Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T02:17:00.707Z Has data issue: false hasContentIssue false

Chapter 6 - Local anesthetic systemic toxicity

from Section 1 - General considerations in regional anesthesia

Published online by Cambridge University Press:  05 October 2015

Michael R. Anderson
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Sylvia H. Wilson
Affiliation:
Medical University of South Carolina
Meg A. Rosenblatt
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dewaele, S. and Santos, A. C.. Toxicity of local anesthetics. In Hadzic, A. (ed.) Hadzic's Peripheral Nerve Blocks and Anatomy for Ultrasound-Guided Regional Anesthesia. New York, McGraw Hill Medical, 2012; pp. 119127.Google Scholar
Di Gregorio, G., Neal, J. M., Rosenquist, R. W., and Weinberg, G. L.. Clinical presentation of local anesthetic systemic toxicity: a review of published cases, 1979 to 2009. Reg Anesth Pain Med 2010; 35: 181187.CrossRefGoogle ScholarPubMed
Stoelting, R. K. and Hillier, S. C.. Local anesthetics. In Pharmacology & Physiology in Anesthetic Practice. New York, Lippincott Williams & Wilkins, 2006; pp. 179207.Google Scholar
Chiao, F. B., Chen, J., Lesser, J. B., et al. Single-cuff forearm tourniquet in intravenous regional anaesthesia results in less pain and fewer sedation requirements than upper arm tourniquet. Br J Anaesth 2013; 111: 271275.CrossRefGoogle ScholarPubMed
Arslanian, B., Mehrzad, R., Kramer, T., and Kim, D. C.. Forearm Bier block: a new regional anesthetic technique for upper extremity surgery. Ann Plast Surg 2014; 73: 156157.CrossRefGoogle Scholar
Barrington, M. J. and Kluger, R.. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockage. Reg Anesth Pain Med 2013; 38: 289297.CrossRefGoogle Scholar
Rosenberg, P. H., Veering, B. T., and Urmey, W. F.. Maximum recommended doses of local anesthetics: a multifactorial concept. Reg Anesth Pain Med 2004; 29: 564575.Google ScholarPubMed
Butterworth, J. F.. Models and mechanisms of local anesthetic cardiac toxicity: a review. Reg Anesth Pain Med 2010; 35: 167176.CrossRefGoogle ScholarPubMed
Zink, W. and Graf, B. M.. The toxicity of local anesthetics: the role of ropivacaine and levobupivacaine. Curr Opin Anaesthesiol 2008; 21: 645650.CrossRefGoogle Scholar
Butterworth, J., James, R. L., and Grimes, J.. Structure-affinity relationships and stereospecificity of several homologous series of local anesthetics for the beta2-adrenergic receptor. Anesth Analg 1997; 85: 336342.Google ScholarPubMed
Neal, J. M., Bernards, C. M., Butterworth, J. F., et al. ASRA practice advisory on local anesthetic systemic toxicity. Reg Anesth Pain Med 2010; 35: 152161.CrossRefGoogle ScholarPubMed
Orebaugh, S. L., Williams, B. A., Vallejo, M., and Kentor, M. L.. Adverse outcomes associated with stimulator-based peripheral nerve blocks with and without ultrasound visualization. Reg Anesth Pain Med 2009; 34: 251255.CrossRefGoogle ScholarPubMed
Zetlaoui, P. J., Labbe, J. P., and Benhamou, D.. Ultrasound guidance for axillary plexus block does not prevent intravascular injection. Anesthesiology 2008; 108: 557558.CrossRefGoogle Scholar
Weinberg, G. L.. Lipid emulsion infusion: resuscitation for local anesthetic and other drug overdose. Anesthesiology 2012; 117: 180187.CrossRefGoogle ScholarPubMed
Weinberg, G. L., VadeBoncouer, T., Ramaraju, G. A., et al. Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats. Anesthesiology 1998; 88: 10711075.CrossRefGoogle ScholarPubMed
Weinberg, G. L., Ripper, R., Murphy, P., et al. Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Reg Anesth Pain Med 2006; 31: 296303.CrossRefGoogle ScholarPubMed
Partownavid, P., Umar, S., Li, J., et al. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. Crit Care Med 2012; 40: 24312437.CrossRefGoogle ScholarPubMed
Rosenblatt, M. A., Abel, M., Fischer, G. W., et al. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology 2006; 105: 217218.CrossRefGoogle ScholarPubMed
Spence, A. G.. Lipid reversal of central nervous system symptoms of bupivacaine toxicity. Anesthesiology 2007; 107: 516517.CrossRefGoogle ScholarPubMed
Weiss, E., Jolly, C., Dumoulin, J. L., et al. Convulsions in 2 patients after bilateral ultrasound-guided transversus abdominis plane blocks for cesarean analgesia. Reg Anesth Pain Med 2014; 39: 248251.CrossRefGoogle ScholarPubMed
Agarwala, R., Ahmed, S. Z., and Wiegand, T. J.. Prolonged use of intravenous lipid emulsion in a severe tricyclic antidepressant overdose. J Med Toxicol. 2014; 10: 210214.CrossRefGoogle Scholar
Bartos, M. and Knudsen, K.. Use of intravenous lipid emulsion in the resuscitation of a patient with cardiovascular collapse after a severe overdose of quetiapine. Clin Toxicol 2013; 51: 501504.CrossRefGoogle ScholarPubMed
Fettiplace, M. R., Akpa, B. S., Ripper, R., et al. Resuscitation with lipid emulsion: dose-dependent recovery from cardiac pharmacotoxicity requires a cardiotonic effect. Anesthesiology 2014; 120: 915925.CrossRefGoogle ScholarPubMed
Cave, G., Harrop-Griffiths, W., Harvey, M., et al. AAGBI Safety Guideline: Management of severe local anaesthetic toxicity. Association of Anaesthetists of Great Britain and Ireland 2010. www.aagbi.org/sites/default/files/la_toxicity_2010_0.pdf [Accessed 15 April, 2015].Google Scholar
Marwick, P. C., Levin, A. I., and Coetzee, A. R.. Recurrence of cardiotoxicity after lipid rescue from bupivacaine-induced cardiac arrest. Anesth Analg 2009; 108: 13441346.CrossRefGoogle ScholarPubMed
Weinberg, G. L.. Treatment of local anesthetic systemic toxicity (LAST). Reg Anesth Pain Med 2010; 35: 188193.CrossRefGoogle ScholarPubMed
Di Gregorio, G., Schwartz, D., Ripper, R., et al. Lipid emulsion is superior to vasopressin in a rodent model of resuscitation from toxin-induced cardiac arrest. Crit Care Med 2009; 37: 993999.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×