Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T08:50:50.248Z Has data issue: false hasContentIssue false

5 - Aerobic exercise for people with schizophrenic psychosis

Published online by Cambridge University Press:  05 February 2016

Linda C. W. Lam
Affiliation:
The Chinese University of Hong Kong
Michelle Riba
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acil, A. A., Dogan, S. & Dogan, O. 2008. The effects of physical exercises to mental state and quality of life in patients with schizophrenia. J Psychiatr Ment Health Nurs, 15, 808–15.CrossRefGoogle ScholarPubMed
Adriano, F., Caltagirone, C. & Spalletta, G. 2012. Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist, 18, 180200.CrossRefGoogle ScholarPubMed
Behere, R. V., Arasappa, R., Jagannathan, A., Varambally, S., Venkatasubramanian, G., Thirthalli, J., Subbakrishna, D. K., Nagendra, H. R. & Gangadhar, B. N. 2011. Effect of yoga therapy on facial emotion recognition deficits, symptoms and functioning in patients with schizophrenia. Acta psychiatrica Scandinavica, 123, 147–53.CrossRefGoogle ScholarPubMed
Bredin, S. S., Warburton, D. E. & Lang, D. J. 2013. The health benefits and challenges of exercise training in persons living with schizophrenia: a pilot study. Brain Sci, 3, 821–48.CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Mcauley, E., Erickson, K. I. & Scalf, P. 2004. Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci, 24, 914.CrossRefGoogle ScholarPubMed
Cooper, D., Barker, V., Radua, J., Fusar-Poli, P. & Lawrie, S. M. 2014. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res, 221, 6977.CrossRefGoogle ScholarPubMed
De Peri, L., Crescini, A., Deste, G., Fusar-Poli, P., Sacchetti, E. & Vita, A. 2012. Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Current pharmaceutical design, 18, 486–94.CrossRefGoogle ScholarPubMed
Dishman, R. K., Berthoud, H. R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., Gandevia, S. C., Gomez-Pinilla, F., Greenwood, B. N., Hillman, C. H., Kramer, A. F., Levin, B. E., Moran, T. H., Russo-Neustadt, A. A., Salamone, J. D., Van Hoomissen, J. D., Wade, C. E., York, D. A. & Zigmond, M. J. 2006. Neurobiology of exercise. Obesity (Silver Spring), 14, 345–56.CrossRefGoogle ScholarPubMed
Dodd, K. J., Duffy, S., Stewart, J. A., Impey, J. & Taylor, N. 2011. A small group aerobic exercise programme that reduces body weight is feasible in adults with severe chronic schizophrenia: a pilot study. Disabil Rehabil, 33, 1222–9.CrossRefGoogle ScholarPubMed
Duraiswamy, G., Thirthalli, J., Nagendra, H. R. & Gangadhar, B. N. 2007. Yoga therapy as an add-on treatment in the management of patients with schizophrenia—a randomized controlled trial. Acta psychiatrica Scandinavica, 116, 226–32.CrossRefGoogle ScholarPubMed
Ellison-Wright, I. & Bullmore, E. 2010. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophrenia research, 117, 1–12.Google Scholar
Falkai, P., Malchow, B., Wobrock, T., Gruber, O., Schmitt, A., Honer, W. G., Pajonk, F. G., Sun, F. & Cannon, T. D. 2013. The effect of aerobic exercise on cortical architecture in patients with chronic schizophrenia: a randomized controlled MRI study. Eur Arch Psychiatry Clin Neurosci, 263, 469–73.CrossRefGoogle ScholarPubMed
Falkai, P., Rossner, M. J., Schulze, T. G., Hasan, A., Brzózka, M. M., Malchow, B., Honer, W. G., Schmitt, A. 2015. Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry, 20(6), 671-6.CrossRefGoogle Scholar
Firth, J., Cotter, J., Elliott, R., French, P. & Yung, A. R. 2015. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med, 119.Google Scholar
Fleischhacker, W. W., Cetkovich-Bakmas, M., De Hert, M., Hennekens, C. H., Lambert, M., Leucht, S., Maj, M., Mcintyre, R. S., Naber, D., Newcomer, J. W., Olfson, M., Osby, U., Sartorius, N. & Lieberman, J. A. 2008. Comorbid somatic illnesses in patients with severe mental disorders: clinical, policy, and research challenges. J Clin Psychiatry, 69, 514–9.Google ScholarPubMed
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C. & Swain, D. P. 2011. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43, 1334–59.CrossRefGoogle ScholarPubMed
Goff, D. C., Hill, M. & Barch, D. 2011. The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Behav, 99, 245–53.CrossRefGoogle ScholarPubMed
Green, M. F. 1996. What are the functional consequences of neurocognitive deficits in schizophrenia? The American Journal of Psychiatry, 153, 321–30.Google ScholarPubMed
Haijma, S. V., Van Haren, N., Cahn, W., Koolschijn, P. C., Hulshoff Pol, H. E. & Kahn, R. S. 2012. Brain Volumes in Schizophrenia: a Meta-Analysis in Over 18 000 Subjects. Schizophrenia bulletin, 39(5):1129–38.Google Scholar
Hannan, A. J. 2014. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol, 40, 1325.CrossRefGoogle ScholarPubMed
Hasan, A., Falkai, P., Wobrock, T., Lieberman, J., Glenthoj, B., Gattaz, W. F., Thibaut, F., Moller, H. J. & WFSBP Task force on Treatment Guidelines for Schizophrenia 2013. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects. World J Biol Psychiatry, 14, 244.CrossRefGoogle ScholarPubMed
Hazlett, E. A., Buchsbaum, M. S., Haznedar, M. M., Newmark, R., Goldstein, K. E., Zelmanova, Y., Glanton, C. F., Torosjan, Y., New, A. S., Lo, J. N., Mitropoulou, V. & Siever, L. J. 2008. Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr Res, 101, 111–23.CrossRefGoogle ScholarPubMed
Heggelund, J., Morken, G., Helgerud, J., Nilsberg, G. E. & Hoff, J. 2012. Therapeutic effects of maximal strength training on walking efficiency in patients with schizophrenia—a pilot study. BMC Res Notes, 5, 344.CrossRefGoogle ScholarPubMed
Heggelund, J., Nilsberg, G. E., Hoff, J., Morken, G. & Helgerud, J. 2011. Effects of high aerobic intensity training in patients with schizophrenia: a controlled trial. Nord J Psychiatry, 65, 269–75.CrossRefGoogle ScholarPubMed
Heinrichs, R. W. & Zakzanis, K. K. 1998. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12, 426–45.CrossRefGoogle ScholarPubMed
Helmstaedter, C. & Durwen, H. F. 1990. The Verbal Learning and Retention Test. A useful and differentiated tool in evaluating verbal memory performance. Schweiz Arch Neurol Psychiatr, 141, 2130.Google Scholar
Hoff, A. L., Sakuma, M., Wieneke, M., Horon, R., Kushner, M. & Delisi, L. E. 1999. Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia. American Journal of Psychiatry, 156, 1336–41.CrossRefGoogle ScholarPubMed
Hoff, A. L., Svetina, C., Shields, G., Stewart, J. & Delisi, L. E. 2005. Ten year longitudinal study of neuropsychological functioning subsequent to a first episode of schizophrenia. Schizophrenia research, 78, 2734.CrossRefGoogle ScholarPubMed
Honea, R., Crow, T. J., Passingham, D. & Mackay, C. E. 2005. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry, 162, 2233–45.CrossRefGoogle ScholarPubMed
Hottenrott, K. & Neumann, G. 2010. Methods of endurance training. Schorndorf: Verlag Karl Hofmann.Google Scholar
Hulshoff Pol, H. E., Schnack, H. G., Bertens, M. G., Van Haren, N. E., Van Der Tweel, I., Staal, W. G., Baare, W. F. & Kahn, R. S. 2002. Volume changes in gray matter in patients with schizophrenia. American Journal of Psychiatry, 159, 244–50.CrossRefGoogle ScholarPubMed
Johansen-Berg, H. 2012. The future of functionally-related structural change assessment. Neuroimage, 62, 1293–8.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A. & Opler, L. A. 1987. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia bulletin, 13, 261–76.CrossRefGoogle ScholarPubMed
Kuipers, E., Yesufu-Udechuku, A., Taylor, C. & Kendall, T. 2014. Management of psychosis and schizophrenia in adults: summary of updated NICE guidance. BMJ, 348, g1173.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Tollefson, G. D., Charles, C., Zipursky, R., Sharma, T., Kahn, R. S., Keefe, R. S., Green, A. I., Gur, R. E., Mcevoy, J., Perkins, D., Hamer, R. M., Gu, H. & Tohen, M. 2005. Antipsychotic drug effects on brain morphology in first-episode psychosis. Archives of general psychiatry, 62, 361–70.CrossRefGoogle ScholarPubMed
Maass, A., Duzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., Lovden, M., Lindenberger, U., Backman, L., Braun-Dullaeus, R., Ahrens, D., Heinze, H. J., Muller, N. G. & Duzel, E. 2014. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry, 20(5), 585–93.Google Scholar
Malchow, B., Keeser, D., Keller, K., Hasan, A., Rauchmann, B. S., Kimura, H., Schneider-Axmann, T., Dechent, P., Gruber, O., Ertl-Wagner, B., Honer, W. G., Hillmer-Vogel, U., Schmitt, A., Wobrock, T., Niklas, A. & Falkai, P. 2015a. Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr Res., DOI: http://dx.doi.org/10.1016/j.schres.2015.01.005.CrossRefGoogle Scholar
Malchow, B., Keller-Varady, K., Hasan, A., Dörfler, S., Schneider-Axmann, T., Hillmer-Vogel, U., Honer, W. G., Schulze, T. G., Niklas, A., Wobrock, T., Schmitt, A. & Falkai, P. 2015b. Effects of endurance training combined with cognitive remediation on everyday functioning, symptoms and cognition in multi-episode schizophrenia patients. Schizophrenia Bulletin, 41(4), 847-58.CrossRefGoogle Scholar
Mane, A., Falcon, C., Mateos, J. J., Fernandez-Egea, E., Horga, G., Lomena, F., Bargallo, N., Prats-Galino, A., Bernardo, M. & Parellada, E. 2009. Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using VBM. Schizophr Res, 114, 136–43.CrossRefGoogle ScholarPubMed
Manjunath, R. B., Varambally, S., Thirthalli, J., Basavaraddi, I. V. & Gangadhar, B. N. 2013. Efficacy of yoga as an add-on treatment for in-patients with functional psychotic disorder. Indian J Psychiatry, 55, S374-8.Google ScholarPubMed
Marzolini, S., Jensen, B. & Melville, P. 2009. Feasibility and effects of a group-based resistance and aerobic exercise program for individuals with severe schizophrenia: a multidisciplinary approach. Mental Health and Physical Activity, 2, 2936.CrossRefGoogle Scholar
May, A. 2011. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci, 15, 475–82.CrossRefGoogle ScholarPubMed
Milner, B. 1971. Interhemispheric differences in the localization of psychological processes in man. Br Med Bull, 27, 272–7.CrossRefGoogle ScholarPubMed
Montgomery, S. A. & Asberg, M. 1979. A new depression scale designed to be sensitive to change. British Journal of Psychiatry, 134, 382–9.CrossRefGoogle ScholarPubMed
Murray, C. J. & Lopez, A. D. 1996. Evidence-based health policy—lessons from the Global Burden of Disease Study. Science, 274, 740–3.CrossRefGoogle ScholarPubMed
Oertel-Knochel, V., Mehler, P., Thiel, C., Steinbrecher, K., Malchow, B., Tesky, V., Ademmer, K., Prvulovic, D., Banzer, W., Zopf, Y., Schmitt, A. & Hansel, F. 2014. Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci, 264(7), 589604.CrossRefGoogle Scholar
Olabi, B., Ellison-Wright, I., Mcintosh, A. M., Wood, S. J., Bullmore, E. & Lawrie, S. M. 2011. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry, 70, 8896.CrossRefGoogle ScholarPubMed
Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., Kierer, A., Muller, S., Oest, M., Meyer, T., Backens, M., Schneider-Axmann, T., Thornton, A. E., Honer, W. G. & Falkai, P. 2010. Hippocampal plasticity in response to exercise in schizophrenia. Archives of general psychiatry, 67, 133–43.CrossRefGoogle ScholarPubMed
Park, J. K., Lee, S. J. & Kim, T. W. 2014. Treadmill exercise enhances NMDA receptor expression in schizophrenia mice. J Exerc Rehabil, 10, 1521.CrossRefGoogle ScholarPubMed
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., Mckhann, G. M., Sloan, R., Gage, F. H., Brown, T. R. & Small, S. A. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–43.Google Scholar
Raichlen, D. A. & Polk, J. D. 2013. Linking brains and brawn: exercise and the evolution of human neurobiology. Proc Biol Sci, 280, 20122250.Google ScholarPubMed
Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton, A. A., Dranovsky, A. & Hen, R. 2011. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472, 466–70.CrossRefGoogle ScholarPubMed
Scheewe, T. W., Backx, F. J., Takken, T., Jorg, F., Van Strater, A. C., Kroes, A. G., Kahn, R. S. & Cahn, W. 2013a. Exercise therapy improves mental and physical health in schizophrenia: a randomised controlled trial. Acta Psychiatr Scand, 127, 464–73.CrossRefGoogle ScholarPubMed
Scheewe, T. W., Van Haren, N. E., Sarkisyan, G., Schnack, H. G., Brouwer, R. M., De Glint, M., Hulshoff Pol, H. E., Backx, F. J., Kahn, R. S. & Cahn, W. 2013b. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol, 23, 675–85.CrossRefGoogle ScholarPubMed
Schmitt, A., Steyskal, C., Bernstein, H. G., Schneider-Axmann, T., Parlapani, E., Schaeffer, E. L., Gattaz, W. F., Bogerts, B., Schmitz, C. & Falkai, P. 2009. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta neuropathologica, 117, 395407.CrossRefGoogle ScholarPubMed
Silverstein, M. L., Harrow, M., Mavrolefteros, G. & Close, D. 1997. Neuropsychological dysfunction and clinical outcome in psychiatric disorders: a two-year follow-up study. J Nerv Ment Dis, 185, 722–9.CrossRefGoogle ScholarPubMed
Steen, R. G., Mull, C., Mcclure, R., Hamer, R. M. & Lieberman, J. A. 2006. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry, 188, 510–8.CrossRefGoogle ScholarPubMed
Tamminga, C. A., Stan, A. D. & Wagner, A. D. 2010. The hippocampal formation in schizophrenia. Am J Psychiatry, 167, 1178–93.CrossRefGoogle ScholarPubMed
Van Haren, N. E., Cahn, W., Hulshoff Pol, H. E. & Kahn, R. S. 2012. Confounders of excessive brain volume loss in schizophrenia. Neuroscience and biobehavioral reviews, 37(10 Pt 1), 2418–23.Google ScholarPubMed
Van Praag, H., Kempermann, G. & Gage, F. H. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience, 2, 266–70.CrossRefGoogle ScholarPubMed
Van Praag, H., Shubert, T., Zhao, C. & Gage, F. H. 2005. Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25, 8680–5.CrossRefGoogle ScholarPubMed
Vancampfort, D., Knapen, J., Probst, M., Scheewe, T., Remans, S. & De Hert, M. 2012. A systematic review of correlates of physical activity in patients with schizophrenia. Acta psychiatrica Scandinavica, 125, 352–62.CrossRefGoogle ScholarPubMed
Varambally, S., Gangadhar, B. N., Thirthalli, J., Jagannathan, A., Kumar, S., Venkatasubramanian, G., Muralidhar, D., Subbakrishna, D. K. & Nagendra, H. R. 2012. Therapeutic efficacy of add-on yogasana intervention in stabilized outpatient schizophrenia: randomized controlled comparison with exercise and waitlist. Indian J Psychiatry, 54, 227–32.CrossRefGoogle ScholarPubMed
Veit, C. T. & Ware, J. E. 1983. The structure of psychological distress and well-being in general populations. J Consult Clin Psychol, 51, 730742.CrossRefGoogle ScholarPubMed
Vita, A. & De Peri, L. 2007. Hippocampal and amygdala volume reductions in first-episode schizophrenia. British Journal of Psychiatry, 190, 271.CrossRefGoogle ScholarPubMed
Vita, A., De Peri, L., Deste, G. & Sacchetti, E. 2012. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry, 2, e190.CrossRefGoogle ScholarPubMed
Voss, M. W., Vivar, C., Kramer, A. F. & Van Praag, H. 2013. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci, 17, 525–44.CrossRefGoogle ScholarPubMed
Wolf, S. A., Melnik, A. & Kempermann, G. 2011. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun, 25, 971–80.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×