DJB, Albertini, KGMM. Hyperglycaemic effects of Hartmann's solution during surgery in patients with maturity onset diabetes. Br J Anaesth 1978; 50: 185–8.CrossRefGoogle ScholarPubMed
Hahn, RG. Volume kinetics of infusion fluids (review). Anesthesiology 2010; 113: 470–81.CrossRefGoogle Scholar
Hahn, RG, Bahlmann, H, Nilsson, L. Dehydration and fluid volume kinetics before major open abdominal surgery. Acta Anaesthesiol Scand 2014; 58: 1258–66.CrossRefGoogle ScholarPubMed
Zdolsek, J, Li, Y, Hahn, RG. Detection of dehydration by using volume kinetics. Anesth Analg 2012; 115: 814–22.CrossRefGoogle ScholarPubMed
Hahn, RG. Why crystalloids will do the job in the operating room. Anaesthesiol Intensive Ther 2014; 46: 342–9.CrossRefGoogle ScholarPubMed
Norberg, Å, Hahn, RG, Husong, Li, et al. Population volume kinetics predicts retention of 0.9% saline infused in awake and isoflurane-anesthetized volunteers. Anesthesiology 2007; 107: 2432.CrossRefGoogle Scholar
Hahn, RG. Blood volume at the onset of hypotension in TURP performed during epidural anaesthesia. Eur J Anaesth 1993; 10: 219–25.Google ScholarPubMed
Hahn, RG, Drobin, D. Rapid water and slow sodium excretion of Ringer's solution dehydrates cells. Anesth Analg 2003; 97: 1590–4.CrossRefGoogle ScholarPubMed
Apfel, CC, Meyer, A, Orphan-Sungur, M, et al. Supplemental intravenous crystalloids for the prevention of postoperative nausea and vomiting. Br J Anaesth 2012; 108: 893902.CrossRefGoogle ScholarPubMed
Hahn, RG, Drobin, D, Ståhle, L. Volume kinetics of Ringer's solution in female volunteers. Br J Anaesth 1997; 78: 144–8.CrossRefGoogle ScholarPubMed
Arieff, AI. Fatal postoperative pulmonary edema. Pathogenesis and literature review. Chest 1999; 115: 1371–7.CrossRefGoogle ScholarPubMed
Holte, K, Jensen, P, Kehlet, H. Physiologic effects of intravenous fluid administration in healthy volunteers. Anesth Analg 2003; 96: 1504–9.Google ScholarPubMed
Nisanevich, V, Felsenstein, I, Almogy, G, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 2005; 103: 2532.CrossRefGoogle ScholarPubMed
Li, Y, He, R, Ying, X, Hahn, RG. Ringer's lactate, but not hydroxyethyl starch, prolongs the food intolerance time after major abdominal surgery; an open-labelled clinical trial. BMC Anesthesiol 2015; 15: 72.CrossRefGoogle Scholar
Brandstrup, B, Tonnesen, H, Beier-Holgersen, R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens. A randomized assessor-blinded multicenter trial. Ann Surg 2003; 238: 641–8.CrossRefGoogle ScholarPubMed
Chua, H-R, Venkatesh, B, Stachowski, E, et al. Plasma-Lyte 148 vs. 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care 2012; 27: 138–45.CrossRefGoogle Scholar
Hasman, H, Cinar, O, Uzun, A, et al. A randomized clinical trial comparing the effect of rapidly infused crystalloids on acid–base status in dehydrated patients in the emergency department. Int J Med Sci 2012; 9: 5964.CrossRefGoogle ScholarPubMed
Hadimioglu, N, Saadawy, I, Saglam, T, Ertug, Z, Dinckan, A. The effect of different crystalloid solutions on acid–base balance and early kidney function after kidney transplantation. Anesth Analg 2008; 107: 264–9.CrossRefGoogle ScholarPubMed
Young, P, Bailey, R, Beasley, R, et al. Effect of buffered crystalloid solution vs. saline on acute kidney injury among patients in the intensive care unit. The SPLIT randomized clinical trial. JAMA 2015; 314: 1701–10. doi:10.1001/jama.2015.12334CrossRefGoogle ScholarPubMed

References

Hedin, A, Hahn, RG. Volume expansion and plasma protein clearance during intravenous infusion of 5% albumin and autologous plasma. Clin Sci 2005; 106: 217–24.Google Scholar
Caironi, P, Tognoni, G, Masson, S, et al. Albumin replacement in patients with severe sepsis or septic shock. N J Engl Med 2014; 370: 1412–21.CrossRefGoogle ScholarPubMed
Fleck, A, Raines, G, Hawker, F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 325: 781–4.CrossRefGoogle Scholar
Woodcock, TE, Woodcock, TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108: 384–94.CrossRefGoogle ScholarPubMed
The SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350: 2247–56.Google Scholar
Guthrie, RD, Hines, C. Use of intravenous albumin in the critically ill patient. Am J Gastroenterol 1991; 86: 255–63.Google ScholarPubMed
Marik, PE. The treatment of hypoalbuminemia in the critically ill patient. Heart Lung 1993; 22: 166–70.Google ScholarPubMed
Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised trials. BMJ 1998; 317: 235–40.Google Scholar
Roberts, I, Edwards, P, McLelland, B. More on albumin. Use of human albumin in UK fell substantially when systematic review was published (letter). BMJ 1999; 318: 1214–15.CrossRefGoogle ScholarPubMed
Wilkes, MM, Navickis, RJ. Patient survival after human albumin administration. A meta-analysis of randomized, controlled trials. Ann Intern Med 2001; 135: 149–64.CrossRefGoogle ScholarPubMed
The SAFE Study Investigators. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 2007; 357: 874–84.Google Scholar
Rehm, M, Haller, M, Orth, V, et al. Changes in blood volume and hematocrit during acute perioperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 2001; 95: 84956.CrossRefGoogle ScholarPubMed
Jacob, M, Chappell, D, Rehm, M. Clinical update: perioperative fluid management. Lancet 2007; 369: 1984–6.CrossRefGoogle ScholarPubMed
Christensen, P, Andersson, J, Rasmussen, SE, Andersen, PK, Henneberg, SW. Changes in circulating blood volume after infusion of hydroxyethyl starch 6% in critically ill patients. Acta Anaesthesiol Scand 2001; 45: 414–20.CrossRefGoogle ScholarPubMed
Lehmann, GB, Asskali, F, Boll, M, et al. HES 130/0.42 shows less alteration of pharmacokinetics than HES 200/0.5 when dosed repeatedly. Br J Anaesth 2007; 98: 635–44.CrossRefGoogle Scholar
Voluven 6% hydroxyethyl starch 130/0.4 product monograph. Bad Homburg (Germany): Fresenius Kabi, 2007.Google Scholar
Hahn, RG, Bergek, C, Gebäck, T, Zdolsek, J. Interactions between the volume effects of hydroxyethyl starch 130/0.4 and Ringer's acetate. Crit Care 2013; 17: R104.CrossRefGoogle Scholar
Awad, S, Dharmavaram, S, Wearn, CS, Dube, MG, Lobo, DN. Effects of an intraoperative infusion of 4% succinylated gelatine (Gelofusine®) and 6% hydroxyethyl starch (Voluven®) on blood volume. Br J Anaesth 2012; 109: 16876.CrossRefGoogle ScholarPubMed
Zdolsek, HJ, Vegfors, M, Lindahl, TL, et al. Hydroxyethyl starches and dextran during hip replacement surgery: effects on blood volume and coagulation. Acta Anaesthesiol Scand 2011; 55: 677–85.CrossRefGoogle ScholarPubMed
Li, Y, He, R, Ying, X, Hahn, RG. Dehydration, haemodynamics and fluid volume optimization after induction of general anaesthesia. Clinics 2014; 69: 809–16.CrossRefGoogle Scholar
James, MF, Latoo, MY, Mythen, MG, et al. Plasma volume changes associated with two hydroxy ethyl starch colloids following acute hypovolaemia in volunteers. Anaesthesia 2004; 59: 738–42.CrossRefGoogle Scholar
Ickx, BE, Bepperling, F, Melot, C, Schulman, C, van der Linden, PJ. Plasma substitution effects of a new hydroxyethyl starch HES 130/0.4 compared with HES 200/0.5 during and after extended acute normovolaemic haemodilution. Br J Anaesth 2003; 91: 196202.CrossRefGoogle Scholar
Schortgen, F, Lacherade, LC, Bruneel, F, et al. Effects of hydroxyethyl starch and gelatine on renal function in severe sepsis: a multicentre randomised study. Lancet 2001; 357: 911–16.CrossRefGoogle ScholarPubMed
Brunkhorst, FM, Engel, C, Bloos, F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125–38.CrossRefGoogle ScholarPubMed
Béchir, M, Puhan, MA, Neff, SB, et al. Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury. Crit Care 2010; 14: R123.CrossRefGoogle Scholar
Perner, A, Haase, N, Guttormsen, AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med 2012; 367: 124–34.CrossRefGoogle Scholar
Myburgh, JA, Finfer, S, Bellomo, R, et al. Hydroxyethyl starch or saline for fluid on intraoperative oliguria resuscitation in intensive care. N Engl J Med 2012; 367: 1901–11.CrossRefGoogle ScholarPubMed
European Medicines Agency. Hydroxyethyl starch for infusion. http://www.ema.europa.eu/ Published on the Internet 06/03/2014.Google Scholar
Martin, C, Jacob, M, Vicaut, E, et al. Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology 2013; 118: 387–94.CrossRefGoogle ScholarPubMed
van der Linden, P, James, M, Mythen, M, Weiskopf, RB. Safety of modern starches used during surgery. Anesth Analg 2013; 116: 3548.CrossRefGoogle ScholarPubMed
Gilles, MA, Habicher, M, Jhanji, S, et al. Incidence of postoperative death and acute kidney injury associated with i.v. 6% hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth 2014; 112: 2534.CrossRefGoogle Scholar
Annane, D, Siami, S, Jaber, S, et al. Effects of fluid resuscitation with colloids vs. crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 2013; 310: 1809–17.CrossRefGoogle ScholarPubMed
Laxenaire, MC, Charpentier, C, Feldman, L. Anaphylactoid reactions to colloid plasma substitutes: incidence risk factor mechanisms. A French multicenter prospective study. Ann Fr Anesth Reanimat 1994; 13: 301–10.Google Scholar
Hahn, RG. Dextran70 and the blood loss during transurethral resection of the prostate. Acta Anaesthesiol Scand 1996; 40: 820–4.CrossRefGoogle Scholar
Bulger, EM, May, S, Kerby, J, et al. Out-of-hospital hypertonic resuscitation following traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg 2011; 253: 431–41.CrossRefGoogle Scholar
Bulger, EM, May, S, Brasel, KJ, et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA 2010; 304: 1455–64.CrossRefGoogle ScholarPubMed
Drobin, D, Hahn, RG. Kinetics of isotonic and hypertonic plasma volume expanders. Anesthesiology 2002; 96: 1371–40.CrossRefGoogle ScholarPubMed
Ljungström, K-G. Safety of dextran in relation to other colloids – ten years experience with hapten inhibition. Infusionsther Transfusionsmed 1993; 20: 206–10.Google ScholarPubMed
Velanovich, V. Crystalloid versus colloid fluid resuscitation: a meta-analysis of mortality. Surgery 1989; 105: 6571.Google ScholarPubMed
Schierhout, G, Roberts, I. Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 1998; 316: 961–4.CrossRefGoogle ScholarPubMed
Choi, PT, Yip, G, Quinonez, LG, Cook, DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 1999; 27: 200–10.CrossRefGoogle ScholarPubMed
Li, Y, He, R, Ying, X, Hahn, RG. Ringer's lactate, but not hydroxyethyl starch, prolongs the food intolerance time after major abdominal surgery; an open-labelled clinical trial. BMC Anesthesiol 2015; 15: 72.CrossRefGoogle Scholar
Varadhan, KK, Lobo, DN. Symposium 3: A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 2010; 69: 488–98.CrossRefGoogle Scholar
Brandstrup, B, Tonnesen, H, Beier-Holgersen, R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens. A randomized assessor-blinded multicenter trial. Ann Surg 2003; 238: 641–8.CrossRefGoogle ScholarPubMed
Arieff, AI. Fatal postoperative pulmonary edema. Pathogenesis and literature review. Chest 1999; 115: 1371–7.CrossRefGoogle ScholarPubMed
Hahn, RG. Why crystalloids will do the job in the operating room. Anaesthesiol Intensive Ther 2014; 46: 342–9.CrossRefGoogle ScholarPubMed
Bourke, DL, Smith, TC. Estimating allowable hemodilution. Anesthesiology 1974; 41: 609–12.CrossRefGoogle ScholarPubMed
Ewaldsson, C-A, Hahn, RG. Kinetics and extravascular retention of acetated Ringer's solution during isoflurane and propofol anesthesia for thyroid surgery. Anesthesiology 2005; 103: 460–9.CrossRefGoogle ScholarPubMed
Svensén, C, Hahn, RG. Volume kinetics of Ringer solution, dextran 70 and hypertonic saline in male volunteers. Anesthesiology 1997; 87: 20412.CrossRefGoogle ScholarPubMed

References

Sjöstrand, F, Edsberg, L, Hahn, RG. Volume kinetics of glucose solutions given by intravenous infusion. Br J Anaesth 2001; 87: 834–43.CrossRefGoogle ScholarPubMed
Sjöstrand, F, Hahn, RG. Volume kinetics of 2.5% glucose solution during laparoscopic cholecystectomy. Br J Anaesth 2004; 92: 485–92.CrossRefGoogle ScholarPubMed
Sieber, FE, Smith, DS, Traystman, RJ, Wollman, H. Glucose: a reevaluation of its intraoperative use (review). Anesthesiology 1987; 67: 7281.CrossRefGoogle Scholar
Doze, VA, White, PF. Effects of fluid therapy on serum glucose levels in fasted outpatients. Anesthesiology 1987; 66: 223–6.CrossRefGoogle ScholarPubMed
Hanazaki, K, Maeda, H, Okabayashi, T. Relationship between perioperative glycemic control and postoperative infections. World J Gastroenterol 2009; 15: 4122–5.CrossRefGoogle ScholarPubMed
Kwon, S, Thompson, R, Dellinger, P, et al. Importance of perioperative glycemic control in general surgery: a report from the Surgical Care and Outcomes Assessment program. Ann Surg 2013; 257: 814.CrossRefGoogle ScholarPubMed
Frisch, A, Hudson, M, Chandra, P, et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in non-cardiac surgery. Diabetes Care 2010; 33: 1783–8.CrossRefGoogle Scholar
Myers, RE, Yamaguchi, S. Nervous system effects of cardiac arrest in monkeys. Arch Neurol 1977; 34: 6574.CrossRefGoogle ScholarPubMed
Siemkowicz, E. The effect of glucose upon restitution after transient cerebral ischemia: a summary. Acta Neurol Scand 1985; 71: 417–27.Google ScholarPubMed
Sjöstrand, F, Hahn, RG. Validation of volume kinetic analysis of glucose 2.5% solution given by intravenous infusion. Br J Anaesth 2003; 90: 600–7.CrossRefGoogle ScholarPubMed
Hahn, RG, Ljunggren, S, Larsen, F, Nyström, T. A simple intravenous glucose tolerance test for assessment of insulin sensitivity. Theor Biol Med Model 2011; 8: 12.CrossRefGoogle ScholarPubMed
Hahn, RG, Nyström, T, Ljunggren, S. Plasma volume expansion from the intravenous glucose tolerance test before and after hip replacement surgery. Theor Biol Med Model 2013; 10: 48.CrossRefGoogle ScholarPubMed
Strandberg, P, Hahn, RG. Volume kinetics of glucose 2.5% solution and insulin resistance after abdominal hysterectomy. Br J Anaesth 2005; 94: 30–8.CrossRefGoogle ScholarPubMed
Ljunggren, S, Hahn, RG. Oral nutrition or water loading before hip replacement surgery; a randomized clinical trial. Trials 2012; 13: 97.CrossRefGoogle ScholarPubMed
Ljungqvist, O, Thorell, A, Gutniak, M, Häggmark, T, Efendic, S. Glucose infusion instead of preoperative fasting reduces postoperative insulin resistance. J Am Coll Surg 1994; 178: 329–36.Google ScholarPubMed
Ljunggren, S, Hahn, RG, Nyström, T. Insulin sensitivity and beta-cell function after carbohydrate oral loading in hip replacement surgery: a double-blind, randomised controlled clinical trial. Clin Nutr 2014; 33: 392–8.CrossRefGoogle ScholarPubMed
Svedjeholm, R, Håkanson, E, Vanhanen, I. Rationale for metabolic support with amino acids and glucose-insulin-potassium (GIK) in cardiac surgery. Ann Thorac Surg 1995; 59: S1522.CrossRefGoogle ScholarPubMed
Van der Berghe, G, Wouters, P, Weekers, F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345: 1359–67.Google Scholar
Lebowitz, G, Raizman, E, Brezis, M, et al. Effects of moderate intensity glycemic control after cardiac surgery. Ann Thorac Surg 2010; 90: 1825–32.Google Scholar
Gradinac, S, Coleman, GM, Taegtmeyer, H, Sweeney, MS, Frazier, OH. Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass grafting. Ann Thorac Surg 1989; 48: 484–9.CrossRefGoogle ScholarPubMed
Nygren, J, Soop, M, Thorell, A, et al. Preoperative oral carbohydrate administration reduces postoperative insulin resistance. Clin Nutr 1998; 17: 6571.CrossRefGoogle ScholarPubMed
Chung, HM, Kluge, R, Schrier, RH, Anderson, RJ. Postoperative hyponatremia: a prospective study. Arch Intern Med 1986; 146: 333–6.CrossRefGoogle ScholarPubMed
Häggström, J, Hedlund, M, Hahn, RG. Subacute hyponatraemia after transurethral resection of the prostate. Scand J Urol Nephrol 2001; 35: 250–1.Google ScholarPubMed
Arieff, AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 1986; 314: 1529–35.CrossRefGoogle ScholarPubMed
Ayus, JC, Wheeler, JM, Arieff, AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 1992; 117: 891–7.CrossRefGoogle ScholarPubMed
Berndtson, D, Olsson, J, Hahn, RG. Hypovolaemia after glucose-insulin infusions in volunteers. Clin Sci 2008; 115: 371–8.CrossRefGoogle ScholarPubMed
Philipson, EH, Kalham, SC, Riha, MM, Pimentel, R. Effects of maternal glucose infusion on fetal acid–base status in human pregnancy. Am J Obstet Gynecol 1987; 157: 866–73.CrossRefGoogle ScholarPubMed
Kenepp, NB, Shelley, WC, Gabbe, SG, et al. Neonatal hazards of maternal hydration with 5% dextrose before caesarean section. Lancet 1982; 1: 1150–2.Google ScholarPubMed
Anderson, P, Boréus, L, Gordon, E, et al. Use of mannitol during neurosurgery: interpatient variability in the plasma and CSF levels. Eur J Clin Pharmacol 1988; 35: 643–9.CrossRefGoogle ScholarPubMed

References

Wade, CE, Kramer, GC, Grady, JJ, Fabian, TC, Younes, RN. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery 1997; 122: 609–16.CrossRefGoogle ScholarPubMed
Wade, C, Grady, J, Kramer, G. Efficacy of hypertonic saline dextran (HSD) in patients with traumatic hypotension: meta-analysis of individual patient data. Acta Anaesthesiol Scand Suppl 1997; 110: 77–9.Google ScholarPubMed
Wade, CE, Grady, JJ, Kramer, GC, et al. Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 1997; 42(5 Suppl): S61–5.CrossRefGoogle ScholarPubMed
Bulger, EM, May, S, Kerby, JD, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg 2011; 253: 43141.CrossRefGoogle ScholarPubMed
Bulger, EM, May, S, Brasel, KJ, et al. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA 2010; 304: 1455–64.CrossRefGoogle ScholarPubMed
Cooper, DJ, Myles, PS, McDermott, FT, et al. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 2004; 291: 1350–7.CrossRefGoogle ScholarPubMed
Azoubel, G, Nascimento, B, Ferri, M, Rizoli, S. Operating room use of hypertonic solutions: a clinical review. Clinics 2008; 63: 833–40.CrossRefGoogle ScholarPubMed
McAlister, V, Burns, KE, Znajda, T, Church, B. Hypertonic saline for peri-operative fluid management. Cochrane Database Syst Rev 1: CD005576. doi:10.1002/14651858.CD005576.pub2.Google Scholar
Rizoli, SB, Rhind, SG, Shek, PN, et al. The immunomodulatory effects of hypertonic saline resuscitation in patients sustaining traumatic hemorrhagic shock: a randomized, controlled, double-blinded trial. Ann Surg 2006; 243: 4757.CrossRefGoogle ScholarPubMed
Bulger, EM, Cuschieri, J, Warner, K, Maier, RV. Hypertonic resuscitation modulates the inflammatory response in patients with traumatic hemorrhagic shock. Ann Surg 2007; 245: 635–41.CrossRefGoogle ScholarPubMed
Junger, WG, Coimbra, R, Liu, FC, et al. Hypertonic saline resuscitation: a tool to modulate immune function in trauma patients? Shock 1997; 8: 235–41.CrossRefGoogle ScholarPubMed
Junger, WG, Rhind, SG, Rizoli, SB, et al. Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock 2013; 40: 366–74.CrossRefGoogle ScholarPubMed
Junger, WG, Rhind, SG, Rizoli, SB, et al. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline – without dextran – inhibits neutrophil and endothelial cell activation. Shock 2012; 38: 341–50.CrossRefGoogle ScholarPubMed
Doyle, JA, Davis, DP, Hoyt, DB. The use of hypertonic saline in the treatment of traumatic brain injury. J Trauma 2001; 50: 367–83.CrossRefGoogle ScholarPubMed
Bulger, EM, Jurkovich, GJ, Nathens, AB, et al. Hypertonic resuscitation of hypovolemic shock after blunt trauma: a randomized controlled trial. Arch Surg 2008; 143: 139–48.CrossRefGoogle ScholarPubMed
Del Junco, DJ, Bulger, EM, Fox, EE, et al. Collider bias in trauma comparative effectiveness research: the stratification blues for systematic reviews. Injury 2015; 46: 775–80.CrossRefGoogle ScholarPubMed
Shackford, SR, Bourguignon, PR, Wald, SL, et al. Hypertonic saline resuscitation of patients with head injury: a prospective, randomized clinical trial. J Trauma 1998; 44: 50–8.CrossRefGoogle ScholarPubMed
Francony, G, Fauvage, B, Falcon, D, et al. Equimolar doses of mannitol and hypertonic saline in the treatment of increased intracranial pressure. Crit Care Med 2008; 36: 795800.CrossRefGoogle ScholarPubMed
Morrison, LJ, Rizoli, SB, Schwartz, B, et al. The Toronto prehospital hypertonic resuscitation-head injury and multi organ dysfunction trial (TOPHR HIT) – methods and data collection tools. Trials 2009; 10: 105.CrossRefGoogle ScholarPubMed
Bueno, R, Resende, AC, Melo, R, Neto, VA, Stolf, NA. Effects of hypertonic saline-dextran solution in cardiac valve surgery with cardiopulmonary bypass. Ann Thorac Surg 2004; 77: 604–11.CrossRefGoogle ScholarPubMed
Boldt, J, Zickmann, B, Ballesteros, M, et al. Cardiorespiratory responses to hypertonic saline solution in cardiac operations. Ann Thorac Surg 1991; 51: 610–15.CrossRefGoogle ScholarPubMed
Jarvela, K, Kaukinen, S. Hypertonic saline (7.5%) after coronary artery bypass grafting. Eur J Anaesthesiol 2001; 18: 100–7.CrossRefGoogle ScholarPubMed
Sirieix, D, Hongnat, JM, Delayance, S, et al. Comparison of the acute hemodynamic effects of hypertonic or colloid infusions immediately after mitral valve repair. Crit Care Med 1999; 27: 2159–65.CrossRefGoogle ScholarPubMed
Auler, JOJ, Pereira, MH, Gomide-Amaral, RV, et al. Hemodynamic effects of hypertonic sodium chloride during surgical treatment of aortic aneurysms. Surgery 1987; 101: 594601.Google ScholarPubMed
Shackford, SR, Sise, MJ, Fridlund, PH, et al. Hypertonic sodium lactate versus lactated ringer's solution for intravenous fluid therapy in operations on the abdominal aorta. Surgery 1983; 94(1): 4151.Google ScholarPubMed
Bruegger, D, Bauer, A, Rehm, M, et al. Effect of hypertonic saline dextran on acid–base balance in patients undergoing surgery of abdominal aortic aneurysm. Crit Care Med 2005; 33: 556–63.CrossRefGoogle ScholarPubMed
Filho, JA, Machado, MA, Nani, RS, et al. Hypertonic saline solution increases cerebral perfusion pressure during clinical orthotopic liver transplantation for fulminant hepatic failure: preliminary results. Clinics 2006; 61: 231–8.Google ScholarPubMed
Kolsen-Petersen, JA, Nielsen, JO, Tonnesen, EM. Effect of hypertonic saline infusion on postoperative cellular immune function: a randomized controlled clinical trial. Anesthesiology 2004; 100: 1108–18.CrossRefGoogle ScholarPubMed
Harvin, JA, Mims, MM, Duchesne, JC, et al. Chasing 100%: the use of hypertonic saline to improve early, primary fascial closure after damage control laparotomy. J Trauma Acute Care Surg 2013; 74: 426–30.CrossRefGoogle ScholarPubMed
Prabhakar, H, Singh, GP, Anand, V, Kalaivani, M. Mannitol versus hypertonic saline for brain relaxation in patients undergoing craniotomy. Cochrane Database Syst Rev 2014; 7: CD010026.Google Scholar
Thongrong, C, Kong, N, Govindarajan, B, et al. Current purpose and practice of hypertonic saline in neurosurgery: a review of the literature. World Neurosurg 2014; 82: 1307–18.CrossRefGoogle ScholarPubMed
Charalambous, MP, Swoboda, SM, Lipsett, PA. Perioperative hypertonic saline may reduce postoperative infections and lower mortality rates. Surg Infect (Larchmt) 2008; 9: 6774.CrossRefGoogle ScholarPubMed
Jarvela, K, Honkonen, SE, Jarvela, T, Koobi, T, Kaukinen, S. The comparison of hypertonic saline (7.5%) and normal saline (0.9%) for initial fluid administration before spinal anesthesia. Anesth Analg 2000; 91: 1461–5.CrossRefGoogle ScholarPubMed
Jarvela, K, Koobi, T, Kauppinen, P, Kaukinen, S. Effects of hypertonic 75 mg/ml (7.5%) saline on extracellular water volume when used for preloading before spinal anaesthesia. Acta Anaesthesiol Scand 2001; 45: 776–81.CrossRefGoogle ScholarPubMed
Durasnel, P, Cresci, L, Madougou, M, et al. Practice of spinal anesthesia in a developing country: usefulness of vascular preloading with a 7.5% hypertonic saline solution. Ann Fr Anesth Reanim 1999; 18: 631–5.Google Scholar
Holcroft, JW, Vassar, MJ, Turner, JE, Derlet, RW, Kramer, GC. 3% NaCl and 7.5% NaCl/dextran 70 in the resuscitation of severely injured patients. Ann Surg 1987; 206: 279–88.CrossRefGoogle ScholarPubMed
Holcroft, JW, Vassar, MJ, Perry, CA, Gannaway, WL, Kramer, GC. Use of a 7.5% NaCl/6% Dextran 70 solution in the resuscitation of injured patients in the emergency room. Prog Clin Biol Res 1989; 299: 331–8.Google ScholarPubMed
Vassar, MJ, Perry, CA, Gannaway, WL, Holcroft, JW. 7.5% sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 1991; 126: 1065–72.CrossRefGoogle ScholarPubMed
Mattox, KL, Maningas, PA, Moore, EE, et al. Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension. The U.S.A. Multicenter Trial. Ann Surg 1991; 213: 482–91.CrossRefGoogle ScholarPubMed
Younes, RN, Aun, F, Accioly, CQ, et al. Hypertonic solutions in the treatment of hypovolemic shock: a prospective, randomized study in patients admitted to the emergency room. Surgery 1992; 11: 380–5.Google Scholar
Vassar, MJ, Perry, CA, Holcroft, JW. Prehospital resuscitation of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl with added dextran: a controlled trial. J Trauma 1993a; 34: 622–32.CrossRefGoogle ScholarPubMed
Vassar, MJ, Fischer, RP, O´Brien, PE, et al. A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride. The effect of added dextran 70. The Multicenter Group for the Study of Hypertonic Saline in Trauma Patients. Arch Surg 1993b; 128: 1003–11.CrossRefGoogle ScholarPubMed
Younes, RN, Aun, F, Ching, CT, et al. Prognostic factors to predict outcome following the administration of hypertonic/hyperoncotic solution in hypovolemic patients. Shock 1997; 7: 7983.CrossRefGoogle ScholarPubMed

References

Vincent, JL, Baron, J-F, Reinhart, K, et al. Anemia and blood transfusion in critically ill patients. JAMA 2002; 288: 1499–507.CrossRefGoogle ScholarPubMed
Corwin, HL, Gettinger, A, Pearl, RG, et al. The CRIT study: anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med 2004; 32: 3952.CrossRefGoogle ScholarPubMed
Hopewell, S, Omar, O, Hyde, C, et al. A systematic review of the effect of red blood cell transfusion on mortality: evidence from large-scale observational studies published between 2006 and 2010. BMJ Open 2013; 3: e002154.CrossRefGoogle ScholarPubMed
Marik, PE, Corwin, HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med 2008; 36: 2667–74.CrossRefGoogle ScholarPubMed
Cata, JP, Wang, H, Gottumukkala, V, et al. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusion. Br J Anesth 2013; 110: 690701.CrossRefGoogle Scholar
Shander, A, Goodnough, LT. Why an alternative to blood transfusion? Crit Care Clin 2009; 25: 261–77.CrossRefGoogle ScholarPubMed
Habler, O, Messmer, K. The physiology of oxygen transport. Transfus Sci 1997; 18: 425–35.CrossRefGoogle ScholarPubMed
Schaller, RT, Schaller, J, Furman, EB. The advantages of hemodilution anesthesia for major liver resection in children. J Pediatr Surg 1984; 19: 705–10.CrossRefGoogle ScholarPubMed
Aly Hassan, A, Lochbuehler, H, Frey, L, Messmer, K. Global tissue oxygenation during normovolemic hemodilution in young children. Paediatr Anaesth 1997; 7: 197204.CrossRefGoogle Scholar
Fontana, JL, Welborn, L, Mongan, PD, et al. Oxygen consumption and cardiovascular function in children during profound intraoperative normovolemic hemodilution. Anesth Analg 1995; 80: 219–25.Google ScholarPubMed
Spahn, DR, Zollinger, A, Schlumpf, RB, et al. Hemodilution tolerance in elderly patients without known cardiac disease. Anesth Analg 1996; 82: 681–6.Google ScholarPubMed
Licker, M, Ellenberger, C, Sierra, C, et al. Cardiovascular response to acute normovolemic hemodilution in patients with coronary artery disease: assessment with transoesophageal echocardiography. Crit Care Med 2005; 33: 591–7.CrossRefGoogle Scholar
Spahn, DR, Schmid, ER, Seifert, B, Pasch, T. Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg 1996; 82: 687–94.Google ScholarPubMed
Cain, SM. Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 1977; 42: 228–34.CrossRefGoogle ScholarPubMed
van Woerkens, ECSM, Trouwborst, A, Van Lanschot, JJB. Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human? Anesth Analg 1992; 75: 818–21.CrossRefGoogle Scholar
Meier, J, Kemming, GI, Kisch-Wedel, H, et al. Hyperoxic ventilation reduces 6-hour mortality at the critical hemoglobin concentration. Anesthesiology 2004; 100: 70–6.CrossRefGoogle ScholarPubMed
Lieberman, JA, Weiskopf, RB, Kelley, SD, et al. Critical oxygen delivery in conscious humans is less than 7.3 ml O2 × kg−1 × min−1. Anesthesiology 2000; 92: 407–13.CrossRefGoogle ScholarPubMed
Paulone, ME, Edelstone, DI, Shedd, A. Effects of maternal anemia on uteroplacental and fetal oxidative metabolism in sheep. Am J Obstet Gynecol 1987; 156: 230–7.CrossRefGoogle ScholarPubMed
van Bommel, J, Trouwborst, A, Schwarte, L, et al. Intestinal and cerebral oxygenation during severe isovolemic hemodilution and subsequent hyperoxic ventilation in a pig model. Anesthesiology 2002; 97: 660–70.CrossRefGoogle Scholar
Habler, OP, Kleen, M, Hutter, J, et al. IV perflubron emulsion versus autologous transfusion in severe normovolemic anemia: effects on left ventricular perfusion and function. Res Exp Med 1998; 197: 301–18.Google ScholarPubMed
Kemming, GI, Meisner, FG, Kleen, M, et al. Hyperoxic ventilation at the critical hematocrit. Resuscitation 2003; 56: 289–97.CrossRefGoogle Scholar
Lauscher, P, Kertscho, H, Schmidt, O, et al. Determination of organ-specific anemia tolerance. Crit Care Med 2013; 41: 1037–45.CrossRefGoogle ScholarPubMed
Levy, PS, Kim, SJ, Eckel, PK, et al. Limit to cardiac compensation during acute normovolemic hemodilution: influence of coronary stenosis. Am J Physiol 1993; 265: H340–9.Google Scholar
Carson, JL, Duff, A, Poses, RM, et al. Effect of anemia and cardiovascular disease on surgical mortality and morbidity. Lancet 1996; 348: 1055–60.CrossRefGoogle ScholarPubMed
Johannes, T, Mik, EG, Nohe, B, et al. Acute decrease in renal microvascular pO2 during acute normovolemic hemodilution. Am J Physiol Renal Physiol 2007; 292: F796803.CrossRefGoogle ScholarPubMed
Habib, RH, Zacharias, A, Schwann, TA, et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med 2005; 33: 1749–56.CrossRefGoogle ScholarPubMed
Ranucci, M, Romitti, F, Isgro, G, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 2005; 80: 2213–20.CrossRefGoogle ScholarPubMed
Carson, JL, Duff, A, Berlin, JA, et al. Perioperative blood transfusion and postoperative mortality. JAMA 1998; 279: 199205.CrossRefGoogle ScholarPubMed
Carson, JL, Terrin, ML, Noveck, H, et al. Liberal or restrictive transfusion in high risk patients after hip surgery. N Engl J Med 2011; 29: 2453–62.Google Scholar
Hebert, PC, Wells, G, Blajchman, MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 1999; 340: 409–17.CrossRefGoogle ScholarPubMed
Carson, JL, Noveck, H, Berlin, JA, Gould, SA. Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion 2002; 42: 812–18.CrossRefGoogle ScholarPubMed
Viele, MK, Weiskopf, RB. What can we learn about the need for transfusion from patients who refuse blood? The experience with Jehovah's Witnesses. Transfusion 1994; 34: 396401.CrossRefGoogle ScholarPubMed
Shander, A, Javidroozi, M, Naqvi, S, et al. An update on mortality and morbidity in patients with very low postoperative hemoglobin levels who decline blood transfusion. Transfusion 2014; 54: 2688–95.CrossRefGoogle ScholarPubMed
Habler, O, Meier, J, Pape, A, et al. Perioperative anemia tolerance – mechanisms, influencing factors, limits. Anaesthesist 2006; 55: 1142–56.Google ScholarPubMed
Pape, A, Weber, CF, Laout, M, et al. Thoracic epidural anesthesia with ropivacain does not compromise the tolerance of acute normovolemic anemia in pigs. Anesthesiology 2014; 121: 765–72.CrossRefGoogle Scholar
Habler, O, Pape, A, Meier, J, Zwißler, B. Artificial oxygen carriers as an alternative to red blood cell transfusion. Anaesthesist 2005; 54: 741–54.Google ScholarPubMed
McLoughlin, TM, Fontana, JL, Alving, B, et al. Profound normovolemic hemodilution: hemostatic effects in patients and in a porcine model. Anesth Analg 1996; 83: 459–65.CrossRefGoogle ScholarPubMed
Hiippala, ST, Myllylä, GJ, Vahtera, EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 1995; 81: 360–5.Google ScholarPubMed
Fries, D, Velik-Salchner, C, Lindner, K, Innerhofer, P. Management of coagulation after multiple trauma. Anaesthesist 2005; 54: 137–44.Google ScholarPubMed
De Lorenzo, C, Calatzis, A, Welsch, U, Heindl, B. Fibrinogen concentrate reverses dilutional coagulopathy induced in vitro by saline but not by hydroxyethyl starch 6%. Anesth Analg 2006; 102: 1194–200.CrossRefGoogle Scholar
Abdel-Wahab, OI, Healy, B, Dzik, WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion 2006; 46: 1279–85.CrossRefGoogle ScholarPubMed
Grashey, R, Mathonia, P, Mutschler, W, Heindl, B. Perioperative coagulation management controlled by thrombelastography. Unfallchirurg 2007; 110: 259–63.Google ScholarPubMed
Kozek-Langenecker, SA, Afshari, A, Albaladejo, P, et al. Management of severe perioperative bleeding. Guidelines from the European Society of Anesthesiology. Eur J Anaesthesiol 2013; 30: 270–82.CrossRefGoogle ScholarPubMed
Franchini, M. The use of desmopressin as a hemostatic agent: a concise review. Am J Hematol 2007; 82: 731–5.CrossRefGoogle ScholarPubMed
Gödje, O, Gallmeier, U, Schelian, M, et al. Coagulation factor XIII reduces postoperative bleeding after coronary surgery with extracorporeal circulation. Thorac Cardiovasc Surg 2006; 54: 2633.CrossRefGoogle ScholarPubMed
Franchini, M, Franchi, M, Bergamini, V, et al. A critical review on the use of recombinant factor VIIa in life-threatening obstetric postpartum hemorrhage. Semin Thromb Hemost 2008; 34: 104–12.CrossRefGoogle ScholarPubMed
Zollinger, A, Hager, P, Singer, T, et al. Extreme hemodilution due to massive blood loss in tumor surgery. Anesthesiology 1997; 87: 985–7.CrossRefGoogle ScholarPubMed
Perez-de-Sá, V, Roscher, R, Cunha-Goncalves, D, et al. Mild hypothermia has minimal effects on the tolerance to severe progressive normovolemic anemia in swine. Anesthesiology 2002; 97: 1189–97.CrossRefGoogle ScholarPubMed
Pape, A, Meier, J, Kertscho, H, et al. Hyperoxic ventilation increases the tolerance of acute normovolemic anemia in anesthetized pigs. Crit Care Med 2006; 34: 1475–82.CrossRefGoogle ScholarPubMed
Meisner, FG, Kemming, GI, Habler, OP, et al. Diaspirin crosslinked hemoglobin enables extreme hemodilution beyond the critical hematocrit. Crit Care Med 2001; 29: 829–38.CrossRefGoogle ScholarPubMed
Meier, J, Pape, A, Loniewska, D, et al. Norepinephrine increases tolerance to acute anemia. Crit Care Med 2007; 35: 1484–92.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The fluids
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The fluids
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The fluids
  • Edited by Robert G. Hahn, Linköpings Universitet, Sweden
  • Book: Clinical Fluid Therapy in the Perioperative Setting
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316401972.003
Available formats
×