Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T20:36:23.272Z Has data issue: false hasContentIssue false

Part V: - Quaternary Geomorphology

Published online by Cambridge University Press:  04 May 2017

Yehouda Enzel
Affiliation:
Hebrew University of Jerusalem
Ofer Bar-Yosef
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Quaternary of the Levant
Environments, Climate Change, and Humans
, pp. 391 - 538
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. Evolution of the Paran drainage basin and its relation to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Belton, D.X., Brown, R.W., Kohn, B.P., Fink, D. & Farley, K.A. 2004. Quantitative resolution of the debate over antiquity of the central Australian landscape: Implications for the tectonic and geomorphic stability of cratonic interiors. Earth and Planetary Science Letters 219: 2134.CrossRefGoogle Scholar
Bierman, P.R. 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution; a review from the geomorphic perspective. Journal of Geophysical Research, B, Solid Earth and Planets 99: 13885–96.CrossRefGoogle Scholar
Bierman, P.R. & Caffee, M. 2001. Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa. American Journal of Science 301: 326–58.CrossRefGoogle Scholar
Bierman, P.R. & Caffee, M. 2002. Cosmogenic exposure and erosion history of Australian bedrock landforms. Geological Society of America Bulletin 114: 787803.Google Scholar
Bierman, P. & Steig, E. 1996. Estimating rates of denudation and sediment transport using cosmogenic isotope abundances in sediment. Earth Surface Processes and Landforms 21: 125–39.Google Scholar
Bierman, P.R. & Turner, J. 1995. 10Be and 26Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of pre-Pleistocene landscapes. Quaternary Research 44: 378–82.Google Scholar
Binnie, S.A., Spotila, J.A., Phillips, W.M., Summerfield, M.A. & Fifield, K. 2003. The coexistence of steady and non-steady state topography in the San Bernardino Mountains, southern California, from cosmogenic 10Be and U–Th/He thermochronology. Geological Society of America, 2003 Annual Meeting. Abstracts with Programs 35: 63.Google Scholar
Bloom, A.L. 1998. Geomorphology: A Systematic Analysis of Late Cenozoic Landforms 3rd edn. Upper Saddle River: Prentice Hall.Google Scholar
Boaretto, E., Berkovits, D., Hass, M. et al. 2000. Dating of prehistoric caves sediments and flints using 10Be and 26Al in quartz from Tabun Cave (Israel): Progress report. Nuclear Instruments and Methods in Physics Research B 172: 767–71.Google Scholar
Boroda, R., Amit, R., Matmon, A. et al. 2011. Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev. Geomorphology 127: 4152.CrossRefGoogle Scholar
Boroda, R., Matmon, A., Amit, R. et al. 2014. Evolution and degradation of flat-top mesas in the hyper-arid Negev, Israel revealed from cosmogenic nuclides. Earth Surface Processes and Landforms 39: 1611–21.Google Scholar
Brown, E., Stallard, R.F., Larsen, M.C., Raisbeck, G.M. & Yiou, F. 1995. Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth and Planetary Science Letters 129: 193202.CrossRefGoogle Scholar
Chappell, J., Zheng, H. & Fifield, K. 2006. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: sediments from major rivers. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 7994.Google Scholar
Clapp, E., Bierman, P.R., Schick, A.P. et al. 2000. Sediment yield exceeds sediment production in arid region drainage basins. Geology 28: 995–8.2.0.CO;2>CrossRefGoogle Scholar
Duncan, C.C., Masek, J.G., Bierman, P., Larsen, J. & Caffee, M. 2001. Extraordinarily high denudation rates suggested by 10Be and 26Al analysis of river sediments, Bhutan Himalaya. Geological Society of America, Abstracts with Programs 33: A312.Google Scholar
Ewing, S.A., Sutter, B., Owen, J. et al. 2006. A threshold in soil formation at Earth's arid–hyperarid transition. Geochimica et Cosmochimica Acta 70: 5293–322.Google Scholar
Fogwill, C.J., Bentley, M.J., Sugden, D.E., Kerr, A.R. & Kubik, P.W. 2004. Cosmogenic nuclides 10Be and 26Al imply limited Antarctic ice sheet thickening and low erosion in the Shackleton Range for >1 m.y. Geology 32: 265–8.Google Scholar
Fruchter, N., Matmon, A., Avni, Y. & Fink, D. 2011. Revealing sediment sources, mixing, and transport during erosional crater evolution in the hyperarid Negev Desert, Israel. Geomorphology 134: 363–77.Google Scholar
Gran, S.E., Matmon, A., Bierman, P.R. et al. 2001. Determination of displacement history from a limestone normal fault scarp using cosmogenic 36Cl, northern Israel. Journal of Geophysical Research 106: 4247–64.Google Scholar
Granger, D.E., Kirchner, J.W. & Finkel, R. 1996. Spatially averaged long-term erosion rates measured from in-situ produced cosmogenic nuclides in alluvial sediment. Journal of Geology 104: 249–57.CrossRefGoogle Scholar
Greensfelder, L. 2002. Subtleties of sand reveal how mountains crumble. Science 295: 256–8.CrossRefGoogle ScholarPubMed
Guralnik, B., Matmon, A., Avni, Y. & Fink, D. 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290: 132–41.Google Scholar
Guralnik, B., Matmon, A., Avni, Y., Porat, N. & Fink, D. 2011. Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data. Quaternary Geochronology 6: 2232.Google Scholar
Hall, J.K. 1993. The GSI digital terrain model (DTM) project completed. Geological Survey of Israel Current Research 8: 4750.Google Scholar
Haviv, I. 2007. Mechanics, Morphology and Evolution of Vertical Knickpoints (Waterfalls) along the Bedrock Channels of the Dead Sea Western Tectonic Escarpment. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Haviv, I., Enzel, Y., Zilberman, E. et al. 2006. Climatic control on erosion rates of dolo-limestone hilltops. The Israel Geological Society Annual Meeting Abstracts (Bet-Shean), p. 54.Google Scholar
Kober, F., Ivy-Ochs, S., Schlunegger, F. et al. 2007. Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83: 97120.CrossRefGoogle Scholar
Lal, D. & Peters, B. 1967. Cosmic ray produced radioactivity on the Earth. In Handbuch der Physik, ed. Sitte, K. New York: Springer-Verlag, pp. 551612.Google Scholar
Matmon, A., Bierman, P., Larsen, J. et al. 2003a. Temporally and spatially uniform rates of erosion in the southern Appalachian Mountains. Geology 31: 155–8.2.0.CO;2>CrossRefGoogle Scholar
Matmon, A., Bierman, P., Larsen, J. et al. 2003b. Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee. American Journal of Science 303: 817–55.Google Scholar
Matmon, A., Shaked, Y., Porat, N. et al. 2005. Landscape development in an hyperarid sandstone environment along the margins of the Dead Sea fault: Implications from dated rock falls. Earth and Planetary Science Letters 240: 803–17.Google Scholar
Matmon, A., Simhai, O., Amit, R. et al. 2009. Where erosion ceases: Desert pavement coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geological Society of America Bulletin 121: 688–97.Google Scholar
Matmon, A., Mushkin, A., Enzel, Y., Grodek, T. & ASTER Team. 2013. Erosion of a granite inselberg, Gross Spitzkoppe, Namib Desert. Geomorphology 201: 52–9.CrossRefGoogle Scholar
Matmon, A., Quade, J., Placzek, C. et al. 2015. Seismic origin of the Atacama Desert boulder fields. Geomorphology 231: 2839.Google Scholar
Milliman, J.D. & Syvitski, P.M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology 100: 525–44.Google Scholar
Nishiizumi, K., Kohl, C.P., Arnold, J.R. et al. 1991. Cosmic ray produced 10Be and 26Al in Antarctic rocks; exposure and erosion history. Earth and Planetary Science Letters 104: 440–54.Google Scholar
Nishiizumi, K., Caffee, M.W., Finkel, R.C., Brimhall, G. & Mote, T. 2005. Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating. Earth and Planetary Science Letters 237: 499507.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W. et al. 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258: 403–13.Google Scholar
Placzek, C., Matmon, A., Granger, D.E., Quade, J. & Niedermann, S. 2010. Active landscape evolution in the hyperarid Atacama measured by multiple terrestrial cosmogenic nuclides. Earth and Planetary Science Letters 295: 1220.CrossRefGoogle Scholar
Placzek, C., Granger, D.E., Matmon, A., Quade, J. & Ryb, U. 2014. Geomorphic process rates in the central Atacama Desert, Chile: insights from cosmogenic nuclides and implications for the onset of hyperaridity. American Journal of Science 314: 14621512.Google Scholar
Portenga, E.W. & Bierman, P.R. 2011. Understanding Earth's eroding surface with 10Be. GSA Today 21(8): 410.Google Scholar
Rinat, Y., Matmon, A., ASTER Team et al. 2014. Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes, Quaternary Research 82: 281–95.Google Scholar
Ryb, U., Matmon, A., Erel, Y. et al. 2014a. Controls on denudation rates in tectonically stable Mediterranean carbonate terrain. Geological Society of America Bulletin 126: 553–68.Google Scholar
Ryb, U., Matmon, A., Erel, Y. et al. 2014b. Styles and rates of long-term denudation in carbonate terrains under a Mediterranean to hyper-arid climatic gradient. Earth and Planetary Science Letters 406: 142152.CrossRefGoogle Scholar
Safran, E.B., Bierman, P.R., Aalto, R. et al. 2005. Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms 30: 1007–24.CrossRefGoogle Scholar
Schaller, M., von Blanckenberg, F., Hovius, N. & Kubik, P.W. 2001. Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters 188: 441–58.Google Scholar
Small, E.E., Anderson, R.S. & Hancock, G.S. 1999. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27: 131–50.CrossRefGoogle Scholar
Summerfield, M.A., Stuart, F.M., Cockburn, H.A.P. et al. 1999. Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology 27(1–2): 113–29.Google Scholar
Vanacker, V., von Blanckenburg, F., Hewawasam, T. & Kubik, P.W. 2007. Constraining landscape development of the Sri Lankan escarpment with cosmogenic nuclides in river sediment. Earth and Planetary Science Letters 253: 402–14.CrossRefGoogle Scholar
Vance, D., Bickle, M., Ivy-Ochs, S. & Kubik, P.W. 2003. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters 206: 273–88.Google Scholar

References

Amit, R. & Gerson, R. 1986. The evolution of Holocene Reg (gravelly) soils in deserts – an example from the Dead Sea region. Catena 13: 5979.Google Scholar
Amit, R., Zilberman, E. & Nahamias, Y. 2000. Chronosequence of calcic soils in Nahal Besor area. Geological Survey of Israel Report GSI/2000, Basic Data Report No. 4, Israel Electric Corporation Ltd (IEC).Google Scholar
Amit, R., Enzel, Y. & Sharon, D. 2006. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonic blocking Mediterranean frontal systems. Geology 34: 509–12.Google Scholar
Ankori, E. 2014. Loads, Sources and Properties of the Suspended Sediments Entering into Lake Kinneret from the Jordan River. Unpublished M.A. thesis, University of Haifa [Hebrew, English abstract].Google Scholar
Arbel, S., Getker, M., Arazi, A. 2007. Flood and rainfall data during extreme events – a summary of the hydrological year 2004/2005. Soil Erosion Research Station, Special Publication Report M-82. State of Israel: Ministry of Agriculture [Hebrew].Google Scholar
Ashkar, L., Bookman, R., Almogi-Labin, A. & Ben-Avraham, Z. 2013. Geomorphology and sediment processes on the continental shelf and the submarine Akhziv canyon offshore north Galilee, eastern Mediterranean. European Geophysical Union (EGU) General Assembly, Vienna.Google Scholar
Avnaim-Katav, S., Almogi-Labin, A., Sandler, A. et al. 2012. The chrono-stratigraphy of a Quaternary sequence at the distal part of the Nile littoral cell, Haifa Bay, Israel. Journal of Quaternary Science 27: 675–86.CrossRefGoogle Scholar
Avni, Y. 1991. The geology, paleogeography and landscape evolution in the central Negev Highlands and the western Ramon structure. Geological Survey of Israel Report GSI/6/91 [Hebrew, English abstract].Google Scholar
Avni, Y. 1998. Paleogeography and tectonics of the central Negev and the Dead Sea Rift western margin during the late Neogene and Quaternary. Geological Survey of Israel Report GSI/24/98 [Hebrew, English abstract].Google Scholar
Avni, Y. & Zilberman, E. 2007. Landscape evolution triggered by neotectonics in the Sede Zin region, central Negev, Israel. Israel Journal of Earth Sciences 55: 189208.CrossRefGoogle Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. Evolution of the Paran drainage basin and its relations to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Avni, Y., Segev, A. & Ginat, H. 2013. Oligocene regional denudation of the northern Afar dome: Pre and syn-breakup stages of the Afro-Arabian Plate. Geological Society of America Bulletin 124: 1871.Google Scholar
Bar, O. 2009. The shaping of the continental margin of central Israel since the Late Eocene – tectonics, morphology and stratigraphy. Geological Survey of Israel Report GSI/32/2009 [Hebrew, English abstract].Google Scholar
Bar, O., Gvirtzman, Z., Feinstein, S. & Zilberman, E. 2013. Accelerated subsidence and sedimentation in the Levant Basin during the Late Tertiary and concurrent uplift of the Arabian Platform: Tectonic versus counteracting sedimentary loading effects. Tectonics 32: 117.CrossRefGoogle Scholar
Bar, O., Zilberman, E., Feinstein, S., Calvo, R. & Gvirtzman, Z. 2016. The uplift history of the Arabian Plateau as inferred from geomorphologic analysis of its northwestern edge. Tectonophysics 671: 923.Google Scholar
Bartov, Y., Stein, M., Enzel, Y., Agnon, A. & Reches, Z. 2002. Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea. Quaternary Research 57: 921.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Bartov, Y., Bookman, R. & Enzel, Y. 2006. Current depositional environments of the Dead Sea margins as indicators of past lake levels. In New Frontiers in Dead Sea Paleoenvironment Research, ed. Enzel, Y, Agnon, A & Stein, M, Geological Society of America Special Papers 401: 127–40.Google Scholar
Bartov, Y., Enzel, Y., Porat, N. & Stein, M. 2007. Sequence stratigraphy and lake-level reconstruction techniques: example from the Pleistocene–Holocene Dead Sea basin. Journal of Sedimentary Research 67: 680–92.Google Scholar
Bar-Yosef, O. & Tchernov, E. 1972. On the Palaeo-ecological History of the Site of ‘Ubeidiya. Jerusalem: Israel Academy of Sciences and Humanities.Google Scholar
Begin, Z.B. 1975. Structural and lithological constrains on stream profiles in the Dead Sea region. Journal of Geology 83: 97111.Google Scholar
Begin, Z.B. & Zilberman, E. 1997. The main stages and rate of the relief development in Israel. Geological Survey of Israel Report GSI/24/97 [Hebrew, English abstract].Google Scholar
Begin, Z.B., Ehrlich, A. & Nathan, Y. 1974. Lake Lisan; the Pleistocene precursor of the Dead Sea. Geological Survey of Israel Bulletin 63.Google Scholar
Begin, Z.B., Brocker, W., Buchbinder, B. et al. 1985. Dead Sea and Lake Lisan levels in the last 30,000 years. Geological Survey of Israel Report GSI/29/85.Google Scholar
Belitzky, S. 1996. Tectonic Morphology of the Lower Jordan Valley – An Active Continental Rift. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Belitzky, S. & Ben-Avraham, Z. 2004. The morphotectonic pattern of Lake Kinneret. Israel Journal of Earth Sciences 53: 121–30.CrossRefGoogle Scholar
Ben-Arie, Y. 1964. Tentative water balance estimate of Lisan Lake. Israel Journal of Earth Sciences 13: 42–7.Google Scholar
Ben Avraham, Z., ten Brink, U.S., Bell, R., Reznikov, M. 1996. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault. Journal of Geophysical Research 101: 533–44.Google Scholar
Ben-David, R. 2003. Changes in Desert Margin Environments during the Climate Changes of the late Quaternary: Interaction between Drainage Systems and the Accumulation of Dust (Loess and the Invasion of Dunes at the North-west Negev Desert. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Bender, F. 1968. Geologie von Jordanien. Berlin: Borntraeger.Google Scholar
Bender, F. 1974. Explanatory notes on the geological map of the Wadi Araba, Jordan. Scale 1:100,000, 3 sheets. Geologisches Jahrbuch 10: 162.Google Scholar
Ben-Zvi, A. & Sharoni, N. 1977. Assessment of the future flow to the Dead Sea. Israel Hydrology Service Report HYD/3/77 [Hebrew].Google Scholar
Bookman, R., Bartov, Y., Enzel, Y. & Stein, M. 2006. Quaternary lake levels in the Dead Sea basin: Two centuries of research. In New Frontiers in Dead Sea Paleoenvironment Research, ed. Enzel, Y, Agnon, A & Stein, M, Geological Society of America Special Papers 401: 155–70.Google Scholar
Bowman, D. 1974. River Terraces in the Dead Sea Area: Morphology and Genesis. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Bowman, D. 1997. Geomorphology of the Dead Sea western margins. In The Dead Sea – The Lake and its Setting, ed. Niemi, T.N., Ben-Avraham, Z. & Gat, J.R.. Oxford Monographs on Geology and Geophysics 36, pp. 217–25.Google Scholar
Buchbinder, B. & Zilberman, E. 1997. Sequence stratigraphy of Miocene–Pliocene carbonate-siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): Effects of eustasy and tectonics. Sedimentary Geology 112: 732.Google Scholar
Buchbinder, B., Calvo, R. & Siman-Tov, R. 2005. The Oligocene in Israel: a marine realm with intermittent denudation accompanied by mass-flow deposition. Israel Journal of Earth Sciences 54: 6385.Google Scholar
Buchbinder, B., Derin, B. & Lipson, S. 1981. The Oligo-Miocene clastic sequence in the Ashdod area and its bearing on the geological history of the coastal plain. Geological Survey of Israel Current Research 1981: 4752.Google Scholar
Buchbinder, B., Derin, B. & Lipson, S. 1982. Stratigraphy and sediment-ology of the Oligocene-Miocene clastic and calcareous sequences in the Ashdod embayment. Geological Survey of Israel Report S/1/82.Google Scholar
Buchbinder, B., Siman Tov, R., Eshet, Y., Grossowicz, L. & Almogi-Labin, A. 2000. Stratigraphic and environmental analysis of the Nir-1 well, offshore Israel. Geological Survey of Israel Report GSI/33/02.Google Scholar
Calvo, R. 2002. Stratigraphy and petrology of the Hazeva Formation in the Arava and Negev: Implications for the development of sedimentary basins and morphotectonics of the Dead Sea Rift Valley. Geological Survey of Israel Report GSI/22/02.Google Scholar
Cohen-Seffer, R., Greenbaum, N., Sivan, D. et al. 2005. Late Pleistocene–Holocene marsh episodes along the Carmel Coast, Israel. Quaternary International 140141: 103–20.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, S. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates and sources: An example from the Negev desert, Israel. Journal of Geophysical Research 114. doi: 10.1029/2008JF001083.Google Scholar
Davis, M. 2007. The response of the lower Nahal Zin to base-level changes and to the local bathymetry of Lake Lisan in the late Pleistocene and Holocene and landscape evolution of the northern Arava valley. Geological Survey of Israel Report GSI/07/2007 [Hebrew, English abstract].Google Scholar
Davis, M., Matmon, A., Ron, H., Fink, D. & Niedermann, S. 2011. Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel: Implications for cosmogenic burial dating. Earth and Planetary Science Letters 305: 317–27.CrossRefGoogle Scholar
Davis, M., Matmon, A., Zilberman, E. et al. 2009. Bathymetry of late Pleistocene Lake Lisan determines stream incision in response to climatically induced lake level fall. Geomorphology 106: 352–62.Google Scholar
Derin, B. 1976. Haruvit 1 and Haruvit 3. Tel Aviv. Israel Institute of Petroleum and Energy Report 9/10.Google Scholar
Druckman, Y., Buchbinder, B., Martinoti, G., Siman Tov, R. & Aharon, P. 1995. The buried Afiq canyon (eastern Mediterranean, Israel): A case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology 123: 167–85.Google Scholar
Ellenblum, R., Marco, S., Agnon, A., Rockwell, T. & Boas, A. 1998. Crusader castle torn apart by earthquake at dawn, 22 May 1202. Geology 26: 303–6.Google Scholar
Engelmann, A., Neber, A., Frechen, M., Boenigk, W. & Ronen, A. 2001. Luminescence chronology of upper Pleistocene and Holocene aeolianites from Netanya South – Sharon coastal plain, Israel. Quaternary Science Review 20: 799804.CrossRefGoogle Scholar
Enzel, Y. 1984. The Geomorphology of the Lower Nahal Sekher Basin. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Enzel, Y., Agnon, A. & Stein, M. (ed.) 2006. New Frontiers in Dead Sea Paleoenvironmental Research. GSA Special Paper 401. Geological Society of America.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Enzel, Y., Shaliv, G. & Kaplan, M. 1988. The tectonic deformation along the Zin Lineament. Shivta Site Investigations, Preliminary Report 1988 – Appendix 2.5E: Late Cenozoic Geology in the Site Area. Israel Electric Corporation Ltd (IEC).Google Scholar
EXACT 2004. Over Review of the Middle East Water Resources. Jordanian Ministry of Water and Irrigation, Palestinian Water Authority, Israel Hydrological Service; compiled by the US Geological Survey, Middle East Water Data Banks Project.Google Scholar
Frechen, M., Dermann, B., Boenigek, W. & Ronen, A. 2001. Luminescence chronology of aeolianites from the section at Givat Olga – coastal plain of Israel. Quaternary Science Reviews 20: 805–9.CrossRefGoogle Scholar
Frechen, M., Neber, A., Dermann, B. et al. 2002. Chronostratigraphy of aeolianites from the Sharon coastal plain of Israel. Quaternary International 89: 3144.CrossRefGoogle Scholar
Galili, U. 2005. Floods in the Negev and Arava Following the 29/10/2005 Rainstorm. State of Israel: Israel Hydrological Service, Ministry of Infrastructure [Hebrew].Google Scholar
Garfinkel, Y. & Nadel, D. 1989. The flint assemblage from Gesher and its implications for distinguishing early Neolithic cultures in the southern Levant. Paléorient 15: 139–51.CrossRefGoogle Scholar
Garfunkel, Z. & Ben-Avraham, Z. 1996. The structure of the Dead Sea basin. Tectonophysics 266: 155–76.Google Scholar
Garfunkel, Z. & Horowitz, A. 1966. The upper Tertiary and Quaternary morphology of the Negev. Israel Journal of Earth Sciences 15: 101–17.Google Scholar
Garfunkel, Z., Zak, I. & Freund, R. 1981. Active faulting in the Dead Sea rift. Tectonophysics 80: 126.Google Scholar
Gavish, E. & Friedman, G.M. 1969. Progressive diagenesis in Quaternary to Late Tertiary carbonate sediments: Sequence and time scale. Journal of Sedimentary Petrology 39: 9801006.Google Scholar
Gerson, R. & Amit, R. 1987. Rates and modes of dust accretion and depos-ition in arid region, the Negev, Israel. In Desert Sediments: Ancient and Modern, ed. Frostick, L. & Reid, I., Geological Society Special Publication 35. Oxford: Blackwell, pp. 157–69.Google Scholar
Ginat, H., Enzel, Y. & Avni, Y. 1998. Translocated Plio-Pleistocene drainage systems along the Arava fault of the Dead Sea Transform. Tectonophysics 284: 151–60.Google Scholar
Ginat, H., Zilberman, E. & Avni, Y. 2000. Tectonic and paleogeographic significance of the Edom River, a Pliocene stream that crossed the Dead Sea Rift valley. Israel Journal of Earth Sciences 49: 159–77.Google Scholar
Gluck, D. 2001. Landscape Evolution in the Southwestern Dead Sea Basin, and Paleoseismic Study of Tectonic Activity in the Late Pleistocene and Holocene along the Southwestern Marginal Fault of the Dead Sea Basin and the Carmel Fault. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Goldberg, P. 1981. Late Quaternary stratigraphy of Israel: An eclectic view. In CNRS Colloque no. 598 – Prehistoire du Levant, ed. Cauvin, J & Sanlaville, P. CNRS, pp. 5566.Google Scholar
Goldberg, P. 1986. Late Quaternary environmental history of the southern Levant. Geoarcheology 1: 193217.Google Scholar
Goren-Inbar, N. & Belitzky, S. 1989. Structural position of the Pleistocene Gesher Benot-Ya'aqov site in the Dead Sea Rift zone. Quaternary Research 31: 371–6.CrossRefGoogle Scholar
Goring-Morris, N. & Goldberg, P. 1990. Late Quaternary dune incursion in the southern Levant: Archaeology, chronology and paleoenvironments. Quaternary International 5: 115–37.Google Scholar
Greenbaum, N. 1996. Paleofloods in the Large Ephemeral Stream Systems of the Central Negev. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Greenbaum, N. & Ben-David, R. 2001. Geological and Geomorphological Mapping in the Shivta-Rogem Area. Basic Data Report No. 3. Israel Electric Corporation Ltd. (IEC).Google Scholar
Greenbaum, N. & Schwartz, U. 2006. The 29/10/2004 rainstorm and floods in the northeastern Negev and the Dead Sea area. Beer Sheva, Israel: Dead Sea Works Ltd.Google Scholar
Greenbaum, N., Ben-Zvi, A., Haviv, I. & Enzel, Y. 2006. The hydrology and paleohydrology of the Dead Sea tributaries. In New Frontiers in Dead Sea Paleoenvironmental Research, ed. Enzel, Y, Agnon, A & Stein, M. Geological Society of America Special Papers 401: 6393.Google Scholar
Greenbaum, N., Ekshtain, R., Malinsky-Buller, A., Porat, N. & Hovers, E. 2014. The stratigraphy and paleogeography of the Middle Paleolithic open-air site of ‘Ein Qashish, northern Israel. Quaternary Inter-national 331: 203–15.Google Scholar
Greenbaum, N., Enzel, Y. & Schick, A.P. 2001. Magnitude and frequency of paleofloods and historical floods in the Arava Basin, Negev Desert, Israel. Israel Journal of Earth Sciences 50: 159–86.Google Scholar
Greenbaum, N., Schwartz, U. & Bergman, N. 2010. Extreme floods and short-term hydroclimatological fluctuations in the hyper-arid Dead Sea region, Israel. Global and Planetary Change 70: 125–37.Google Scholar
Greenbaum, N., Schick, A.P. & Baker, V.R. 2000. The paleoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel. Earth Surface Processes and Landforms 25: 951–71.Google Scholar
Guralnik, B., Matmon, A., Avni, Y. & Fink, D. 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290: 132–41.Google Scholar
Guralnik, B., Matmon, A., Porat, N. & Fink, D. 2011. Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data. Quaternary Geochronology 6: 2232.Google Scholar
Gvirtzman, G. 1970. The Saqiye Group (Late Eocene to Early Pleistocene) in the Coastal Plain and the Hashefela regions. Geological Survey of Israel Report D/5/67.Google Scholar
Gvirtzman, G. 1979a. Possible correlation between the Kurkar–Hamra cycles of the Quaternary of the coastal plain and the oceanic–climatic cycles, based on oxygen isotopes. Abstracts of Israel Pleistocene Research Society Annual Meeting, Jerusalem, 1215 (Hebrew and English).Google Scholar
Gvirtzman, G. 1979b. The geology and geomorphology of Biq'at Beer Sheva. In The Beer Sheva Book, Ben-Gurion University, Beer Sheva and Sede Boker, ed. Grados, Y, Stern, E & Rivlin, G. Beer Sheva, pp. 333–54 [Hebrew].Google Scholar
Gvirtzman, G. & Buchbinder, B. 1969. Outcrops of Neogene formations in the central and southern coastal plain, Hashephela and Be'er Sheva regions, Israel. Israel Geological Survey Bulletin 50.Google Scholar
Gvirtzman, G. & Buchbinder, B. 1978. The Late Tertiary of the Coastal Plain and continental shelf of Israel and its bearing on the history of the eastern Mediterranean. In Initial Reports of the Deep Sea Drilling Project, Leg 42A, vol. 42, pt. 2. ed. Ross, D.H. & Neprochnov, Y.P.. Washington: U.S. Government Printing Office, pp. 1195–222.Google Scholar
Gvirtzman, G., Martinotti, G.M. & Moshkovitz, S. 1997. Stratigraphy of the Plio-Pleistocene sequence of the Mediterranean coastal belt of Israel and its implication for the evolution of the Nile cone, Israel. In The Pleistocene Boundary and the Beginning of the Quaternary, ed. Van Couvering, J.A., World and Regional Geology 9. New York: Cambridge University Press, pp. 156–68.Google Scholar
Gvirtzman, G., Shachnai, E., Bakler, N. & Ilani, S. 1984. Stratigraphy of the Kurkar Group (Quaternary) of the Coastal plain of Israel. Geological Survey of Israel Current Research 1983–84: 7082.Google Scholar
Harash, A. & Bar, Y. 1988. Faults, landslides and seismic hazards along the Jordan River gorge. Engineering Geology 25: 115.Google Scholar
Harrison, J.B.J. & Yair, A. 1998. Late Pleistocene aeolian and fluvial interactions in the development of the Nizzana dune field, Negev desert, Israel. Sedimentology 45: 507–18.Google Scholar
Hassan, M.A. & Klein, M. 2002. Fluvial adjustment of the lower Jordan River to drop in the Dead Sea level. Geomorphology 45: 21–3.Google Scholar
Haviv, I., Enzel, Y., Whipple, K.X. et al. 2006. Amplified erosion above waterfalls and over steepened bedrock reaches. Journal of Geophysical Research 111: F04004.Google Scholar
Hazan, N., Stein, M., Agnon, A. et al. 2005. The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63: 6077.Google Scholar
Heimann, A. 1990. The development of the Dead Sea Transform and its margins in northern Israel during the Pliocene and Pleistocene. Geological Survey of Israel Report GSI/28/90: 1–83 [Hebrew, English abstract].Google Scholar
Heimann, A. & Braun, D. 2000. Quaternary stratigraphy of the Kinnarot Basin, Dead Sea Transform, northeastern Israel. Israel Journal of Earth Sciences 49: 3144.Google Scholar
Heimann, A. & Steinitz, G. 1989. 40Ar/39Ar total gas ages of basalt from Notera 3 well, Hula Valley, Dead Sea Rift: Stratigraphic and tectonic implications. Israel Journal of Earth Sciences 38: 173–84.Google Scholar
Heimann, A., Zilberman, E., Amit, R. & Frieslander, U. 2011. Northward migration of the southern diagonal fault of the Hula pull-apart basin, Dead Sea Transform, northern Israel. Tectonophysics 476: 496511.Google Scholar
Horowitz, A. 1973. Development of the Hula Basin, Israel. Israel Journal of Earth Sciences 22: 107–39.Google Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York: Academic Press.Google Scholar
Horowitz, A. 2001. The Jordan Rift Valley. New York: Taylor & Francis.Google Scholar
Hurvitz, S., Garfunkel, Z., Ben Gai, Y. et al. 2002. The tectonic framework of a complex pull-apart basin: Seismic reflection observations in the Sea of Galilee, Dead Sea Transform. Tectonophysics 359: 289306.Google Scholar
Inbar, M. 1987. Effects of a high magnitude flood in a Mediterranean climate: A case study in the Jordan River basin. In Catastrophic Flooding. The Binghampton Symposium in Geomorphology, ed. Mayer, L.A. & Nash, D., International Series 18. Winchester: Allen & Unwin, Inc., pp. 333–54.Google Scholar
Inbar, M. & Even-Nir, M. 1989. Landslides in the upper Jordan River gorge. Pirineos 134: 2340.Google Scholar
Israel Hydrological Service 2012. Surface Water in Israel.Google Scholar
Issar, A. 1968. Geology of the central coastal plain of Israel. Israel Journal of Earth Sciences 17: 1629.Google Scholar
Jacoby, Y., Grodek, T., Enzel, Y. et al. 2008. Late Holocene upper bounds of flood magnitudes and twentieth century large floods in the ungauged, hyperarid alluvial Nahal Arava, Israel. Geomorphology 95: 274–94.Google Scholar
Kafri, U. 2002. Neogene to Early Quaternary drainage systems in the Lower Galilee, Israel and their relationship to young tectonics. Israel Journal of Earth Sciences 51: 79102.Google Scholar
Kafri, U. & Heimann, A. 1994. Reversal of the paleodrainage system in the Sea of Galilee area as an indicator of the formation and timing of the Dead Sea Rift Valley base level in northern Israel. Paleogeography, Paleoclimatology, Paleoecology 109: 101–9.Google Scholar
Kafri, U. & Horowitz, A. 2003. Possible northward drainage of the Pliocene Hula valley. Israel Journal of Earth Sciences 52: 185–90Google Scholar
Karmon, J. 1956. The Northern Hula Valley. Jerusalem: Magnes Publication.Google Scholar
Klein, M. 1985. The adjustment of the meandering pattern of the lower Jordan River to change in water discharge. Earth Surface Processes and Landforms 10: 525–31.Google Scholar
Klein, M. 1990. Dead Sea level changes. Israel Journal of Earth Sciences 39: 4950.Google Scholar
Klein, M. 1998. Water balance of the upper Jordan River basin. Water International 23: 244–8.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the upper Pleistocene along the desert boundary, southern Israel. Paleogeography, Paleoclimatology, Paleoecology 53: 213–29.Google Scholar
Magaritz, M. & Enzel, Y. 1990. Standing-water deposits as indicators of Late Quaternary dune migration in the northwestern Negev, Israel. Climatic Change 16: 307–18.Google Scholar
Marco, S., Rockwell, K.T., Heimann, A., Frieslander, U. & Agnon, A. 2005. Late Holocene slip of the Dead Sea Transform revealed in 3D palaeoseismic trenches in the Jordan gorge segment. Earth and Planetary Science Letters 234: 189205.Google Scholar
Matmon, A., Enzel, Y., Zilberman, E. & Heimann, A. 1999. Late Pliocene to Pleistocene reversal of drainage systems in northern Israel: Tectonic implications. Geomorphology 28: 4359.Google Scholar
Meiler, M., Shulman, H., Flexer, A., Reshef, M. & Yelin-Dror, A. 2008. A seismic interpretation of the Bet She'an Basin. Israel Journal of Earth Sciences 57: 119.Google Scholar
Meirovich, L., Ben-Zvi, A., Shentsis, I. & Yanovich, E. 1998. Frequency and magnitude of runoff events in the arid Negev of Israel. Journal of Hydrology 207: 204–19.Google Scholar
Menashe, R. 2003. The Stratigraphy and Paleogeography of Tel-Sharuhen Section, Northwestern Negev, Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Michelson, H. 1973. ‘Yarmouk Basalt’ and ‘Raqqad Basalt’ – two volcanic phases, which flowed through pre-existing gorges. Israel Journal of Earth Sciences 22: 51–8.Google Scholar
Mor, D. 1993. A time-table for the Levant volcanic province, according to K–Ar dating in the Golan Heights. Israel Journal of Earth Sciences 16: 223–4.Google Scholar
Neev, D. 1960. A pre-Neogene erosion channel in the southern Coastal Plain of Israel. Geological Survey of Israel Bulletin 25.Google Scholar
Neev, D. & Emery, K.O. 1967. The Dead Sea: Depositional processes and environments of evaporation. Geological Survey of Israel Bulletin 41.Google Scholar
Neev, D. & Hall, J. 1979. Geophysical investigations in the Dead Sea. Sedi-mentary Geology 23: 209–38.Google Scholar
Nir, D. 1989. Geomorphology of Israel. Jerusalem: Academon, Hebrew University [Hebrew].Google Scholar
Nir, D. & Ben-Arie, Y. 1965. Relicts of an intermediate terrace between the Ghor and the Zor in the central Jordan Valley, Lake Tiberias–Kefar Rupin, Israel. Israel Journal of Earth Science 14: 18.Google Scholar
Nir, D. & Yair, A. 1960. Geomorphological Studies in the Safed area. Studies in the Geography of Israel, Vol. 2. Jerusalem: Israel Exploration Society, pp. 183209.Google Scholar
Picard, L. 1943. Structure and Evolution of Palestine with Comparative Notes on Neighboring Countries. Jerusalem: Hebrew University of Jerusalem, Geology Department Bulletin 4.Google Scholar
Picard, L. 1951. Geomorphogeny of Israel, Part 1: The Negev. Bulletin of the Research Council of Israel 8G: 130.Google Scholar
Picard, L. 1965. The geological evolution of the Quaternary in the central-northern Jordan graben, Israel. Geological Society of America Special Papers 84: 337–66.Google Scholar
Picard, L. & Baida, U. 1966. Stratigraphic position of the 'Ubeidiya Formation. Proceedings of Israeli Academy of Sciences and Humanities 4: 116.Google Scholar
Polak, S. 1988. Maximal peak discharges following the rainstorm of the 17–18/10/1987. Jerusalem, Israel: Israel Hydrological Service Report HYD/2/1988 [Hebrew].Google Scholar
Politi, M. & Croker, P.F. 1978. A Reassessment of the El-Arish Neogene Channel (Haruvit Prospect). Report 78/23. Tel Aviv: Oil Exploration (investments) Ltd.Google Scholar
Porat, N., Amit, R., Enzel, Y. et al. 2010. Abandonment ages of alluvial landforms in the hyperarid Negev determined by luminescence dating. Journal of Arid Environment 74: 861–9.Google Scholar
Porat, N., Wintle, A.G. & Ritte, M. 2004. Mode and timing of Kurkar and Hamra formation, central coastal plain, Israel. Israel Journal of Earth Sciences 53: 1326.Google Scholar
Roskin, J., Katra, I., Agha, N. et al. 2014. Rapid anthropogenic response to short-term aeolian–fluvial palaeoenvironmental changes during the late Pleistocene–Holocene transition in the northern Negev desert, Israel. Quaternary Science Reviews 99: 176–92.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G. & Zander, A.M. 2011a. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev desert (Israel). Quaternary Science Reviews 30: 1649–74.Google Scholar
Roskin, J., Tsoar, H., Porat, N. & Blumberg, D.G. 2011b. Paleoclimate interpretations of late Pleistocene vegetated linear dune mobilization episodes; evidence from the northwestern Negev Desert, Israel. Quaternary Science Reviews 30: 3364–80.Google Scholar
Rozenbaum, A. 2009. Tufa Sediments in the Biqa't Bet-Shean – Tectonic and Paleogeographic Aspects. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Salameh, E. 1990. Jordan's water: Development and future prospects. American Arab Affairs 33: 6977.Google Scholar
Salameh, E. 1993. The Jordan River System. In Jordan's Water Resources and the Future Potential, ed. Graber, A & Salameh, E. Amman: Friedrich Elbert Stiftung, pp. 99105.Google Scholar
Schattner, I. 1962. The Lower Jordan Valley. Scripta Heirosolymitana XI.Google Scholar
Schulman, N. 1962. The Geology of the Central Jordan Valley. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Shaliv, G. 1991. Stages in the tectonic and volcanic history of Neogen continental basins in northern Israel. Geological Survey of Israel Report GSI/11/91.Google Scholar
Shtober-Zisu, N. 2005. Quaternary Tectonic Geomorphology along the Naftali Mountain Front. Unpublished Ph.D. thesis, University of Tel-Aviv [Hebrew, English abstract].Google Scholar
Shtober-Zisu, N., Greenbaum, N., Inbar, M. & Flexer, A. 2008. Morpho-metric and geomorphic approaches for assessment of tectonic activity, Dead Sea Rift (Israel). Geomorphology 102: 93104.Google Scholar
Sivan, D. 1996. Paleogeography of the Galilee coastal plain during the Quaternary. Geological Survey of Israel Report GSI/18/96 [Hebrew, English abstract].Google Scholar
Sivan, D. & Galili, E. 1999. Holocene tectonic activity in the Galilee coast and shallow shelf, Israel: A geological and archeological study. Israel Journal of Earth Sciences 48: 4761.Google Scholar
Sivan, D., Greenbaum, N., Cohen-Seffer, R., Sisma-Ventura, G. & Almogi-Labin, A. 2011. The origin and disappearance of the late Pleistocene–early Holocene shortlived coastal wetlands, along the Carmel Coast, Israel. Quaternary Research 76: 8392.Google Scholar
Sneh, A. & Buchbinder, B. 1984. Miocene to Pleistocene surfaces and their associated sediments in the Shfela region, Israel. Geological Survey of Israel Current Research 1984: 5659.Google Scholar
Soil Erosion Research Station 2014. Peak Discharges in Small Basins in Israel.Google Scholar
Stein, M. 2001. The sedimentary and geochemical record of Neogene–Quaternary water bodies in the Dead Sea Basin – inferences for the regional paleoclimatic history. Journal of Paleolimnology 26: 271–82Google Scholar
Stekelis, M., Picard, L., Schulman, N. & Haas, G. 1960. Villafranchian Deposits near Ubeidiya in the Central Jordan Valley. B.R.C.I. vol. 9G: 175–83.Google Scholar
Tchernov, E. 1985. Oubeidiyeh, le jardin d'Eden? Dossier Histoire et Archeologie 100: 2836.Google Scholar
Tchernov, E. 1987. The age of the 'Ubeidiya Formation, an early Pleistocene hominid site in the Jordan Valley. Israel. Israel Journal of Earth Sciences 36: 330.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Torfstein, A., Haase-Schramm, A., Waldmann, N., Kolodny, Y. & Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmo-chimica Acta 73: 2603–30.Google Scholar
Waldmann, N., Stein, M., Ariztegui, D. & Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the last interglacial Lake Samra in the Dead Sea basin. Quaternary Research 72: 115.Google Scholar
Wdowinski, S. & Zilberman, E. 1996. Kinematic modeling of large-scale structural asymmetry across the Dead Sea Rift. Tectonophysics 266: 187203.Google Scholar
Wdowinski, S. & Zilberman, E. 1997. Systematic analysis of the large scale topography and structure across the Dead Sea Rift. Tectonics 16: 409–24.Google Scholar
Wolf, O. & Klang, A. 1976. The Ancient El-Arish River Channel (Haruvit Prospect). Report 76/3. Tel Aviv: Oil Exploration (Investments) Ltd.Google Scholar
Yaalon, D.H. 1967. Factors affecting the lithification of aeolianite and interpretation of its environmental significance in the coastal plain of Israel. Journal of Sedimentary Petrology 37: 1189–99.Google Scholar
Yaalon, D.H. & Ganor, E. 1966. The climatic factor of wind erodability and dust blowing in Israel. Israel Journal of Earth Sciences 15: 2732.Google Scholar
Yaalon, D.H. & Ganor, E. 1975. Rates of aeolian dust accretion in the Mediterranean and desert fringe environment of Israel. The International Congress of Sedimentology 2: 169–74.Google Scholar
Yair, A. 1962. The Morphology of Nahal Dishon. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Yair, A. 1987. Environmental-effects of loess penetration into the northern Negev Desert. Journal of Arid Environments 13: 924.Google Scholar
Yair, A. & Enzel, Y. 1987. The relationship between annual rainfall and sediment yield in arid and semi-arid areas – the case of the northern Negev. Catena Supplement 10: 121–35.Google Scholar
Yechieli, J., Gavrieli, I., Ronen, D. & Berkovitz, B. 1998. Will the Dead Sea die? Geology 26: 755–8.Google Scholar
Yechieli, Y., Magaritz, M., Levy, Y. et al. 1993. Late Quaternary geological history of the Dead Sea area, Israel. Quaternary Research 39: 5967.Google Scholar
Zak, I. & Freund, R. 1981. Asymmetry and basin migration in the Dead Sea Rift. Tectonophysics 80: 2738.Google Scholar
Zilberman, E. 1982. The geology of the Qeren-Rogem area. Geological Survey of Israel Report EG/4/82.Google Scholar
Zilberman, E. 1986a. Pliocene–Early Pleistocene surfaces in the northwestern Negev – paleogeography and tectonic implications. Geological Survey of Israel Report GSI/26/86.Google Scholar
Zilberman, E. 1986b. The Late Pleistocene sequence in the confluence area of Nahal Besor and Nahal Revivim. Geological Survey of Israel Report GSI/46/86.Google Scholar
Zilberman, E. 1991. Landscape evolution in the central, northern and northwestern Negev during the Neogene and the Quaternary. Geological Survey of Israel Report GSI/45/90 [Hebrew, English abstract].Google Scholar
Zilberman, E. 1992. The Late Pleistocene sequence of the northwestern Negev flood plains – a key to reconstructing the paleoclimate of southern Israel in the last glacial. Israel Journal of Earth Sciences 41: 155–67.Google Scholar
Zilberman, E. 2000. Formation of ‘makhteshim’ – unique erosion cirques in the Negev, southern Israel. Israel Journal of Earth Sciences 49: 127–41.Google Scholar
Zilberman, E. & Calvo, R. 2013. Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian Plate. Journal of African Earth Sciences 82: 3353.Google Scholar
Zilberman, E. & Wachs, D. 1983. The ancient relief of the northwestern flank of Mt. Qeren. Geological Survey of Israel Report GSI/3/83.Google Scholar
Zilberman, E., Baer, G., Avni, Y. & Feigin, D. 1996. Pliocene fluvial systems and tectonics in the central Negev, southern Israel. Israel Journal of Earth Sciences 45: 113–26.Google Scholar
Zilberman, E., Eidelman, A., Avni, Y. & Ginat, H. 2011. The Geology and Landscape Evolution of the Negev Region. Israel Nature and Park Authority Press [Hebrew].Google Scholar

References

Besançon, J. & Sanlaville, P. 1981. Apercu géomorphologique sur la vallée de l'Euphrates Syrien. Paléorient 7(2): 518.Google Scholar
Besançon, J. & Sanlaville, P. 1984. Terrasses fluviatiles au Proche-Orient. Bulletin de l'Association française pour l'étude du quaternaire 21: 186–91.Google Scholar
Besançon, J., Copeland, L., Hours, F. & Sanlaville, P. 1978. The Palaeo-lithic sequence in Quaternary formations of the Orontes River Valley, northern Syria: A preliminary report. Bulletin of the Institute of Archaeology 15: 149–70.Google Scholar
Besançon, J., Copeland, L. & Sanlaville, P. 1988. Réflexions sur les prospections géo-préhistoriques au Proche-Orient. Paléorient 14(2): 31–9.Google Scholar
Besançon, J., Sanlaville, P., Delgiovine, A. et al. 1997. Mise en évidence et datation de phases humides du Pléistocène supérieur dans la région de Palmyre (Syrie). Paléorient 23(1): 523.Google Scholar
Bridgland, D.R., Philip, G., Westaway, R. & White, M. 2003. A long Quaternary terrace sequence in the Orontes River valley, Syria: A record of uplift and human occupation. Current Science 84, 1080–89.Google Scholar
Courty, M.A. 1994. Le cadre paléogéographie des occupations humaines dans le Bassin du Haut-Khabur (Syrie du Nord-Est). Premier résultats. Paléorient 20(1): 2155.Google Scholar
De Heinzelin, J. 1965. Observations sur les terraces du Moyen Euphrate. Bulletin de la Société Géologique de France 7(7): 3744.Google Scholar
Deckers, K. & Riehl, S. 2007. Fluvial environmental contexts for archaeological sites in the upper Khabur Basin (northeastern Syria). Quaternary Research 67: 337–48.Google Scholar
Dodonov, A.E., Kandel, A.W., Simakova, A.N., al-Masri, M. & Conard, N.J. 2007. Geomorphology, site distribution, and paleolithic settlement dynamics of the Ma'aloula Region, Damascus Province, Syria. Geoarchaeology 22: 589606.Google Scholar
Doğan, U. 2010. Fluvial response to climate change during and after the Last Glacial Maximum in central Anatolia, Turkey. Quaternary Inter-national 222: 221–9.Google Scholar
Endo, K. 1978. Stratigraphy and paleoenvironments of the deposits in and around the Douara cave site. Bulletin of the University Museum, The University of Tokyo 14: 5381.Google Scholar
Geyer, B. & Besançon, J. 1996. Environnement et occupation du sol dans la vallée de l'Euphrate syrien durant le Néolithique et le Chalco-lithique. Paléorient 22: 515.Google Scholar
Hayakawa, Y.S., Oguchi, T., Komatsubara, J. et al. 2007. Rapid on-site topographic mapping with a handheld laser range finder for a geoarchaeo-logical survey in Syria. Geographical Research 45: 95104.Google Scholar
Hritz, C. 2013. A malarial-ridden swamp: using Google Earth Pro and Corona to access the southern Balikh valley, Syria. Journal of Archaeological Science 40: 1975–87.CrossRefGoogle Scholar
Iriarte, E., Balbo, A.L., Sánchez, M.A., Urquijo, J.E.G. & Ibánez, J.J. 2011. Late Pleistocene and Holocene sedimentary record of the Bouqaia Basin (central Levant, Syria): A geoarchaeological approach. Comptes Rendus Palevol 10: 3547.Google Scholar
Kaniewski, D., Paulissen, E., Van Campo, E. et al. 2010. Late second–early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the eastern Mediterranean. Quaternary Research 74: 207–15.Google Scholar
Koizumi, T. 1978. Climate-genetic landforms around Jabal and Douara and its surroundings. Bulletin of the University Museum, The University of Tokyo 14: 2951.Google Scholar
Kuzucuoglu, C., Fontugne, M. & Mouralis, D. 2004. Holocene terraces in the middle Euphrates Valley, between Halfeti and Karkemish (Gaziantep, Turkey). Quaternaire 15: 195206.Google Scholar
Lawler, A. 2006. Syria's open door: Will it last? Science 312: 1459.Google Scholar
Oguchi, T. 2001. Geomorphological and environmental settings of Tell Kosak Shamali, Syria. In Tell Kosak Shamali, the Archaeological Investigations on the Upper Euphrates, Syria: Vol. 1, Chalcolithic Architecture and the Earlier Prehistoric Remains, ed. Nishiaki, Y. & Matsutani, T., UMUT Monograph, vol. 1. Tokyo: The University of Tokyo Press, pp. 1940.Google Scholar
Oguchi, T. & Oguchi, C.T. 1998. Mid Holocene floods of the Syrian Euphrates inferred from ‘tell’ sediments. In Palaeohydrology and Environmental Change, ed. Benito, G., Baker, V.R. & Gregory, K.J.. Chichester: John Wiley and Sons, pp. 307–15.Google Scholar
Oguchi, T. & Oguchi, C.T. 2004. Late Quaternary rapid talus dissection and debris flow deposition on an alluvial fan in Syria. Catena 55: 125140.Google Scholar
Oguchi, T., Hori, K. & Oguchi, C.T. 2008. Paleohydrological implications of late Quaternary fluvial deposits in and around archaeological sites in Syria. Geomorphology 101: 3343.Google Scholar
Oguchi, T., Hori, K., Watanuki, T. et al. 2013. Fluvial surfaces along the Khabur River near Tell Seker al-Aheimar and their palaeoenvironmental implications. In Neolithic Archaeology in the Khabur Valley, Upper Mesopotamia and Beyond, ed. Nishiaki, Y., Kashima, K. & Verhoeven, M.. Berlin: ex oriente, pp. 3950.Google Scholar
Pustovoytov, K., Deckers, K. & Goldberg, P. 2011. Genesis, age and archaeological significance of a pedosediment in the depression around Tell Mozan, Syria. Journal of Archaeological Science 38: 913–24.Google Scholar
Sakaguchi, Y. 1978. Palmyra pluvial lake. Bulletin of the University Museum, The University of Tokyo 14: 528.Google Scholar
Sakaguchi, Y. 1987. Paleoenvironments in Palmyra District during the Late Quaternary. In Paleolithic Site of the Douara Cave and Paleogeography of Palmyra Basin in Syria, Part IV: 1984 Excavations, ed. Akazawa, T & Sakaguchi, Y, Bulletin of the University Museum, The University of Tokyo 29: 528.Google Scholar
Sanlaville, P. (ed.) 1979. Quaternaire et préhistoire du Nahr el Kébir septentrional: les débuts de l'occupation humaine dans la Syrie du nord et au Levant: travaux de la RCP 438 (No. 1). Paris: Éditions du CNRS.Google Scholar
Van Liere, W.J. 1961. Observations on the Quaternary of Syria. Berichten Riksdienst Oudheidkundig Bodemonderzoek 1011: 169.Google Scholar
Wilkinson, T.J., Peltenburg, E., McCarthy, A., Wilkinson, E.B. & Brown, M. 2007. Archaeology in the land of Carchemish: Landscape surveys in the area of Jerablus Tahtani. Levant 39: 213–47.Google Scholar

References

Alam, M.S., Keppens, E. & Paepe, R. 1997. The use of oxygen and carbon isotope composition of pedogenic carbonates from Pleistocene palaeosols in NW Bangladesh, as palaeoclimatic indicators. Quaternary Science Reviews 16: 161–8.Google Scholar
Alçiçek, H. & Alçiçek, M.C. 2014. Palustrine carbonates and pedogenic calcretes in the Çal basin of SW Anatolia: Implications for the Plio-Pleistocene regional climatic pattern in the eastern Mediterranean. Catena 112: 4855.Google Scholar
Alçiçek, H. & Jiménez-Moreno, G. 2013. Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): Depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology 291: 6283.Google Scholar
Amit, R., Zilberman, E. & Nahamias, Y. 2000. Chronosequence of calcic soils in Nahal Besor area. Geological Survey of Israel Report GSI/21/2000, 79.Google Scholar
Amit, R., Enzel, Y. & Sharon, D. 2006. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology 34: 509–12.Google Scholar
Amit, R., Lekach, J., Ayalon, A., Porat, N. & Grodek, T. 2007. New insight into pedogenic processes in extremely arid environments and their paleoclimatic implications – the Negev desert, Israel. Quaternary International 162–163: 6175.Google Scholar
Amit, R., Enzel, Y., Grodek, T. et al. 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research 74: 177–87.Google Scholar
Amit, R., Simhai, O., Ayalon, A. et al. 2011. Transition from arid to hyperarid environment in the southern Levant deserts as recorded by early Pleistocene cummulic Aridisols. Quaternary Science Reviews 30: 312–23.Google Scholar
Amundson, R.G., Chadwick, O.A., Sowers, J.M. & Doner, H.E. 1988. The relationship between modern climate and vegetation and the stable isotope chemistry of Mojave Desert soils. Quaternary Research 29: 245–54.Google Scholar
Amundson, R., Chadwick, O., Kendall, C., Wang, Y. & DeNiro, M. 1996. Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid-North America. Geology: 24: 23–6.Google Scholar
Biggs, T.H., Quade, J. & Webb, R.H. 2002. δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona. Geoderma 110: 109–30.Google Scholar
Birkeland, P.W. 1999. Soils and Geomorphology. Oxford: Oxford University Press, p. 372.Google Scholar
Breecker, D.O., Sharp, Z.D. & McFadden, L.D. 2009. Seasonality bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin 121: 630–40.Google Scholar
Cerling, T.E. 1984. The stable isotopic composition of modern soil carbonate and its relation to climate. Earth Planetary Science Letters 71: 229–40.Google Scholar
Cerling, T.E. 1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291: 377400.Google Scholar
Cerling, T.E. & Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates. In Climate Change in Continental Isotopic Records, ed. Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., Geophysical Monograph 78, pp. 217–31.Google Scholar
Cerling, T.E., Quade, J., Wang, Y. & Bowman, J. 1989. Soil and paleosols as ecologic and paleoecologic indicators. Nature 341: 138–9.Google Scholar
Cerling, T.E., Solomon, D.K., Quade, J. & Bowman, J.R. 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55: 3403–5.Google Scholar
Connin, S.L., Virginia, R.A. & Chamberlain, C.P. 1997. Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. Oecologia 110: 374–86.Google Scholar
Crouvi, O. 2009. Sources and Formation of Loess in the Negev Desert during the Late Quaternary, with Implications for Other Worldwide Deserts. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Dan, J. & Yaalon, D.H. 1982. Automorphic saline soils in Israel. Catena Supplement 1: 103–15.Google Scholar
Dan, J., Gerson, R., Koyumdjisky, H., Yaalon, D. 1981. Aridic Soils of Israel, Special publication 190. Beit Dagan: Volcani Center, Division of Scientific Publications.Google Scholar
Davidson, G. R. 1995. The stable isotopic composition and measurement of carbon in soil CO2. Geochimica Cosmochimica Acta 59: 2485–9.Google Scholar
Deines, P. 1980. The isotopic composition of reduced organic carbon. In Handbook of Environmental Isotope Geochemistry, 1A, ed. Fritz, P. and Fontes, J.Ch.. Amsterdam: Elsevier, pp. 329406.Google Scholar
Enzel, Y. 1984. The Geomorphology of the Lower Sekher Valley. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Amit, R., Grodek, T. et al. 2012. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An impact of climatic change on an arid watershed? Geological Society of America Bulletin 124: 705–22.Google Scholar
Feinbrun-Dothan, N. & Danin, A. 1998. Analytical Flora of Eretz–Israel. Jerusalem: CANA Publishing House, pp. 11008.Google Scholar
Gile, L.H., Hawley, J.W. & Grossman, R.B. 1981. Soils and Geomorphology in the Basin and Range, Southern New Mexico – Guidebook to the Desert Project. Memoir 39. Socorro: New Mexico Institute of Mining & Technology, p. 222.Google Scholar
Goodfriend, G.A. 1990. Rainfall in the Negev Desert during the middle Holocene, based on (super 13) C of organic matter in land snail shells. Quaternary Research 34: 186–97.Google Scholar
Goodfriend, G.A. 1999. Terrestrial stable isotope records of Late Quaternary paleoclimates in the eastern Mediterranean region. Quaternary Science Reviews 18: 501–13.Google Scholar
Jenny, H. 1980. The Soil Resource: Origin and Behaviour, Ecological Studies 37. Springer-Verlag.Google Scholar
Kahana, R., Ziv, B., Enzel, Y. & Dayan, U. 2002. Synoptic climatology of major floods in the Negev Desert, Israel. International Journal Climatology 22: 867–82.Google Scholar
Kelly, E.F., Amundson, R.G., Marino, B.D. & DeNiro, M.J. 1991. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research 35: 222–33.Google Scholar
Lekach, J., Amit, R., Grodek, T. & Schick, A.P. 1998. Fluvio-pedogenic processes in an ephemeral stream channel, Nahal Yael, southern Negev, Israel. Geomorphology 23: 353–69.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the upper Pleistocene along the desert boundary, southern Israel. Paleogeography, Paleoclimatology, Paleoecology 53: 213–29.Google Scholar
Magaritz, M., Gavish, E., Bakler, N. & Kafri, U. 1979. Carbon and oxygen isotope composition – indicators of cementation environment in recent, Holocene and Pleistocene sediments along the coast of Israel. Journal of Sedimentology Petrology 49: 401–12.Google Scholar
Magaritz, M., Kaufman, A. & Yaalon, D.H. 1981. Calcium carbonate nodules in soils: 18O/16O and 13C/12C ratios and 14C contents. Geoderma 25: 157–72.Google Scholar
Matmon, A., Simhai, O., Amit, R. et al. 2009. Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geological Society of America Bulletin 121: 688–97.Google Scholar
Meirovich, L., Ben-Zvi, A., Shentsis, I. & Yanovich, E. 1998. Frequency and magnitude of runoff events in the arid Negev of Israel. Journal of Hydrology 207: 204–19.Google Scholar
Menashe, R. 2003. The Stratigraphy and Paleo-geography of Tel-Sharuhen Section, North-western Negev, Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem. GSI/35/02, p. 95.Google Scholar
Mook, W.G., Bommerson, J.C. & Staverman, W.H. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22: 169–76.Google Scholar
Mortazavi, M., Moussavi-Harami, R., Brenner, R.L., Mahboubi, A. & Nadjafi, M. 2013. Stable isotope record in pedogenic carbonates in northeast Iran: Implications for Early Cretaceous (Berriasian–Barremian) paleovegetation and paleoatmospheric P(CO2) levels. Geoderma 211212: 8597.Google Scholar
Ode, D.J., Tieszen, L.L. & Lerman, J.C. 1980. The seasonal contribution of C3 and C4 plant species to primary production in a mixed prairie. Ecology 61: 1304–11.Google Scholar
Pustovoytov, K. & Taubald, H. 2003. Stable carbon and oxygen isotope composition of pedogenic carbonate at Göbekli Tepe (Southeastern Turkey) and its potential for reconstructing late Quaternary Paleoenvironments in Upper Mesopotamia. Neo-Lithics 2/03: 2532.Google Scholar
Pustovoytov, K., Deckers, K. & Goldberg, P. 2011. Genesis, age and archaeological significance of a pedosediment in the depression around Tell Mozan, Syria. Journal of Archaeological Science 38: 913–24.Google Scholar
Quade, J., Cerling, T.E. & Bowman, J.R. 1989a. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342: 163–6.Google Scholar
Quade, J., Cerling, T.E. & Bowman, J.R. 1989b. Systematic variations in the stable carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, USA, Geological Society of America Bulletin 101: 464–75.Google Scholar
Quade, J., Rech, J.A., Latorre, C. et al. 2007. Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, northern Chile. Geochimica et Cosmochimica Acta 71: 3772–95.Google Scholar
Rubin, S., Ziv, B. & Paldor, N. 2007. Tropical plumes over eastern north Africa as a source of rain in the Middle East. Monthly Weather Review 135: 4135–48.Google Scholar
Vogel, J.C., Fuls, A. & Danin, A. 1986. Geographical and environmental distribution of C3 and C4 grasses in Sinai, Negev, and Judean deserts. Oecologia 70: 258–65.Google Scholar
Wang, Y., Cerling, T.E., Quade, J. et al. 1993. Stable isotopes of paleo-sols and fossil teeth as paleoecology and paleoclimate indicators: An example from the St. David formation, Arizona. In Climate Change in Continental Isotopic Records, ed. Swart, P.K., Lohmann, K.C., McKenzie, J. & Savin, S.. Geophysical Monograph 78, pp. 241–8.Google Scholar
Wang, L., Okin, G.S., Caylor, K.K. & Macko, S.A. 2009. Spatial heterogeneity and sources of soil carbon in southern African savannas. Geoderma 149: 402–8.Google Scholar
Wang, L., d'Odorico, P., Ries, L. & Macko, S.A. 2010. Patterns and implications of plant–soil δ13C and δ15N values in African savanna ecosystems. Quaternary Research 73: 7783.Google Scholar
Yaalon, D.H. 1971. Soil forming processes in time and space. In Paleo-pedology: Origin, Nature and Dating of Paleosols, ed. Yaalon, D.H.. Jerusalem: International Society of Soil Science and Israel Universities Press, pp. 2939.Google Scholar
Zangvil, A. & Druian, P. 1990. Upper air trough axis orientation and the spatial distribution of rainfall over Israel. International Journal of Climatology 10: 5762.Google Scholar
Zilberman, E. 1986. Pliocene–Early Pleistocene surfaces in the Northwestern Negev paleogeography and tectonic implications, Israel. Geological Survey of Israel Report GSI/26/86 [Hebrew, English summary].Google Scholar

References

Almog, R. 2011. The Water Regime at the Interdune of the Southern Coastal Plain, Israel. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Bar, O. 2009. The Shaping of the Continental Margin of Central Israel since the Late Eocene – Tectonics, Morphology and Stratigraphy. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Cohen-Seffer, R., Greenbaum, N., Sivan, D. et al. 2005. Late Pleistocene–Holocene marsh episodes along the Carmel Coast, Israel. Quaternary International 140: 103–20.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Dan, J. 1966. The Effect of Relief on Soil Formation and Distribution in Israel. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Dan, J. 1983. Soil chronosequences in Israel. Catena 10: 287319.Google Scholar
Dan, J. 1990. The effect of dust deposition on the soils of the land of Israel. Quaternary International 5: 107–13.Google Scholar
Dan, J. & Raz, Z. 1975. Soil Associations of Israel. Supplement to the Map Associations of Israel, 1:250,000. Ministry of Agriculture, The Agricultural Research Administration [Hebrew].Google Scholar
Dan, J., & Yaalon, D.H. 1966. Trends of soil development with time in the Mediterranean environments of Israel. In Transactions of the International Conference on Mediterranean Soils, Madrid, Spain, pp. 139–45.Google Scholar
Dan, J. & Yaalon, D.H. 1968. Pedomorphic forms and pedomorphic surfaces. In Transactions of the 9th International Congress of Soil Science, Adelaide 4: 577–84.Google Scholar
Dan, J. & Yaalon, D.H. 1971. On the origin and nature of the paleopedo-logical formations in the coastal, desert fringe areas of Israel. In Paleopedology, Transactions of Symposium on Age of Parent Materials and Soils. Jerusalem: The International Society of Soil Science and Israel Universities Press, pp. 245–60.Google Scholar
Dan, J. & Yaalon, D.H. 1976. Origin and distribution of soils and landscapes in the Pleshet Plain. Studies in the Geography of Israel 9: 3674 [Hebrew].Google Scholar
Dan, J., Yaalon, D.H. & Koyumdji, H. 1969. Catenary soil relationships in Israel. 1. Netanya Catena on coastal dunes of Sharon. Geoderma 2: 95120.Google Scholar
Danin, A. & Yaalon, D.H. 1982. Silt plus clay sedimentation and decalcification during plant succession in sands of the Mediterranean coastal area of Israel. Israel Journal of Earth Sciences 31: 101–9.Google Scholar
Davis, M. 2012. Burial Dating of Continental Sediments Using In-Situ Cosmogenic Isotopes: Testing the Impact of Environmental Conditions at Various Geological Settings. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Davis, M., Matmon, A., Rood, D.H. & Avnaim-Katav, S. 2012. Constant cosmogenic nuclide concentrations in sand supplied from the Nile River over the past 2.5 m.y. Geology 40: 359–62.Google Scholar
Ecker, A. 1999. Atlas of selected geological cross-sections and subsurface maps of the coastal aquifer of Israel. Geological Survey of Israel Report GSI/18/99 [Hebrew].Google Scholar
Eig, A. 1933. A historical-phytosocioIogical essay on Palestinian forests of Quercus aegilops L. ssp. ithaburensis (Desc.) in past and present. Beihefte zum Botanischen Centralblatt 51: 222–72.Google Scholar
Emery, K. & Neev, D. 1960. Mediterranean beaches of Israel. Geological Survey of Israel Bulletin 26: 123.Google Scholar
Engelmann, A. 2004. Aeolianites and palaeosols in Israel: Luminescence chronology and relationship with eastern Mediterranean climates. Unpublished Ph.D. thesis, University of Gloucestershire.Google Scholar
Engelmann, A., Neber, A., Frechen, M. et al. 2001. Luminescence chronology of Upper Pleistocene and Holocene aeolianites from Netanya South – Sharon Coastal Plain, Israel. Quaternary Science Reviews 20: 799804.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 16592.Google Scholar
Frechen, M., Dermann, B., Boenigk, W. & Ronen, A. 2001. Luminescence chronology of aeolianites from the section at Givat Olga – Coastal Plain of Israel. Quaternary Science Reviews 20: 805–9.Google Scholar
Frechen, M., Neber, A., Dermann, B. et al. 2002. Chronostratigraphy of aeolianites from the Sharon Coastal Plain of Israel. Quaternary International 89: 3144.Google Scholar
Frechen, M., Neber, A., Tsatskin, A., Boenigk, W. & Ronen, A. 2004. Chronology of Pleistocene sedimentary cycles in the Carmel Coastal Plain of Israel. Quaternary International 121: 4152.Google Scholar
Galili, E., Zviely, D., Ronen, A. & Mienis, H.K. 2007. Beach deposits of MIS 5e high sea stand as indicators for tectonic stability of the Carmel coastal plain, Israel. Quaternary Science Reviews 26: 2544–57.Google Scholar
Gavish, E., & Friedman, G. 1969. Progressive diagenesis in Quaternary to Late Tertiary carbonate sediments: Sequence and time scale. Journal of Sedimentary Petrology 39: 9801006.Google Scholar
Godfrey-Smith, D.I., Vaughan, K.B., Gopher, A. & Barkai, R. 2003. Direct luminescence chronology of the Epipaleolithic Kebaran site of Nahal Hadera V, Israel. Geoarchaeology 18: 461–75.Google Scholar
Gvirtzman, G. & Buchbinder, B. 1969. Outcrops of Neogene Formation in the central and southern coastal plain, Hashphela and Be'er Sheva regions. Geological Survey of Israel Bulletin 50.Google Scholar
Gvirtzman, G. & Wieder, M. 2001. Climate of the last 53,000 years in the eastern Mediterranean, based on soil-sequence stratigraphy in the coastal plain of Israel. Quaternary Science Reviews 20: 1827–49.Google Scholar
Gvirtzman, G., Bakler, N., Ilani, S. & Shachnai, E. 1984. Stratigraphy of the Kurkar Group (Quaternary) of the coastal plain of Israel. Geological Survey of Israel Current Research 1983–84: 7082. Jerusalem: Israel Geological Survey.Google Scholar
Gvirtzman, G., Martinotti, G. & Moshkovitz, S. 1997. Stratigraphy of the Plio-Pleistocene sequence of the Mediterranean coastal belt of Israel and its implications for the evolution of the Nile cone. In The Pleistocene Boundary and the Beginning of the Quaternary, ed. Van Couvering, J.A.. Cambridge: Cambridge University Press, pp. 156–68.Google Scholar
Gvirtzman, G., Wieder, M., Marder, O. et al. 1999. Geological and pedological aspects of an Early-Paleolithic site: Revadim, Central Coastal Plain, Israel. Geoarchaeology 14: 101–26.Google Scholar
Gvirtzman, Z., Steinberg, J., Bar, O. et al. 2011. Retreating Late Tertiary shorelines in Israel: Implications for the exposure of north Arabia and Levant during Neotethys closure. Lithosphere 3: 95109.Google Scholar
Harel, M., Amit, R., Porat, N. & Enzel, Y. 2011. Buried and Relict Sandy Soils as Samplers of Quaternary Dust in the Central Coastal Plain, Israel. Annual meeting. Israel Geological Society, Mitzpe Ramon.Google Scholar
Harel, M., Amit, R., Enzel, Y. & Porat, N. 2012. Complex Landscape Evolution of the Central Coastal Plain (Israel) Based on Buried and Relict Surfaces. Annual meeting. Israel Geological Society, Ashkelon.Google Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York/London: Academic Press.Google Scholar
Issar, A. 1961. Geology of the Subsurface Water Resource of the Shefela and Sharon Areas. PM Report 307. Tel Aviv: Tahal Water Planning for Israel, Ltd, pp. 143.Google Scholar
Itzhaki, Y. 1961. Contribution to the study of the Pleistocene in the coastal plain of Israel. Geological Survey of Israel Bulletin 32: 19.Google Scholar
Katz, O. & Mushkin, A. 2013. Characteristics of sea-cliff erosion induced by a strong winter storm in the eastern Mediterranean. Quaternary Research 80: 2032.Google Scholar
Marriner, N., Morhange, C., Borschneck, D. & Flaux, C. 2012. Holocene sedimentary sources in southern Lebanon, eastern Mediterranean. Quaternary International 266: 105–16.Google Scholar
Mauz, B., Hijma, M.P., Amorosi, A. et al. 2013. Aeolian beach ridges and their significance for climate and sea level: Concept and insight from the Levant coast (east Mediterranean). Earth-Science Reviews 121: 3154.Google Scholar
Menashe, R. 2003. The Stratigraphy and Paleo-geography of Tel-Sheruhen Section, Western Negev-North, Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Neber, A. 2002. Sedimentological Properties of Quaternary Deposits on the Central Coastal Plain, Israel. Unpublished Ph.D. thesis, University of Haifa.Google Scholar
Nir, D. 1970. Geomorphology of Israel. Jerusalem: Academon Press [Hebrew].Google Scholar
Porat, N. 2001. Ages of Kurkar, Hamra and Sands in the Coastal Plain, Results of Dating by Luminescence Techniques. Jerusalem: Israel Geological Survey report.Google Scholar
Porat, N. & Ronen, A. 2002. Luminescence and ESR age determinations of the Lower Paleolithic site Evron Quarry, Israel. Advances in ESR Applications 18: 123–30.Google Scholar
Porat, N., Zhou, L.P., Chazan, M., Noy, T. & Horwitz, L.K. 1999. Dating the lower Paleolithic open-air site of Holon, Israel by luminescence and ESR techniques. Quaternary Research 51: 328–41.Google Scholar
Porat, N., Avital, A., Frechen, M. & Almogi-Labin, A. 2003. Chronology of upper Quaternary offshore successions from the southeastern Mediterranean Sea, Israel. Quaternary Science Reviews 22: 1191–9.Google Scholar
Porat, N., Wintle, A.G. & Ritte, M. 2004. Mode and timing of kurkar and hamra formation, central coastal plain, Israel. Israel Journal of Earth Sciences 53: 1325.Google Scholar
Porat, N., Duller, G.A.T., Roberts, H.M. & Wintle, A.G. 2009. A simplified SAR protocol for TT-OSL. Radiation Measurements 44: 538–42.Google Scholar
Porat, N., Ronen, A., Jain, M. & Horvitz, L.K. 2013. Dating the Middle Paleolithic Mousterian site at Atlit, Israel. In UK Luminescence and ESR Meeting, 28–30 August 2013, University of St Andrews, Poster Presentations.Google Scholar
Rim, M. 1950. Sand and soil in the coastal plain of Israel. Israel Exploration Journal 1: 3348.Google Scholar
Ritte, M. 1998. Stratigraphy of the Coastal Cliff of the Sharon: Environments of Deposition and Luminescence Dating. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Rizzini, A., Vezzani, F., Cococcetta, V. & Milad, G. 1978. Stratigraphy and sedimentation of a Neogene–Quaternary section in the Nile Delta area. Marine Geology 27: 327–48.Google Scholar
Ron, H. & Gvirtzman, G. 2001. Magnetostratigraphy of Ruhama badland Quaternary deposits: A new age of the Lower Paleolithic site. Abstracts of the Annual Meeting of Israel Geological Society, Eilat. Jerusalem: Israel Geological Society.Google Scholar
Ron, H., Porat, N., Ronen, A., Tchernov, E. & Horwitz, L.K. 2003. Magnetostratigraphy of the Evron Member – implications for the age of the Middle Acheulian site of Evron Quarry. Journal of Human Evolution, 44: 633–9.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G., & Zander, A.M. 2011. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quaternary Science Reviews 30: 1649–74.Google Scholar
Schattner, U., Lazar, M., Tibor, G., Ben-Avraham, Z. & Makovsky, Y. 2010. Filling up the shelf – a sedimentary response to the last post-glacial sea rise. Marine Geology 278: 165–76.Google Scholar
Sivan, D. & Porat, N. 2004. Evidence from luminescence for late Pleistocene formation of calcareous aeolianite (kurkar) and palaeosol (hamra) in the Carmel coast, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 95106.Google Scholar
Sivan, D., Gvirtzman, G. & Sass, E. 1999. Quaternary stratigraphy and paleogeography of the Galilee coastal plain, Israel. Quaternary Research 51: 280–94.Google Scholar
Sivan, D., Wdowinski, S., Lambeck, K., Galili, E. & Raban, A. 2001. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimatology, Palaeoecology 167: 101–17.Google Scholar
Tsatskin, A. & Ronen, A. 1999. Micromorphology of a Mousterian paleosol in aeolianites at the site Habonim, Israel. Catena 34: 365–84.Google Scholar
Tsatskin, A., Gendler, T.S., Heller, F., Dekman, I. & Frey, G.L. 2009. Towards understanding paleosols in southern Levantine eolianites: Integration of micromorphology, environmental magnetism and mineralogy. Journal of Mountain Science 6: 113–24.Google Scholar
Tsatskin, A., Sandler, A. & Porat, N. 2013. Toposequence of sandy soils in the northern coastal plain of Israel: Polygenesis and complexity of pedogeomorphic development. Geoderma 197198: 8797.Google Scholar
Tsoar, H. 2000. Geomorphology and palaeogeography of sand dunes that have formed the kurkar ridges in the coastal plain of Israel. Israel Journal of Earth Science 49: 189–96.Google Scholar
Tsoar, H. & Blumberg, D.G. 1991. The effect of sea cliffs on inland encroachment of aeolian sand. In Aeolian Grain Transport 2, ed. Barndorff-Nielsen, O.E., Willetts, B.B., Christiansen, C. et al. Springer, pp. 131–46.Google Scholar
Tsoar, H. & Blumberg, D.G. 2002. Formation of parabolic dunes from barchan and transverse dunes along Israel's Mediterranean coast. Earth Surface Processes and Landforms 27: 1147–61.Google Scholar
Wang, X.L., Lu, Y.C., & Wintle, A.G. 2006. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1: 89100.Google Scholar
Wieder, M., Gvirtzman, G., Porat, N. et al. 2008. Paleosols of the southern coastal plain of Israel. Journal of Plant Nutrition and Soil Science – Zeitschrift fur Pflanzenernahrung und Bodenkunde 171: 533–41.Google Scholar
Wintle, A.G. 2008. Luminescence dating: where it has been and where it is going. Boreas 37: 471–82.Google Scholar
Yaalon, D.H. 2007. Human-induced ecosystem and landscape processes always involve soil change. BioScience 57: 918.Google Scholar
Yaalon, D.H. & Dan, J. 1967. Factors controlling soil formation and distribution in the Mediterranean Coastal Plain of Israel during the Quaternary. In Quaternary Soils: Proceedings of the 7th INQUA Congress 1965, ed. Morrison, R.B. & Wright, H.E.. Reno: University of Nevada, pp. 321–8.Google Scholar
Yaalon, D.H. & Ganor, E. 1973. The influence of dust on soils during the Quaternary. Soil Science 116: 146–55.Google Scholar
Yaalon, D.H. & Laronne, J. 1971. Internal structures in eolianites and paleo-winds, Mediterranean coast, Israel. Journal of Sedimentary Petrology 41: 1059–64.Google Scholar

References

Almagor, G. & Hall, J.K. 1984. Morphology of the Mediterranean continental margin of Israel. Geological Survey of Israel 77: 131.Google Scholar
Almogi-Labin, A., Schilman, B. & Flako-Zaritsky, S. 2004. Micro-faunal ecosystem of the Timsach Springs: Environmental and stable isotopes characterization. Geological Survey of Israel Report GSI/27/2004.Google Scholar
Avital, A. 2002. Geological History of the Plio-Pleistocene–Holocene Offshore Based on Cores off Ashqelon, Southern Israel. Unpublished M.Sc. thesis, Ben-Gurion University of the Negev, Beer Sheva, Israel [Hebrew, English abstract].Google Scholar
Avnaim-Katav, S., Almogi-Labin, A., Sandler, A. et al. 2012. The chrono-stratigraphy of a Quaternary sequence at the distal part of the Nile littoral cell, Haifa Bay, Israel. Journal of Quaternary Science 27: 675–86.Google Scholar
Bard, E., Hamelin, B., Arnold, M. et al. 1996. Deglacial sea level record from Tahiti corals and the timing of global melt water discharge. Nature 382: 241–4Google Scholar
Brückner, H., Mullenhoff, M., Handel, M. & Van Der Borg, K. 2002. Holocene landscape evolution of the Büyük Menderes alluvial plain in the environs of Myous and Priene (Western Anatolia, Turkey). Zeitschrift für Geomorphologie N. F. Suppl. Bd. 127: 4765.Google Scholar
Cohen-Seffer, R., Greenbaum, N., Sivan, D. et al. 2005. Late Pleistocene–Holocene marsh episodes along the Carmel coast, Israel. Quaternary International 140141: 103–20.Google Scholar
Elyashiv, H. 2013. The Late Pleistocene–Holocene Sedimentary Evolution of Zevulun Plain – Focusing on the Wetlands. Unpublished M.A. thesis, University of Haifa.Google Scholar
Elyashiv, H., Bookman, R., Zviely, D. et al. 2015. Covered by sea and reclaimed by land – the influence of the Holocene rising sea on the distal Nile littoral cell. The Holocene 26: 248–64.Google Scholar
Fairbanks, R.G.A. 1989. 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637–42.Google Scholar
Galili, E. & Weinstein-Evron, M. 1985. Prehistory and palaeoenvironments of submerged sites along the Carmel Coast of Israel. Paléorient 11: 3751.Google Scholar
Galili, E., Zviely, D. & Weinstein-Evron, M. 2005. Holocene sea level changes and landscape evolution in the northern Carmel coast (Israel). Méditerranée: Revue Geographique des pays Méditerranéens 104: 7986.Google Scholar
Greenbaum, N., Ekshtain, R., Malinsky-Buller, A. & Hovers, E. 2014. The stratigraphy and paleogeography of the Middle Paleolithic open-air site of ‘Ein Qashish, northern Israel. Quaternary International 331: 203–15.Google Scholar
Guttman, J. 1998. Defining Flow Systems and Groundwater Interaction in the Multi-Aquifer System of the Carmel Coast Region. Ph.D. thesis, Tel-Aviv University and Mekorot Water Company Report no. 467.Google Scholar
Gvirtzman, G. & Wieder, M. 2001. Climate of the last 53,000 years in the eastern Mediterranean, based on soil-sequence stratigraphy in the coastal plain of Israel. Quaternary Science Reviews 20: 1827–49.Google Scholar
Gvirtzman, G., Shachnai, E., Bakler, B. & Ilani, S. 1984. Stratigraphy of the Kurkar Group (Quaternary) of the coastal plain of Israel. Geological Survey of Israel. Current Research 19831984: 7082.Google Scholar
Hearty, P.J., Hollin, J.T., Neumann, A.C., O'Leary, M.J. & McCulloch, M. 2007. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quaternary Science Reviews 26: 2090–112.Google Scholar
Hovers, E., Malinsky-Buller, A., Ekshtain, R., Oron, M. & Yeshurun, R. 2008. ‘Ein Qashish – a new open-air Middle Paleolithic site in northern Israel. Journal of the Israel Prehistoric Society 38: 740.Google Scholar
Inbar, M. & Sivan, D. 1984. Paleo-urban development and Late Quaternary environmental change in the Akko area. Paléorient 9/2: 8591Google Scholar
Kadosh, D., Sivan, D., Kutiel, H. & Evron-Weinstein, M. 2004. Late Quaternary environmental changes based on stratigraphy and palynological data obtained from Dor, Carmel Coast, Israel. Palynology 28: 143–57.Google Scholar
Koukousioura, O., Triantaphyllou, M.V., Dimiza, M.D. et al. 2012. Benthic foraminiferal evidence and paleoenvironmental evolution of Holocene coastal plains in the Aegean Sea (Greece). Quaternary International 261: 105–17.Google Scholar
Kraft, J.C., Kayan, I., Bruckner, H. & Rapp, H.G. 2003. Sedimentary facies patterns and the interpretation of paleogeographies of ancient Troia. In Troia and the Troad – Scientific Approaches, ed. Wagner, G.A., Pernicka, E., Uerpmann, H.-P., Springer Series Natural Science in Archaeology. Berlin, Heidelberg: Springer Verlag, pp. 361–77.Google Scholar
Lambeck, K. & Purcell, A. 2005. Sea-level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews 24: 1969–88.Google Scholar
Lev, L., Boaretto, E., Heller, J., Marco, S. & Stein, M. 2007. The feasibility of using Melanopsis shells as radiocarbon chronometers, Lake Kinneret, Israel. Radiocarbon 49: 1003–15.Google Scholar
Mischke, S., Almogi-Labinc, A., Al-Saqarat, B. et al. 2014. An expanded ostracod-based conductivity transfer function for climate reconstruction in the Levant. Quaternary Science Reviews 93: 91105.Google Scholar
Mulinen, H. 1907. Beitrage zur Kenntnis des Karmels. Manuscript, privately published.Google Scholar
Neev, D., Shachnai, E., Hall, J.K., Bakler, N. & Ben Avraham, Z. 1978. The young (post Lower Pliocene) geological history of the Caesarea structure. Israel. Israel Journal of Earth Sciences 27: 4364.Google Scholar
Palestine Exploration Fund (PEF) 1918. Map, scale 1:63,000.Google Scholar
Peleg, Y. 2002. The dams of Caesarea's low level aqueduct. In The Aqueducts of Israel, ed. Amit, D, Patrich, J & Hirschfeld, Y, JRA Supplementary Series 46. Journal of Roman Archaeology, pp. 141–7.Google Scholar
Porat, N., Zhou, L. P., Chazan, M., Noy, T. & Kolska, H.L. 1999. Dating the Lower Paleolithic open-air site of Holon, Israel by luminescence and ESR techniques. Quaternary Research 51: 328–41.Google Scholar
Porat, N., Avital, A., Frechen, M. & Almogi-Labin, A. 2003. Chronology of upper Quaternary offshore successions from the southeastern Mediterranean Sea, Israel. Quaternary Science Reviews 22: 1191–99Google Scholar
Porat, N., Sivan, D. & Zviely, D. 2008. Late Holocene embayment and sedimentological infill processes in Haifa Bay, SE Mediterranean. Israel Journal of Earth Sciences 57: 21–3.Google Scholar
Reinhardt, E.G. Fitton, R.J. & Schwarcz, J.P. 2003. Isotope (Sr,O,C) indicators of salinity and taphonomy in marginal marine system. Journal of Foraminiferal Research 33: 262–72.Google Scholar
Rohling, E.J., Grant, K., Hemleben, C.H. et al. 2008. High rates of sea-level rise during the last interglacial period. Nature Geoscience 1: 3842.Google Scholar
Rohling, E.J., Foster, G.L., Grant, K.M. et al. 2014. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508: 477–82.Google Scholar
Roskin, J., Sivan, D., Porat, N. et al. 2015. Natural and human controls on the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel). Aeolian Research 19, Part A: 6585.Google Scholar
Sade, A., Hall, J.K., Golan, A. et al. 2006. Acoustic backscatter at 95 kHz from the Mediterranean seafloor off Northern Israel. Geological Survey of Israel Report GSI/20/2006.Google Scholar
Schattner, U., Lazar, M., Tibor, G., Ben-Avraham, Z. & Makovsky, Y. 2010. Filling up the shelf – a sedimentary response to the last post-glacial sea rise. Marine Geology 278: 165–76.Google Scholar
Schumacher, G. 1887. Research in the plain north of Caesarea. In Palestine Exploration Fund – Quarterly Statement for 1887. London: Richard Bentley & Son, pp. 7890.Google Scholar
Shtienberg, G., Dix, J., Waldmann, N. et al. 2016. Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera. Geomorphology. DOI: 10.1016/j.geomorph.2016.03.008Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A. et al. 2003. Sea-level fluctu-ations during the last glacial cycle. Nature 423: 853–8.Google Scholar
Sisma-Ventura, G. 2013. The last millennium climate of the south eastern Mediterranean reconstructed from oxygen and carbon stable isotopes of the reef builder vermetid, Denedropoma peatreum. Unpublished Ph.D. thesis, Weizmann Institute of Science.Google Scholar
Sivan, D. 1996. Paleogeography of the Galilee coastal plain during the Quaternary. Geological Survey of Israel Report GSI/18/96 [Hebrew, English abstract].Google Scholar
Sivan, D. & Porat, N. 2004. Late Pleistocene contemporaneous formation of calcareous aeolianite (kurkar) and paleosol (hamra) in the Carmel coast, Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 211: 95106.Google Scholar
Sivan, D., Gvirtzman, G. & Sass, E. 1999. Quaternary stratigraphy and paleogeography of the Galilee Coastal Plain, Israel. Quaternary Research 51: 280–94.Google Scholar
Sivan, D., Eliyahu, D. & Raban, A. 2004. Late Pleistocene to Holocene wetlands now covered by sand along the Carmel coast, Israel, and their relation to human settlement: An example from the coastal site of Dor. Journal of Coastal Research 20: 97110.Google Scholar
Sivan, D., Greenbaum, N., Cohen-Seffer, R., Sisma-Ventura, G. & Almogi-Labin, A. 2011. The origin and disappearance of the Late Pleistocene–Early Holocene short-lived coastal wetlands along the Carmel coast, Israel. Quaternary Research 76: 8392Google Scholar
Sivan, D., Greenbaum, N., Cohen-Seffer, R. et al. 2015. Palaeo-environmental archive of groundwater-surface water interaction zone, the Kebara wetlands, Carmel Coast, Israel. Quaternary International.Google Scholar
Sivan, D., Sisma–Ventura, G., Greenbaum, N. et al. 2016. Eastern Mediterranean sea level through the last interglacial from coastal–marine sequence in northern Israel. Quaternary Science Reviews 145: 204225.Google Scholar
Sivan, D., Wdowinski, S., Lamback, K., Galili, E. & Raban, A. 2001. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeography, Palaeoclimatology, Palaeoecology 167: 101–17Google Scholar
Sneh, Y. & Klein, M. 1984. Holocene sea-level changes at the coast of Dor, southeast Mediterranean. Science 226: 831–2.Google Scholar
Stanley, J.D. & Warne, A.G. 1993. Nile delta: Recent geological evolution and human impact. Science 260: 628–34.Google Scholar
Toker, E., Sivan, D., Stern, E. et al. 2011. Evidence for centennial scale sea level variability during the Medieval Climate Optimum (Crusader period) in Israel, eastern Mediterranean. Earth and Planetary Science Letters 315316: 5161.Google Scholar
Torfstein, A., Goldstein, S.L., Stein, M. & Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Vött, A., Brückner, H., Schriever, A., Handel, M. & van der Borg, K. 2006a. Holocene Paleogeographies of the Palairos Coastal Plain (Akarnania, Northwest Greece) and their geoarchaeological implications. Geoarchaeology 21: 649–64.Google Scholar
Vött, A., Brückner, H., Handel, M. & Schriever, A. 2006b. Holocene palaeogeographies of the Astakos coastal plain (Akarnania, NW Greece). Palaeogeography, Palaeoclimatology, Palaeoecology 239: 126–46.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E. et al. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21: 295305.Google Scholar
Yaroshevich, A., Agha, N., Boaretto, E. et al. 2014. Investigating pre-agricultural dynamics in the Levant: A new, stratified epipaleolithic site at ‘Ein Qashish South, Jezreel Valley, Israel. Antiquity (Gallery) 88. http://journal.antiquity.ac.uk/projgall/yaroshevich342Google Scholar
Zviely, D., Sivan, D., Ecker, A. et al. 2006. The Holocene evolution of the Haifa Bay area, Israel, and its influence on ancient human settlements. Holocene 16: 849–61.Google Scholar

References

Aitken, M.J. 1998. An Introduction to Optical Dating. Oxford: Oxford University Press.Google Scholar
Amit, R., Simhai, O., Ayalon, A. et al. 2011. Transition from arid to hyper-arid environment in the southern Levant deserts as recorded by early Pleistocene cummulic Aridisols. Quaternary Science Reviews 30: 312323.Google Scholar
Arkin, Y. & Braun, M. 1965. Type Sections of Upper Cretaceous Formations in the Northern Negev (Southern Israel). Stratigraphic Sections 2. Jerusalem: Israel Geological Survey.Google Scholar
Avni, Y. 1991. The geology, paleogeography and the landscape evolution of the central Negev Highlands and the western Ramon structure. Geological Survey of Israel GSI/6/91 [Hebrew, English abstract].Google Scholar
Avni, Y. 1998. Paleogeography and tectonics of the central Negev and the Dead Sea Rift western margin during the late Neogene and Quaternary. Geological Survey of Israel Report GSI/24/98 [Hebrew, English abstract].Google Scholar
Avni, Y. 2001. The Geological Map of Israel (1:50,000) Har Loz Sheet (21-III).Google Scholar
Avni, Y. & Weiler, N. 2013. The Geological Map of Israel (1:50,000) Sede Boqer Sheet (18-IV).Google Scholar
Avni, Y. & Zilberman, E. 2007. Landscape evolution triggered by neotectonics in the Sede Zin region, Central Negev, Israel. Israel Journal of Earth Sciences 55: 189208.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000a. Evolution of the Paran drainage basin and its relations to the Plio-Pleistocene history of the Arava Rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Avni, Y., Porat, N. & Amit, R. 2000b. Morphostratigraphy, soil chrono-sequence and luminescence dating of Pleistocene terraces in Nahal Paran, central Negev, Israel. Israel Geological Society Annual Meeting Abstracts, p. 10.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2001. The Arava Formation – a Pliocene sequence in the Arava Valley and its western margin, southern Israel. Israel Journal of Earth Sciences 50: 101–20.Google Scholar
Avni, Y., Segev, A. & Ginat, H. 2012a. Oligocene regional denudation of the northern Afar dome: Pre and syn breakup stages of the Afro-Arabian plate. Geological Society of America Bulletin 124(11/12): 1971–87.Google Scholar
Avni, Y., Porat, N. & Avni, G. 2012b. Pre-farming environment and OSL chronology in the Negev Highlands, Israel. Journal of Arid Environments 86: 1227.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 439–42.Google Scholar
Bertrams, M., Protze, J., Lohrer, R. et al. 2012. Multiple environmental change at the time of the Modern Human passage through the Middle East: First results from geoarcheological investigations on Upper Pleistocene sediments in the Wadi Sabra (Jordan). Quaternary International 274: 5572.Google Scholar
Bowman, D., Karnieli, A., Issar, A. & Bruins, H.J. 1986. Residual colluvio-aeolian aprons in the Negev Highlands (Israel) as a paleo-climatic indicator, Paleogeography, Paleoclimatology, Paleoecology 56: 89101.Google Scholar
Braun, M. 1967. Type Sections of Avedat Group, Eocene Formations in the Negev (Southern Israel). Stratigraphic Sections 4. Jerusalem: Israel Geological Survey.Google Scholar
Bridgland, D.R., Westaway, R., Abou Romieh, M. et al. 2012. The River Orontes in Syria and Turkey: Downstream variation of fluvial archives in different crustal blocks. Geomorphology 165166: 2549.Google Scholar
Bruins, H.J. 2012 Ancient desert agriculture in the Negev and climate-zone boundary changes during average, wet and drought years. Journal of Arid Environments 86: 2842.Google Scholar
Bruins, H.J. & Yaalon, D.H. 1979. Stratigraphy of the Netivot section in the desert loess of the Negev, Israel. Acta Geologica Academiae Scientiarum Hungarica 22: 161–9.Google Scholar
Bruins, H.J. & Yaalon, D.H. 1992. Parallel advance of slopes in aeolian loess deposits of the northern Negev, Israel. Israel Journal of Earth Sciences 41: 189–99.Google Scholar
Bull, W.B. 1991. Geomorphic Responses to Climatic Change. New York: Oxford University Press.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hill top loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research – Earth Surface 114: F02017.Google Scholar
Crouvi, O., Amit, R., Enzel, Y. & Gillespie, A.R. 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews 29: 2087–98.Google Scholar
Davidovich, U., Porat, N., Gadot, Y., Avni, Y. & Lipschits, O. 2012. Archaeological investigations and OSL dating of terraces at Ramat Rahel, Israel. Journal of Field Archaeology 37: 192208.Google Scholar
Demir, T., Seyrek, A., Westaway, R. et al. 2012. Late Cenozoic regional uplift and localized crustal deformation within the northern Arabian Platform in southeast Turkey: Investigation of the Euphrates terraces staircase using multidisciplinary techniques. Geomorphology 165166: 724.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Enzel, Y., Amit, R., Drodek, T. et al. 2012. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An ‘impact of climatic change on an arid watershed’? Geological Society of America Bulletin 124: 705–22.Google Scholar
Faershtein, G. 2012. Aggradation–Incision Relationship in the Late Pleistocene in Negev Highlands, Southern Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew, English abstract].Google Scholar
Folk, R.L. 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. The Journal of Geology 62: 344–59.Google Scholar
Gerson, R., Grossman, S. & Bowman, D. 1985. Stages in the creation of a large rift valley, geomorphic evolution along the southern Dead Sea Rift. In Tectonic Geomorphology, ed. Morisawa, M. & Hack, J.T.. Boston: Allen & Unwin, pp. 5373.Google Scholar
Ginat, H. 1997. Paleogeography and landscape evolution of the Nahal Hiyyon and Nahal Zihor basins (sedimentology, climatic and tectonic aspects). Geological Survey of Israel Report GSI/19/97 [Hebrew, English abstract].Google Scholar
Goldberg, P. 1986. Late Quaternary environmental history of the southern Levant. Geoarchaeology 1: 225–44.Google Scholar
Goldreich, Y. 2003. The Climate of Israel: Observation, Research and Application. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Guralnik, B., Matmon, A., Porat, N. & Fink, D. 2011. Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data. Quaternary Geochronology 6: 2232.Google Scholar
Green, C.P. & McGregor, D.F.M. 1987. River terraces: A stratigraphic record of environmental change. In International Geomorphology 1986, Part I, ed. Gardiner, V. & British Geomorphological Research Group. Chichester and New York: Wiley, pp. 977–87.Google Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York: Academic Press.Google Scholar
Marks, A.E. 1983. Prehistory and paleoenvironments of the central Negev, Israel. In The Avdat/Aqev Area, Part 3, vol. III, ed. Marks, A.E.. Dallas: Southern Methodist University Press.Google Scholar
McLaren, S.J., Gilbertson, D.D., Grattan, J.P. et al. 2004. Quaternary palaeogeomorphologic evolution of the Wadi Faynan area, southern Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology 205: 131–54.Google Scholar
Merritts, D. 2007. Fluvial environments: Terrace sequences. In Encyclopedia of Quaternary Science, ed. Elias, S.A. Elsevier, pp. 694704.Google Scholar
Issar, A.S. & Bruins, H.J. 1983. Special climatological conditions in the deserts of Sinai and the Negev during the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 43: 6372.Google Scholar
Issar, A., Kamieli, A., Bruins, H.J. & Gilead, I. 1984. The Quaternary geology and hydrology of Sede Zin. Negev. Israel. Israel Journal of Earth Sciences 33: 3442.Google Scholar
Trifonov, V.G., Bachmanov, D.M., Simakova, A.N. et al. 2014. Dating and correlation of the Quaternary fluvial terraces in Syria, applied to tectonic deformation in the region. Quaternary International 328329: 7493.Google Scholar
Kahana, R., Ziv, B., Enzel, Y. & Dayan, U. 2002. Synoptic climatology of major floods in the Negev Desert, Israel. International Journal of Climatology 22: 867–82.Google Scholar
Plakht, J. 1996. Mapping of Quaternary units in Makhtesh Ramon. Israel Journal of Earth Sciences 45: 217–22.Google Scholar
Plakht, J. 2000. Quaternary units in Makhteshim, Negev Desert: Similarities and peculiarities. Israel Journal of Earth Sciences 49: 179–87.Google Scholar
Plakht, J. 2001. Relief structure and the Quaternary history of the Makhteshim. In The Makhteshim Country: A Laboratory of Nature, ed. Krasnov, B & Mazor, E. Pansoft, pp. 5984.Google Scholar
Plakht, J. 2003. Quaternary maps of Makhtesh Hatira and Makhtesh Hazera, Negev Desert. Israel Journal of Earth Sciences 52: 31–8.Google Scholar
Schumm, S.A. 1977. The Fluvial System. New York and London: Wiley.Google Scholar
Sharon, D. & Kutiel, H. 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Hydrology 6: 277–91.Google Scholar
Sheinkman, V., Plakht, J. & Mazor, E. 2001. Makhtesh Hazera, the Zin Valley and the Dead Sea Basin: Evolutionary links. In The Makhteshim Country: A Laboratory of Nature, ed. Krasnov, B. & Mazor, E.. Pansoft, pp. 97104.Google Scholar
Stein, M. 2014. The evolution of Neogene–Quaternary water-bodies in the Dead Sea Rift Valley. In Dead Sea Transform Fault System: Reviews, ed. Garfunkel, Z., Ben-Avraham, Z. & Kagan, E., Modern Approaches in Solid Earth Sciences 6. Dordrecht: Springer, pp. 279315. doi:10.1007/978–94–017–8872–4-10.Google Scholar
Torfstein, A., Goldstein, S.L., Stein, M. & Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2006. Palaeoclimate and location of border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249: 384–99.Google Scholar
Yair, A. & Enzel, E. 1987. The relationship between annual rainfall and sediment yield in arid and semi-arid areas: The case of the northern Negev. Catena 10: 121–35.Google Scholar
Zilberman, E. 1991. Landscape evolution in the central, northern and northwestern Negev during the Neogene and the Quaternary. Geological Survey of Israel Report GSI/45/90 [Hebrew, English abstract].Google Scholar
Zilberman, E. 1992. Remnants of Miocene landscape in the central and northern Negev and their paleogeographic implications. Geological Survey of Israel Bulletin 83.Google Scholar
Zilberman, E. 1993. The late Pleistocene sequence of the northwestern Negev flood plains – a key to reconstructing the palaoclimate of southern Israel in the last glacial. Israel Journal of Earth Sciences 41: 155–68.Google Scholar

References

Aisenstein, B. 1951. Geological Interpretation of Grading Diagrams of Some Loessial Deposits in the Negev. Ministry of Agriculture.Google Scholar
Aisenstein, B. 1959. Some physical properties of loess soils in Israel: Bulletin of the Research Council of Israel, Section G. Geo-Sciences 8: 135–41.Google Scholar
Amit, R., Enzel, Y., Crouvi, O. et al. 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 873–89.Google Scholar
Amit, R., Enzel, Y., Mushkin, A. et al. 2013. Linking coarse silt production in Asian sand deserts and Quaternary accretion of the Chinese loess plateau. Geology 42: 23–6.Google Scholar
Assallay, A.M., Rogers, C.D.F., Smalley, I.J. & Jefferson, I.F. 1998. Silt: 2–62 micron, 9–4 pi. Earth-Science Reviews 45: 6188.Google Scholar
Avni, Y. 2005. Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 63: 185220.Google Scholar
Avni, Y., Porat, N., Plakht, J. & Avni, G. 2006. Geomorphic changes leading to natural desertification versus anthropogenic land conservation in an arid environment, the Negev Highlands, Israel. Geomorphology 82: 177200.Google Scholar
Bartov, J. 1990. Geological Photomap of Israel and Adjacent Areas, Scale 1:750,000. Jerusalem: Geological Survey of Israel.Google Scholar
Barzilai, O., Agha, N. & Crouvi, O. 2010. The Pre-Historic site at Emek Rephaim (area C), Jerusalem. In New Studies in the Archaeology of Jerusalem and its Region, Vol. 4, ed. Amit, D., Peleg-Barkat, O. & Shtibel, G.. Jerusalem: Israel Antiquities Authority, p. 31–9 (Hebrew).Google Scholar
Bayer, J. 1917. Die Faustkeilkultur von Judaa. Mitteilungen der Anthropologischen Gesellschaft in Wien 48: 16.Google Scholar
Ben David, R. 2003. Changes in Desert Margin Environments during the Climate Changes of the late Quaternary: Interaction between Drainage Systems and the Accumulation of Dust (Loess) and the Invasion of Dunes at the North-West Negev Desert. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Ben Israel, M., Enzel, Y., Amit, R. & Erel, Y. 2015. Provenance of the vari-ous grain-size fractions in the Negev loess and potential changes in major dust sources to the eastern Mediterranean. Quaternary Research 83: 105–15.Google Scholar
Boroda, R., Amit, R., Matmon, A. et al. 2011. Quaternary-scale evolution of sequences of talus flatirons in the hyperarid Negev. Geomorphology 127: 4152.Google Scholar
Bowman, D., Karnieli, A., Issar, A. & Bruins, H.J. 1986. Residual colluvio-aeolian aprons in the Negev highlands (Israel) as a palaeo-climatic indicator. Palaeogeography, Palaeoclimatology, Palaeoecology 56: 89101.Google Scholar
Bruins, H. J. & Yaalon, D.H. 1979. Stratigraphy of the Netivot section in the desert loess of the Negev (Israel). In Studies on Loess 22(1–4), ed. Kardoss, E. Szadeczky. Budapest: Akademiai Kiado, pp. 161–9.Google Scholar
Bullard, J.E., McTainsh, G. & Pudmenzky, C. 2004. Aeolian abrasion and modes of fine particle production from natural red dune sands: An experimental study. Sedimentology 51: 1103–25.Google Scholar
Bullard, J.E., McTainsh, G. & Pudmenzky, C. 2007. Factors affecting the nature and rate of dust production from natural dune sands. Sedimentology 54: 169–82.Google Scholar
Coude-Gaussen, G. 1987. The peri-Saharan loess: Sedimentological characterization and paleoclimatical significance. GeoJournal 15: 177–83.Google Scholar
Crouvi, O. 2009. Sources and Formation of Loess in the Negev Desert during the Late Quaternary, with Implications for Other Worldwide Deserts. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research 114: F02017.Google Scholar
Crouvi, O., Amit, R., Enzel, Y. & Gillespie, A.R. 2010. The role of active sand seas in the formation of desert loess. Quaternary Science Reviews 29: 2087–98.Google Scholar
Dan, J. 1966. The Effect of Relief on Soil Formation and Distribution in Israel. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Dan, J. 1968. The Soils of Judea and Samaria. Jerusalem: Volcani Institute of Agriculture.Google Scholar
Dan, J. & Raz, Z. 1970. The Soil Association Map of Israel (Scale 1:250,000). Jerusalem: Volcani Institute.Google Scholar
Dan, J., Moshe, R. & Alperovitch, N. 1973. The soils of Sede Zin. Israel Journal of Earth Sciences 22: 211–27.Google Scholar
Dan, J., Gerson, R., Koyumdjisky, H. & Yaalon, D.H. 1981. Aridic Soils of Israel; Properties, Genesis and Management. Bet Dagan: Agriculture Research Organization.Google Scholar
Dutta, P.K., Zhou, Z. & dos Santos, P.R. 1993. A theoretical study of mineralogical maturation of eolian sand. In Processes Controlling the Composition of Clastic Sediments, ed. Johnsson, M.A. & Basu, A., GSA Special Paper 284. Washington: Geological Society of America, pp. 203–9.Google Scholar
Eisenberg, J. 1980. The Effects of Parent Material, Exposure and Relief on Soil and Vegetation Characteristics in the Beeri Badlands of the Northern Negev. Unpublished M.Sc. thesis, University of Tel-Aviv.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Gerson, R. & Amit, R. 1987. Rates and modes of dust accretion and depos-ition in an arid region – the Negev, Israel. In Desert Sediments: Ancient and Modern, ed. Frostick, L. & Reid, I., Geological Society Special Publication Vol. 35. London: Geological Society, pp. 157–69.Google Scholar
Ginzburg, D. & Yaalon, D.H. 1963. Petrography and origin of the loess in the Be'er Sheva Basin. Israel Journal of Earth Sciences 12: 6870.Google Scholar
Goldberg, P. 1986. Late Quaternary environmental history of the southern Levant. Geoarcheology 1: 225–44.Google Scholar
Goodfriend, G.A. & Magaritz, M. 1988. Paleosols and late Pleistocene rainfall fluctuations in the Negev Desert. Nature 322: 144–6.Google Scholar
Goring-Morris, N. & Goldberg, P. 1990. Late Quaternary dune incursions in the southern Levant: Archeology, chronology and paleoenvironments. Quaternary International 5: 115–37.Google Scholar
Hall, J.K. 1980. Bathymetric Chart of the Southeastern Mediterranean Sea. Geological Survey of Israel GSI-Marine Geology Division Report MG/13/80.Google Scholar
Israel Meteorological Service 1990. Standard Climatological Normals of Rainfall 1961–1990. Department of Climatological Services.Google Scholar
Issar, A.S. & Bruins, H.J. 1983. Special climatological conditions in the deserts of Sinai and the Negev during the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 43: 6372.Google Scholar
Issar, A., Karnieli, A., Bruins, H.J. & Gilead, I. 1984. The Quaternary geology and hydrology of Sede Zin, Negev, Israel. Israel Journal of Earth-Sciences 33: 3442.Google Scholar
Kemp, R.A. 2001. Pedogenic modification of loess: Significance for palaeoclimatic reconstructions. Earth-Science Reviews 54: 145–56.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the upper Pleistocene along the desert boundary southern Israel. Paleogeography, Paleoclimatology, Paleoecology 53: 213403.Google Scholar
Mahowald, N.M., Muhs, D.R., Levis, S. et al. 2008. Change in atmospheric mineral aerosols in response to climate: Last glacial period, pre-industrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research 111: D10202.Google Scholar
Marish, S., Teomim, N., Dan, J., Koyumdjisky, H. & Alperowitz, N. 1978. Soil Survey in the Northern-Western Negev Desert. Jerusalem: The Ministry of Agriculture.Google Scholar
Mason, J.A. 2001. Transport direction of Peoria loess in Nebraska and implications for loess sources on the central Great Plains. Quaternary Research 56: 7986.Google Scholar
Mason, J.A., Jacobs, P.M., Hanson, P.R., Miao, X. & Goble, R.J. 2003. Sources and paleoclimatic significance of Holocene Bignell loess, central Great Plains, USA. Quaternary Research 60: 330–9.Google Scholar
McDonald, E.V. & Busacca, A.J. 1990. Interaction between aggrading geomorphic surfaces and the formation of a Late Pleistocene paleosol in the Palouse loess of eastern Washington state. Geomorphology 3: 449–70.Google Scholar
McTainsh, G. 1987. Desert loess in northern Nigeria. Zeitschrift fur Geomorphologie. N. F. 31: 145–65.Google Scholar
Muhs, D.R. 2007. Loess deposits, origins and properties. In Encyclopedia of Quaternary Science, ed. Elias, S.A.. Elsevier, pp. 1405–18.Google Scholar
Muhs, D.R. & Bettis, A.E.I. 2003. Quaternary loess–paleosol sequences as example of climate-driven sedimentary extremes. In Extreme Depositional Environments: Mega End Members in Geologic Time, ed. Chan, M.A. & Archer, A.W., Geological Society of America Special Paper 370. Geological Society of America, pp. 5374.Google Scholar
Muhs, D.R., McGeehin, J.P., Beann, J. & Fisher, E. 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61: 265–76.Google Scholar
Muhs, D.R., Roskin, J., Tsoar, H. et al. 2013. Origin of the Sinai–Negev erg, Egypt and Israel: Mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69: 2848.Google Scholar
Muhs, D.R., Cattle, S.R., Crouvi, O. et al. 2015. Loess records. In Mineral Dust: A Key Player in the Earth System, ed. Knippertz, P. & Stuut, J.-B.W. Springer, pp. 411–41.Google Scholar
Picard, L. 1943. Structure and evolution of Palestine (with comparative notes on neighbouring countries). Bulletin of the Geological Department, Hebrew Univeristy of Jersualem IV: 1134.Google Scholar
Picard, L. & Solomonica, P. 1936. On the geology of the Gaza–Beersheba district. Journal of Palestine Oriental Society 16: 180223.Google Scholar
Price Williams, D. 1975. The environmental background to prehistoric sites in the Fara region. University of London Bulletin Institute of Archeology 12: 125–43.Google Scholar
Pye, K. 1984. Some perspectives on loess accumulation. Loess Letters 11: 510.Google Scholar
Pye, K. 1987. Aeolian Dust and Dust Deposits. New York: Academic Press.Google Scholar
Pye, K. & Tsoar, H. 1987. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel. In Desert Sediments: Ancient and Modern, ed. Frostick, L. & Reid, I., Geological Society Special Publication 35. Oxford: Blackwell, pp. 139–56.Google Scholar
Range, P. 1922. Die Kustenebene Palastinas. Berlin: Gesellschaft für Palästina-Forschung.Google Scholar
Ravikovitch, S. 1952. The Aeolian Soils of the Northern Negev. Jerusalem: Volcani Institute of Agriculture.Google Scholar
Reifenberg, A. 1926. Report of an Expedition to Southern Palestine. Jerusalem: HaMadpis.Google Scholar
Reifenberg, A. 1938. The Soils of Palestine. Jerusalem: Rubin Mass.Google Scholar
Roberts, H.M., Muhs, D.R., Wintle, A.G., Duller, G.A.T. & Bettis, A.E.I. 2003. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. Quaternary Research 59: 411–19.Google Scholar
Roskin, J., Tsoar, H., Porat, N. & Blumberg, D. 2011. Palaeoclimate interpretations of Late Pleistocene vegetated linear dune mobilization episodes: Evidence from the northwestern Negev dunefield, Israel. Quaternary Science Reviews 30: 3364–80.Google Scholar
Roskin, J., Katra, I., Porat, N. & Zilberman, E. 2013. Evolution of Middle to Late Pleistocene sandy calcareous paleosols underlying the northwestern Negev Desert Dunefield (Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 387: 134–52.Google Scholar
Rousseau, D.D., Antoine, P., Kunesch, S. et al. 2007. Evidence of cyclic dust deposition in the US Great Plains during the last deglaciation from the high-resolution analysis of Peoria loess in the Eustis sequence (Nebraska, USA). Earth and Planetary Science Letters 262: 159–74.Google Scholar
Smalley, I.J. 1995. Making the material: The formation of silt-sized primary mineral particles for loess deposits. Quaternary Science Reviews 14: 645–51.Google Scholar
Smalley, I.J. & Krinsley, D.H. 1978. Loess deposits associated with deserts. Catena 5: 5366.Google Scholar
Smith, B.J., Wright, J.S. & Whalley, W.B. 2002, Sources of non-glacial, loess-size quartz silt and the origins of ‘desert loess’. Earth-Science Reviews 59: 126.Google Scholar
Sneh, A. 1983. Redeposited loess from the Quaternary Besor Basin, Israel. Israel Journal of Earth-Sciences 32: 63–9.Google Scholar
Sweeney, M.R., McDonald, E. & Markley, C.E. 2013. Alluvial sediment or playas: What is the dominant source of sand and silt in desert soil vesicular A horizons, southwest USA. Journal of Geophysical Research 118: 257–75.Google Scholar
Tsoar, H. & Pye, K. 1987. Dust transport and the question of desert loess formation. Sedimentology 34: 139–53.Google Scholar
Vroman, J. 1944. The petrology of sandy sediments of Palestine. Bulletin of the Geological Department, Hebrew Univeristy of Jersualem V: 111.Google Scholar
Whalley, W.B., Marshall, J.R. & Smith, B.J. 1982. Origin of desert loess from some experimental observations. Nature 300: 433–5.Google Scholar
Wieder, M. & Gvirtzman, G. 1999. Micromorphological indications on the nature of the late Quaternary paleosols in the southern coastal plain of Israel. Catena 35: 219–37.Google Scholar
Wieder, M., Gvirtzman, G., Porat, N. & Dassa, M. 2008. Paleosols of the southern coastal plain of Israel. Journal of Plant Nutrition and Soil Science 171: 533–41.Google Scholar
Wright, J.S. 2001a. ‘Desert’ loess versus ‘glacial’ loess: Quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36: 231–56.Google Scholar
Wright, J.S. 2001b. Making loess-sized quartz silt: Data from laboratory simulations and implications for sediment transport pathways and the formation of ‘desert’ loess deposits associated with the Sahara. Quaternary International 76/77: 719.Google Scholar
Yaalon, D.H. 1969. Origin of desert loess. Etudes sur le Quaternaire dans le Monde, Vol. 2. Paris: Association Francaise pour l'Etude du Quaternaire, p. 755.Google Scholar
Yaalon, D.H. 1987. Saharan dust and desert loess: Effect on surrounding soils. Journal of African Earth Sciences 6: 569–71.Google Scholar
Yaalon, D.H. & Dan, J. 1974. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Zeitschrift fur Geomorphologie Supplementband 20: 91105.Google Scholar
Yaalon, D.H., & Ganor, E. 1973. The influence of dust on soils during the Quaternary. Soil Science 116: 146–55.Google Scholar
Yaalon, D.H. & Ganor, E. 1979. East Mediterranean trajectories of dust-carrying storms from the Sahara and Sinai. In Saharan Dust, ed. Morales, C.. Chichester: John Wiley and Sons, pp. 187–93.Google Scholar
Yair, A. & Enzel, Y. 1987. The relationship between annual rainfall and sediment yield in arid and semi-arid areas; the case of the northern Negev. Catena Supplement 10: 121–35.Google Scholar
Zilberman, E. 1991. Landscape evolution in the central, northern and northwestern Negev during the Neogene and the Quaternary. Geological Survey of Israel Report GSI/45/90.Google Scholar
Zilberman, E. 1992. The Late Pleistocene sequence of the northwestern Negev flood plains – a key to reconstructing the paleoclimate of southern Israel in the last glacial. Israel Journal of Earth Science 41: 155–67.Google Scholar

References

Abu Bakr, M., Ghoneim, E., El-Baz, F., Zeneldinc, M. & Zeid, S. 2013. Use of radar data to unveil the paleo-lakes and the ancestral course of Wadi El-Arish, Sinai Peninsula, Egypt. Geomorphology 194: 3445.Google Scholar
Alpert, P. & Ziv, B. 1989. The Sharav cyclone: Observations and some theoretical considerations. Journal of Geophysical Research: Atmos-pheres 94: 18495–514.Google Scholar
Amit, R., Enzel, Y., Porat, N., Gillespie, A.R. & McDonald, V.E. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research: Earth Surface 114: F02017.Google Scholar
Amit, R., Enzel, Y., Crouvi, O. et al. 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 837–89.Google Scholar
Ben Israel, M., Enzel, Y., Amit, R. & Erel, Y. 2014. Provenance of the Negev loess with implication to changes in major dust sources to the eastern Mediterranean. Quaternary Research 83: 105–15.Google Scholar
Biscaye, P.E., Grousset, F.E., Revel, M. et al. 1997. Asian provenance of last glacial maximum dust in the GISP-2 ice core, Summit, Greenland. Journal of Geophysical Research 102: 26765–81.Google Scholar
Blum, J.D. & Erel, Y. 1997. Rb–Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochimica et Cosmochimica Acta 61: 3193–204.Google Scholar
Blum, J.D. & Erel, Y. 2003. Radiogenic isotopes in weathering and hydrology. In Surface and Ground Water, Weathering, Erosion and Soils, ed. Drever, J.I.. Treatise on Geochemistry vol. 5. Oxford: Elsevier.Google Scholar
Boher, M., Abouchami, W., Michard, A., Albarede, F. & Arndt, N.T. 1992. Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research 97: 345–69.Google Scholar
Bollhofer, A. & Rosman, K.J.R. 2000. Isotopic source signatures for atmos-pheric lead: The Southern Hemisphere. Geochimica et Cosmochimica Acta 64: 3251–62.Google Scholar
Bollhofer, A. & Rosman, K.J.R. 2001. Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochimica et Cosmochimica Acta 65: 1727–37.Google Scholar
Bory, A., Biscaye, P.E., Grousset, F.E. 2003. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophysical Research Letters 30: 1167.Google Scholar
Bruins, H.J. 1976. The Origin, Nature and Stratigraphy of Paleosols in the Loessial Deposits of the NW-Negev (Netivot, Israel). Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Bruins, H. & Yaalon, D. 1979. Stratigraphy of the Netivot section in the desert loess of the Negev (Israel). Acta Geologica Academiae Scientiarum Hungaricae 22: 161–9.Google Scholar
Cole, J.M., Goldstein, S.L., deMenocal, P.B., Hemming, S.R. & Grousset, F.E. 2009. Contrasting compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and African Humid Period. Earth and Planetary Science Letters 278: 257–66.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research 114: F02017.Google Scholar
Dasch, E.J. 1969. Strontium isotopes in weathering profiles, deep-sea sedi-ments and sedimentary rocks. Geochimica et Cosmochimica Acta 33: 1521–52.Google Scholar
Dayan, U. 1986. Climatology and back trajectories from Israel based on synoptic analysis. Journal of Applied Meteorology and Climatology 25: 591–5.Google Scholar
Dayan, U. & Levy, I. 2005. The influence of seasonal meteorological conditions and atmospheric circulation types on PM10 and visibility in Tel-Aviv, Israel. Journal of Applied Meteorology 44: 606–19.Google Scholar
Dayan, U., Ziv, B., Shoop, T. & Enzel, Y. 2007. Suspended dust over south-eastern Mediterranean and its relation to atmospheric circulations. International Journal of Climatology 28: 915–24.Google Scholar
Downing, G.E. & Hemming, S.R. 2012. Late glacial and deglacial history of ice rafting in the Labrador Sea: A perspective from radiogenic isotopes in marine sediments. The Geological Society of America Special Paper 487: 113–24.Google Scholar
Enzel, Y., Ken-Tor, R., Sharon, D. et al. 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and regional winter rainfall. Quaternary Research 60: 26373.Google Scholar
Erel, Y., Dayan, U., Rabi, R., Rudich, Y. & Stein, M. 2006. Trans boundary transport of pollutants by atmospheric mineral dust. Environmental Science & Technology 40: 29963005.Google Scholar
Faure, G. 1986. Principles of Isotope Geology. New York: Wiley.Google Scholar
Frumkin, A. & Stein, M. 2004. The Sahara–east Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth and Planetary Science Letters 217: 451–64.Google Scholar
Ganor, E. 1991. The composition of clay minerals transported to Israel as indicators of Saharan dust emission. Atmospheric Environment 25A: 2657–64.Google Scholar
Ganor, E. & Foner, H. 1996. The mineralogical and chemical properties and the behavior of aeolian Saharan dust over Israel. In The Impact of Desert Dust across the Mediterranean, ed. Guerzoni, S. & Chester, R.. Dordrecht: Springer Netherlands, pp. 163–71.Google Scholar
Ganor, E. & Mamane, Y. 1982. Transport of Saharan dust across the eastern Mediterranean. Atmospheric Environment 16: 581–7.Google Scholar
Goldstein, S.L., O'Nions, R.K., Hamilton, P.J. 1984. A Sm–Nd isotopic study of dusts and particulates from major river systems. Earth and Planetary Science Letters 70: 221–36.Google Scholar
Grousset, F.E. & Biscaye, P.E. 1989. Nd and Sr isotopes as tracers of wind transport in Atlantic aerosols and surface sediments. In NATO Advanced Research Workshop: Paleoclimatology and Paleometeor-ology: Modern and Past Patterns of Global Atmospheric Transport, vol. 282, ed. Leinen, M. & Sarnthein, M.. Dordrecht: Kluwer Academic Publishers, pp. 385400.Google Scholar
Grousset, F.E. & Biscaye, P.E. 2005. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chemical Geology 222: 149–67.Google Scholar
Grousset, F.E., Biscaye, P.E., Zindler, A., Prospero, J. & Chester, R. 1988. Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth and Planetary Science Letters 87: 367–78.Google Scholar
Grousset, F.E., Rognon, P., Coudé-Gaussen, G. & Pédemay, Ph. 1992. Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition. Paleogeography, Paleoclimatology, Paleoecology 93: 203–12.Google Scholar
Grousset, F.E., Parra, M., Bory, A. et al. 1998. Saharan wind regimes traced by the Sr–Nd isotopic composition of the subtropical Atlantic sediments: Last Glacial Maximum vs. today. Quaternary Science Reviews 17: 395409.Google Scholar
Grousset, F.E., Pujol, C., Labeyrie, L., Auffret, G. & Boelaert, A. 2000. Were the North Atlantic Heinrich events triggered by the behavior of the European ice sheets? Geology 28: 123–6.Google Scholar
Haase-Schramm, A., Goldstein, S.L. & Stein, M. 2004. U–Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68: 9851005.Google Scholar
Haliva-Cohen, A., Stein, M., Goldstein, S.L., Sandler, A. & Starinsky, A. 2012. Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea Basin. Quaternary Science Reviews 50: 5570.Google Scholar
Hemming, S. 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global imprint. Review of Geophysics 42: 143.Google Scholar
Israelevich, P.L., Levin, Z., Joseph, J.H. & Ganor, E. 2002. Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index. Journal of Geophysical Research – Atmospheres 107: 108–20.Google Scholar
Jin-Liang, F., Li-Ping, Z., Xiao-Lin, Z. & Zhao Guo, H. 2009. Grain size effect on Sr and Nd isotopic compositions in eolian dust: Implications for tracing dust provenance and Nd model age. Geochemical Journal 43: 123–31.Google Scholar
Kalderon, B. 2005. Mineralogical and Chemical Characterization of Aerosols Transported to Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Kalderon-Asael, B., Erel, Y., Sandler, A. & Dayan, U. 2009. Mineralogical and chemical characterization of suspended atmospheric par-ticles over the east Mediterranean based on synoptic-scale circulation patterns. Atmospheric Environment 43: 3963–70.Google Scholar
Krom, M.D., Cliff, R.A., Eijsink, L.M., Herut, B. & Chester, R. 1999. The characterisation of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes. Marine Geology 155: 319–30.Google Scholar
Meyer, I., Davies, G.R. & Stuut, J.B.W. 2011. Grain size control on Sr–Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep-sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems 12: 14.Google Scholar
Muhs, D.R., Prospero, J.M., Baddock, M.C. & Gill, T.E. 2014. Identifying sources of aeolian mineral dust: Present and past. In Mineral Dust: A Key Player in the Earth System, ed. Knippertz, P. & Stuut, J.-B.W.. Springer Science Business Media, pp. 5174.Google Scholar
Murozumi, M., Chow, T.J. & Patterson, C. 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta 33: 1247–294.Google Scholar
Palchan, D., Stein, M., Almogi-Labin, A., Erel, Y. & Goldstein, S.L. 2013. Dust transport and synoptic conditions over the Sahara–Arabia deserts during the MIS 6/5 and 2/1 transitions from grain-size, chemical and isotopic properties of Red Sea cores. Earth and Planetary Science Letters 382: 125–39.Google Scholar
Potrel, A., Peucat, J.J., Mark Fanning, C. et al. 1996. 3.5 Ga old terranes in the west African craton, Mauritania. Journal of Geological Society 152: 507–10.Google Scholar
Prospero, J. M., Ginoux, P., Torres, N., Sharon, E. & Thomas, E. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Review of Geophysics 40: 1002.Google Scholar
Rabi, R. 2004. Geochemical Characterization of Suspended Desert Dust in Israel. Unpublished M.Sc. thesis, Hebrew University of Jerusalem.Google Scholar
Rasmussen, S.O., Seierstad, I.K., Andersen, K.K. et al. 2008. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quaternary Science Reviews 27: 1828.Google Scholar
Revel, M., Ducassou, E., Grousset, F.E. et al. 2010. 100,000 years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews 29: 1342–62.Google Scholar
Rognon, P., Coudé-Gaussen, G., Revel, M., Grousset, F.E. & Pédemay, P. 1996. Holocene Saharan dust deposition on the Cape Verde Islands: sedimentological and Nd–Sr isotopic arguments. Sedimentology 43: 359–66.Google Scholar
Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. 2013. Bulk composition of northern African dust and its source sediments – a compilation. Earth Science Reviews 116: 170–94.Google Scholar
Singer, A., Dultz, S. & Argaman, E. 2004. Properties of the non-soluble fractions of suspended dust over the Dead Sea. Atmospheric Environment 38: 1745–53.Google Scholar
Starinsky, A., Bielski, M., Lazar, B., Wakshal, E. & Steinitz, G. 1980. Marine 87Sr/86Sr ratios from the Jurassic to Pleistocene: Evidence from ground water in Israel. Earth and Planetary Science Letters 47: 7580.Google Scholar
Stein, M., Starinsky, A., Katz, A. et al. 1997. Strontium isotopic, chemical and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica et Cosmochimica Acta 61: 3975–92.Google Scholar
Stein, M., Almogi-Labin, A., Goldstein, S.L., Hemleben, C. & Starinsky, A. 2007. Late Quaternary changes in desert dust inputs to the Red Sea and Gulf of Aden from 87Sr/86Sr ratios in deep-sea cores. Earth and Planetary Science Letters 261: 104–19.Google Scholar
Svensson, A., Biscaye, P.E. & Grousset, F.E. 2000. Characterization of late glacial continental dust in the Greenland Ice Core project ice core. Journal of Geophysical Research 105: 4637–656.Google Scholar
Torfstein, A., Goldstein, S.L., Kagan, E.J. & Stein, M. 2013. Integrated multi-site U–Th chronology of the last glacial Lake Lisan. Geochimica et Cosmochimica Acta 104: 210–31.Google Scholar
Torfstein, A., Goldstein, S.L., Kushnir, Y. et al. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412: 235–44.Google Scholar
Yaalon, D.H. 1987. Saharan dust and desert loess: Effect on surrounding soils. Journal of African Earth Science 6: 569–71.Google Scholar
Yaalon, D. & Dan, J. 1974. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Zeitschrift für Geomorphologie 20: 91105.Google Scholar
Yaalon, D.H. & Ganor, E. 1973. The influence of dust on the soils during the Quaternary. Soil Science 116: 146–55.Google Scholar

References

Amit, R., Enzel, Y., Crouvi, O. et al. 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 873–89.Google Scholar
Baruch, U. 1999. The contribution of palynology and anthracology to archaeological research in the southern Levant. In The Practical Impact of Science on Near Eastern and Aegean Archaeology, ed. Pike, S. & Gittin, S., Weiner Laboratory Monographs 3. London: Archetype Publications, pp. 1728.Google Scholar
Baruch, U. & Goring-Morris, A.N. 1997. The arboreal vegetation of the central Negev Highlands, Israel, at the end of the Pleistocene: Evidence from archaeological charred wood remains. Vegetation History and Archaeobotany 6: 249–59.Google Scholar
Bar-Yosef, O. 1981. The Epi-palaeolithic complexes in the southern Levant. In Préhistoire du Levant: Chronologie et l'organisation de l'espace depuis les origines jusqu'au VIème millénaire, ed. Cauvin, J. & Sanlaville, P., Colloques Internationaux du CNRS. No. 598. Lyon: Maison de L'Orient, pp. 389408.Google Scholar
Bar-Yosef, O. 1985 The Stone Age of the Sinai Peninsula. In Studi di Paleontologia in Onore di Salvatore Puglisi, ed. Liverani, M., Palmieri, A. & Peroni, P.. Roma: Universita di Roma La Sapienza, pp. 107–22.Google Scholar
Bar-Yosef, O. 1987. Pleistocene connexions between Africa and southwest Asia: an Archaeological perspective. The African Archaeo-logical Review 5: 2938.Google Scholar
Bar-Yosef, O. 1991. Stone tools and social context in Levantine prehistory. In Perspectives on the Past: Theoretical Biases on Mediterranean Hunter-Gatherer Research, ed. Clark, G.A.. Philadelphia: University of Pennsylvania Press, pp. 371–95.Google Scholar
Bar-Yosef, O. 1998. Jordan prehistory: A view from the west. In The Prehistoric Archaeology of Jordan, ed. Henry, D.O., BAR International Series 705. Oxford: British Archaeological Reports, pp. 162–78.Google Scholar
Bar-Yosef, O. 2013. Nile Valley–Levant interactions: An eclectic review. In Neolithisation of Northeastern Africa, ed. Shirai, N., SENEPSE 16. Berlin: ex oriente, pp. 237–48.Google Scholar
Bar-Yosef, O. & Belfer, A. 1977. The Lagaman Industry. In Prehistoric Investigations in Gebel Maghara, Northern Sinai, edited by Bar-Yosef, O. & Phillips, J.L., Qedem 7. Jerusalem: Institute of Archaeology, Hebrew University, pp. 4284.Google Scholar
Bar-Yosef, O. & Phillips, J.L. (ed.) 1977. Prehistoric Investigations in Gebel Maghara, Northern Sinai, Qedem 7. Jerusalem: Institute of Archaeology, Hebrew University.Google Scholar
Barzilai, O. 2010. Social Complexity in the Southern Levantine PPNB as Reflected through Lithic Studies: The Bidirectional Blade Industries. BAR International Series 2180. Oxford: British Archaeo-logical Reports.Google Scholar
Belfer-Cohen, A. & Goring-Morris, A.N. 1986. Har Horesha I: An Upper Palaeolithic site in the central Negev highlands. Journal of the Israel Prehistoric Society – Mitekufat Haeven 19: 43*57*.Google Scholar
Belfer-Cohen, A. & Goring-Morris, A.N. 2002. Why microliths? Microlithization in the Levant. In Thinking Small: Global Perspectives on Microlithic Technologies, ed. Elston, R.G. & Kuhn, S.L., vol. AP3A 12. Arlington: American Anthropological Association, pp. 5768.Google Scholar
Ben-David, R. 2003. Changes in Desert Margin Environments during the Climate Changes of the Upper Quaternary. Interaction between the Drainage Systems and the Accumulation of Dust (Loess) and the Invasion of Dunes at the North-West Negev Desert. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Blurton Jones, N. & Konner, M.J. 1998. Kung knowledge of animal behaviour (or: The proper study of Mankind is animals). In Kalahari Hunter-Gatherer, Studies in the !Kung San and their Neighbours, ed. Lee, R.B. & DeVore, I.. Cambridge, MA/London: Harvard University Press, pp. 325–48.Google Scholar
Boutié, P. & Rosen, S.A. 1989. Des gisements Mousteriens dans le Neguev central, resultats préliminaire de prospections récentes. In Investigations in South Levantine Prehistory, ed. Bar-Yosef, O. & Vandermeersch, B., BAR International Series 497. Oxford: British Archaeo-logical Report, pp. 147–68.Google Scholar
Bruins, H.J. & Yaalon, D.H. 1979. Stratigraphy of the Netivot section in the desert loess of the Negev (Israel). Acta Geologica Hungarica 22: 161–70.Google Scholar
Butler, B.H., Tchernov, E., Hietala, H. & Davis, S. 1977. Faunal exploit-ation during the Late Epipaleolithic in the Har Harif. In Prehistory and Paleoenvironments in the Central Negev, Israel. Volume II. The Avdat/Aqev Area, Part 2, and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 327–46.Google Scholar
Coinman, N.R. 2003. The Upper Palaeolithic of Jordan: New data from the Wadi al-Hasa. In More Than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, ed. Goring-Morris, A.N. & Belfer-Cohen, A.. Oxford: Oxbow, pp. 151–70.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates, and sources: An example from the Negev Desert, Israel. Journal of Geophysical Research and Exploration 114: F02017.Google Scholar
Crouvi, O., Amit, R., Enzel, Y. & Gillespie, A.R. 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews 29: 2087–98.Google Scholar
Danin, A. 1985. Palaeoclimates in Israel: Evidence from weathering patterns of stones in and near archaeological sites. Bulletin of the American Schools of Oriental Research 259: 3343.Google Scholar
Davis, S.J.M. 1980. Pleistocene and Holocene equid remains from Israel. Zoological Journal of the Linnean Society 70: 289312.Google Scholar
Davis, S., Goring-Morris, A.N. & Gopher, A. 1982. Sheep bones from the Negev Epipaleolithic. Paléorient 8: 8793.Google Scholar
Enzel, Y. 1984. The Geomorphology of the Lower Sekher Valley. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene Climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60:165–92.Google Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Ferring, C.R. 1988. Technological change in the Upper Paleolithic of the Negev. In Upper Pleistocene Prehistory of Western Eurasia, ed. Dibble, H. & Montet-White, A., University Museum Monographs 54. Philadelphia: University of Philadelphia, pp. 333–48.Google Scholar
Forenbaher, S. 1997. A terminal Neolithic/Chalcolithic lithic assemblage from Har Harif (central Negev highlands). Journal of the Israel Prehistoric Society – Mitekufat Haeven 27: 83100.Google Scholar
Fox, J.R. 2003. The Tor Sadaf lithic assemblage: A technological study of the earliest Levantine Upper Palaeolithic in the Wadi al-Hasa. In More than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, ed. Goring-Morris, A.N. & Belfer-Cohen, A.. Oxford: Oxbow, pp. 8094.Google Scholar
Gilead, I. 1981. Upper Palaeolithic in Sinai and the Negev: Sites in Gebel Maghara, Qadesh Barnea and Nahal Zin. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Gilead, I. 1984a. Palaeolithic sites in Northeastern Sinai. Paléorient 10: 135–42.Google Scholar
Gilead, I. 1984b. Is the term ‘Epipaleolithic’ relevant to Levantine prehistory? Current Anthropology 25: 227–9.Google Scholar
Gilead, I. 1988. Le Site Mousterien de Fara II (Néguev Séptentrional, Israel) et le Rémontage de son Industrie. L'Anthropologie 92: 797807.Google Scholar
Gilead, I. 1990. The Upper Paleolithic to Epipaleolithic transition in the Le-vant. Paléorient 14: 177–82.Google Scholar
Gilead, I. 1993. Upper Palaeolithic sites in the Ramat Matred area. Palestine Exploration Quarterly 125: 1942.Google Scholar
Gilead, I. & Bar-Yosef, O. 1993. Early Upper Paleolithic sites in the Kadesh Barnea area, northeastern Sinai. Journal of Field Archaeology 20: 265–80.Google Scholar
Gilead, I. & Grigson, C. 1984. Far'ah II: A Middle Paleolithic open-air site in the northern Negev, Israel. Proceedings of the Prehistoric Society 50: 7197.Google Scholar
Gladfelter, B.G. 1997. The Ahmarian tradition of the Levantine Upper Paleolithic: The environment of the archaeology. Geoarchaeology 12: 363–93.Google Scholar
Gladfelter, B.G. 2000. The geomorphic context of the Upper Paleolithic in Wadi Gayifa, northeastern Sinai. Zeitschrift für Geomorphologie N.F. 44/1: 131.Google Scholar
Goder-Goldberger, M. 2015. Lithic Variability along the Middle Paleolithic Dispersal Routes of Modern Humans ‘Out of Africa’. Unpublished Ph.D. thesis, Hebrew University of Jerusalem.Google Scholar
Goldberg, P. 1976. Upper Pleistocene geology of the Avdat/Aqev area. In Prehistory and Paleoenvironments in the Central Negev, Israel, Volume I. The Avdat Aqev Area, Part 1, ed. Marks, A.E.. Dallas: SMU Press, pp. 2556.Google Scholar
Goldberg, P. 1977. Late Quaternary Stratigraphy of Gebel Maghara. In Prehistoric Investigations in Gebel Maghara, Northern Sinai, ed. Bar-Yosef, O & Phillips, J.L, Qedem 7. Jerusalem: Institute of Archaeology, Hebrew University, pp. 1131.Google Scholar
Goldberg, P. 1983. The geology of Boker Tachtit, Boker, and their surroundings. In Prehistory and Paleoenvironments in the Central Negev, Israel, Volume 3, The Avdat/Aqev area, Part 3, ed. Marks, A.E.. Dallas: SMU Press, pp. 3962.Google Scholar
Goldberg, P. 1984. Late Quaternary history of Qadesh Barnea, northeastern Sinai. Zeitschrift für Geomorphologie 28:193217.Google Scholar
Goldberg, P. 1986. Late Quaternary environmental history of the southern Levant. Geoarchaeology 1: 225–44.Google Scholar
Goldberg, P. & Brimmer, B. 1983. Late Pleistocene geomorphic surfaces and environmental history of the Avdat/Havarim area, Nahal Zin. In Prehistory and Paleoenvironments in the Central Negev, Israel. Volume 3, ed. Marks, A.E.. Dallas: SMU Press, pp. 114.Google Scholar
Goring-Morris, A.N. 1987. At the Edge: Terminal Pleistocene Hunter-Gatherers in the Negev and Sinai, BAR International Series 361. Oxford: British Archaeological Reports.Google Scholar
Goring-Morris, A.N. 1988. Trends in the spatial organization of Terminal Pleistocene hunter-gatherer occupations as viewed from the Negev and Sinai. Paléorient 14: 231–43.Google Scholar
Goring-Morris, A.N. 1991. The Harifian of the southern Levant. In The Natufian Culture in the Levant, ed. Bar-Yosef, O. & Valla, F.R.. Ann Arbor: International Monographs in Prehistory, pp. 173234.Google Scholar
Goring-Morris, A.N. 1992. Ramat Matred. In The Anchor Bible Commentary, vol. V, ed. Freedman, D.N.. New York: Doubleday, p. 615.Google Scholar
Goring-Morris, A.N. 1993a. Negev: The prehistoric periods. In The New Encyclopedia of Archaeological Excavations in the Holy Land, vol. 3, ed.Stern, E.. Jerusalem and New York: Israel Exploration Society and Simon & Schuster, pp. 1119–23.Google Scholar
Goring-Morris, A.N. 1993b. Mount Harif. In The New Encyclopedia of Archaeological Excavations in the Holy Land, vol. 2, ed. Stern, E.. Jerusalem and New York: Israel Exploration Society and Simon & Schuster, pp. 577–9.Google Scholar
Goring-Morris, A.N. 1993c. Shunera dunes. In The New Encyclopedia of Archaeological Excavations in the Holy Land, vol. 4, ed. Stern, E.. Jerusalem and New York: Israel Exploration Society and Simon & Schuster, pp. 1380–2.Google Scholar
Goring-Morris, A.N. 1993d. From foraging to herding in the Negev and Sinai: The Early to Late Neolithic Transition. Paléorient 19: 6387.Google Scholar
Goring-Morris, A.N. 1995a. Upper Palaeolithic occupation of the Ein Qadis Area on the Sinai/Negev Border. 'Atiqot 27: 114.Google Scholar
Goring-Morris, A.N. 1995b. Complex hunter-gatherers at the end of the Paleolithic (20,000–10,000 BP). In The Archaeology of Society in the Holy Land, ed. Levy, T.E.. London: Leicester University Press, pp. 141–68.Google Scholar
Goring-Morris, A.N. 1997. A Late Natufian campsite at Givat Hayil I, western Negev dunes, Israel. Journal of the Israel Prehistoric Society – Mitekufat Haeven 27: 4361.Google Scholar
Goring-Morris, A.N. & Barzilai, O. in prep. Pre-Pottery Neolithic B foragers in the central and the western Negev: A summary of recent investigations.Google Scholar
Goring-Morris, A.N. & Belfer-Cohen, A. 1997. The articulation of cultural processes and Late Quaternary environmental changes in Cisjordan. Paléorient 23: 7193.Google Scholar
Goring-Morris, A.N. & Belfer-Cohen, A. 2011. Neolithization processes in the Levant: The outer envelope. Current Anthropology 52: S195S208.Google Scholar
Goring-Morris, A.N. & Belfer-Cohen, A. 2013. Ruminations on the role of periphery and centre for the Natufian. In The Natufian Foragers in the Levant. Terminal Pleistocene Social Changes in Western Asia, ed. Bar-Yosef, O. & Valla, F.R.. Ann Arbor: Monographs in Prehistory, pp. 562–83.Google Scholar
Goring-Morris, A.N. & Belfer-Cohen, A. 2014. The southern Levant (Cisjordan) during the Neolithic period. In The Oxford Handbook of the Archaeology of the Levant (ca. 8000–332 BCE), ed. Steiner, M. & Killebrew, A.E.. Oxford: Oxford University Press, pp. 147–69.Google Scholar
Goring-Morris, A.N. & Davidzon, A. 2006. Straight to the point: Upper Palaeolithic Ahmarian lithic technology in the Levant. Anthropol-ogie 44: 93111.Google Scholar
Goring-Morris, A.N. & Gilead, I. 1981. Prehistoric survey and excavations at Ramat Matred, 1979. Israel Exploration Journal 31: 132–3.Google Scholar
Goring-Morris, A.N. & Goldberg, P. 1990. Late Quaternary dune incursions in the southern Levant: Archaeology, chronology and palaeoenvironments. Quaternary International 5: 115–37.Google Scholar
Goring-Morris, A.N. & Rosen, S.A. 1987. Prehistoric Archaeology. Preliminary Safety Analysis Report. Nuclear Power Plant – Shivta Site. Appendix 2.5E 9/1. Haifa: Israel Electric Corporation.Google Scholar
Goring-Morris, A.N. & Rosen, S.A. 1989. An Early Upper Palaeolithic assemblage with chamfered pieces from the central Negev, Israel. Journal of the Israel Prehistoric Society – Mitekufat Haeven 22: 31*40*.Google Scholar
Goring-Morris, A.N., Gopher, A. & Rosen, S.A. 1994. The Neolithic Tuwailan cortical knife industry of the Negev, Israel. In Neolithic Chipped Lithic Industries of the Fertile Crescent, ed. Gebel, H.G. & Kozlowski, S.K., SENEPSE 1. Berlin: ex oriente, pp. 511–24.Google Scholar
Goring-Morris, A.N., Henry, D.O., Phillips, J.L. et al. 1996. Pattern in the Epipalaeolithic of the Levant: Debate after Neeley & Barton. An-tiquity 70: 129–47.Google Scholar
Goring-Morris, A.N., Marder, O., Davidzon, A. & Ibrahim, F. 1998. Putting Humpty Dumpty together again: Preliminary observations on refitting studies in the eastern Mediterranean. In From Raw Material Procurement to Tool Production: The Organisation of Lithic Technology in Late Glacial and Early Postglacial Europe, ed. Milliken, S., BAR International Series 700. Oxford: British Archaeological Reports, pp. 149–82.Google Scholar
Goring-Morris, A.N., Goldberg, P., Goren, Y., Baruch, U. & Bar-Yosef, D. 1999. Saflulim: A Late Natufian base camp in the central Negev highlands, Israel. Palestine Exploration Quarterly 131: 129.Google Scholar
Goring-Morris, A.N., Hovers, E. & Belfer-Cohen, A. 2009. The dynamics of Pleistocene settlement patterns and human adaptations in the Le-vant – an overview. In Transitions in Prehistory: Papers in Honor of Ofer Bar-Yosef, ed. Shea, J.J. & Lieberman, D., pp. 187254. Oakville: David Brown/Oxbow.Google Scholar
Harrison, J.B.J. & Yair, A. 1998. Late Pleistocene aeolian and fluvial interactions in the development of the Nizzana dune field, Negev Desert, Israel. Sedimentology 45: 507–18.Google Scholar
Horowitz, A. 1976. Late Quaternary palaeoenvironment of prehistoric settlements in the Avdat–Aqev area. In Prehistory and Paleoenvironments in the Central Negev, Israel, Part 1, ed. Marks, A.E.. Dallas: SMU Press, pp. 5768.Google Scholar
Horowitz, A. 1977. Pollen spectra from two early Holocene prehistoric sites in the Har Harif (west central Negev). In Prehistory and Paleoenvir-onments in the Central Negev, Israel. Vol. II. The Avdat/Aqev Area, Part 2, and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 323–6.Google Scholar
Horowitz, A. 1983. Boker Tachtit and Boker: The pollen record. In Prehistory and Paleoenvironments of the Central Negev, Israel, Vol. 3, ed. Marks, A.E.. Dallas: SMU Press, pp. 63–8.Google Scholar
Horwitz, L.K. & Goring-Morris, A.N. 2001. Fauna from the Early Natufian site of Upper Besor 6 in the central Negev, Israel. Paléorient 26: 111–28.Google Scholar
Issar, A., Karnieli, A., Bruins, H. & Gilead, I. 1984. The Quaternary geology and hydrology of Sede Zin, Negev, Israel. Israel Journal of Earth Sciences 33: 3442.Google Scholar
Jones, M., Marks, A.E. & Kaufman, D. 1983. Boker: The artifacts. In Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. III. The Avdat/Aqev Area, Part 3, ed. Marks, A.E.. Dallas: SMU Press, pp. 283329.Google Scholar
Kingery, D.W., Vandiver, P.B. & Pickett, M. 1988. The beginnings of pyrotechnology, Part II: Production and use of lime and gypsum plaster in the Pre-Pottery Neolithic Near East. Journal of Field Archaeology 15: 219–44.Google Scholar
Lamdan, M., Ziffer, D., Huster, Y. & Ronen, A. 1977. Prehistoric Archaeological Survey in Nahal Shiqma. Sha'ar HaNegev: Sha'ar HaNegev Regional Council (Hebrew).Google Scholar
Larson, P.A. & Marks, A.E. 1977. Two Upper Paleolithic sites in the Har Harif. In Prehistory and Paleoenvironments in the Central Negev, Israel. Volume II. The Avdat/Aqev Area, Part 2, and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 173–90.Google Scholar
Lee, R.B. 1979. The !Kung San: Men, Women, and Work in a Foraging Society. Cambridge: Cambridge University Press.Google Scholar
Liphschitz, N. 1986. The vegetational landscape and macroclimate of Israel during prehistoric and proto-historic periods. Journal of the Israel Prehistoric Society – Mitekufat Haeven 19: 80*–5*.Google Scholar
Liphschitz, N. 1996. The vegetational landscape of the Negev during an-tiquity as evident from archaeological wood remains. Israel Journal of Plant Sciences 44: 161–79.Google Scholar
Magaritz, M. & Enzel, Y. 1990. Standing-water deposits as indicators of Late Quaternary dune migration in the northwestern Negev, Israel. Climatic Change 16: 307–18.Google Scholar
Marder, O. 1994. Technological Aspects of Lithic Industries of Epipalaeo-lithic Entities in the Levant. Chaîne Opératoire in the Ramon-ian of the Negev. Unpublished M.A. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Marder, O. 2002. The Lithic Technology of Epipalaeolithic Hunter-Gatherers in the Negev: The Implications of Refitting Studies. Unpublished Ph.D., Hebrew University of Jerusalem.Google Scholar
Marks, A.E. (ed.) 1976. Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. I. The Avdat Aqev Area, Part 1. Dallas: SMU Press.Google Scholar
Marks, A.E. 1977. Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. II. The Avdat/Aqev Area, Part 2, and the Har Harif. Dallas: SMU Press.Google Scholar
Marks, A. E. 1983. Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. III. The Avdat/Aqev Area, Part 3. Dallas: SMU Press.Google Scholar
Marks, A.E. & Ferring, C.R. 1976. Upper Paleolithic Sites near Ein Avdat. In Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. I. The Avdat/Aqev Area, Part I, ed. Marks, A.E.. Dallas: SMU Press, pp. 141–98.Google Scholar
Marks, A.E. & Friedel, D.A. 1977. Prehistoric settlement patterns in the Avdat/Aqev Area. In Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. II. The Avdat/Aqev Area, Part 2, and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 131–58.Google Scholar
Marks, A.E. & Larson, P.A. 1977. Test excavations at the Natufian site of Rosh Horesha. In Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. II. The Avdat/Aqev Area, Part 2, and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 191232.Google Scholar
Marks, A.E. & Volkman, P. 1983. Changing core reduction strategies: A technological shift from the Middle to the Upper Paleolithic in the southern Levant. In The Mousterian Legacy: Human Biocultural Change in the Upper Pleistocene, ed. Trinkaus, E., BAR International Series 164. Oxford: British Archaeological Reports, pp. 1334.Google Scholar
Menashe, R. 2003. The stratigraphy and paleo-geography of the Tel-Sharuen Paleo Pleistocene section. The Geological Survey of Israel GSI/35/02.Google Scholar
Monigal, K. 2003. Technology, economy, and mobility at the beginning of the Levantine Upper Palaeolithic. In More than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, ed. Goring-Morris, A.N. & Belfer-Cohen, A.. Oxford: Oxbow, pp. 118–33.Google Scholar
Munday, F.C. 1977. Nahal Aqev (D35): A stratified, open-air Mousterian occupation in the Avdat/Aqev area. In Prehistory and Paleoenvironments of the Central Negev, Israel. Vol. II. The Avdat/Aqev Area, Part 2 and the Har Harif, ed. Marks, A.E.. Dallas: SMU Press, pp. 3560.Google Scholar
Phillips, J.L. & Saca, I.N. 2003. Variability and change in the Early Upper Palaeolithic of the Levant. In More than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, ed. Goring-Morris, A.N. & Belfer-Cohen, A.. Oxford: Oxbow, pp. 95105.Google Scholar
Rink, W.J., Richter, D., Schwarcz, H.P., Marks, A.E. & Monigal, K. 2003. Age of the Middle Palaeolithic site of Rosh Ein Mor, central Negev, Israel: Implications for the age range of the Early Levantine Mousterian of the Levantine corridor. Journal of Archaeological Science 30: 195204.Google Scholar
Rosen, S.A. & Horwitz, L.K. 2005. Givat Hayil 35: A stratified Epipaleo-lithic site in the western Negev. Journal of the Israel Prehistoric Society – Mitekufat Haeven 35: 201–28.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G. & Zander, A.M. 2011a. Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev desert (Israel). Quaternary Science Reviews 30: 1649–74.Google Scholar
Roskin, J., Tsoar, H., Porat, N. & Blumberg, D.G. 2011b. Palaeoclimate interpretations of Late Pleistocene vegetated linear dune mobilization episodes; evidence from the northwestern Negev Desert, Israel. Quaternary Science Reviews 30: 3364–80.Google Scholar
Roskin, J., Barzilai, O., Katra, I. et al. 2014. Rapid anthropogenic response to short-term aeolian–fluvial palaeoenvironmental changes during the Late Pleistocene–Holocene transition in the northern Negev desert, Israel. Quaternary Science Reviews 99: 176–92.Google Scholar
Schmidt, K. 1996. Helwan in Egypt: A PPN site? In Neolithic Chipped Stone Industries of the Fertile Crescent, and their Contemporaries in Adjacent Regions, ed. Kozlowski, S.K. & Gebel, H.-G.K., SENEPSE 4. Berlin: ex oriente, pp. 12736.Google Scholar
Schwarcz, H.P. & Rink, W.J. 1998. Progress in ESR and U-series chronology of the Levantine Paleolithic. In Neandertals and Modern Humans in Western Asia, ed. Akazawa, T., Aoki, K. & Bar-Yosef, O.. New York: Plenum Press, pp. 5767.Google Scholar
Sharon, G. & Goring-Morris, A.N. 2004. Tile knives, bifaces, and hammers: A study in technology from the southern Levant. Eurasian Prehistory 2: 5376.Google Scholar
Sneh, A., Weissbrod, T., Ehrlich, A. et al. 1986. Holocene evolution of the northeastern corner of the Nile Delta. Quaternary Research 26: 194206.Google Scholar
Tchernov, E. 1976. Some Late Quaternary faunal remains from the Avdat/Aqev area. In Prehistory and Paleoenvironments in the Central Negev, Israel. Vol. I. The Avdat/Aqev Area, Part 1, ed. Marks, A.E.. Dallas: SMU Press, pp. 6973.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A. et al. 2007. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35: 831–4.Google Scholar
Vardi, Y., Yegorov, D. & Eisenberg-Degen, D. 2014. Preliminary report on the salvage excavations of the ‘hourglass project’ (the construction of a new border fence between Israel and Egypt) at the Har Harif region (Negev Highlands). Hadashot Archeologiot 126. www.hadashot-esi.org.il/report_detail_eng.aspx?id=13676&mag_id=121Google Scholar
Vermeersch, P.M. & Van Neer, W. 2015. Nile behaviour and Late Palaeo-lithic humans in Upper Egypt during the Late Pleistocene. Quaternary Science Reviews.Google Scholar
Yaalon, D.H. & Dan, J. 1974. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Zeitschrift für Geomorphologie, N.F. 20: 91105.Google Scholar
Yeshurun, R., Zaidner, Y., Eisenmann, V., Martınez-Navarro, B. & Bar-Oz, G. 2010. Lower Paleolithic hominin ecology at the fringe of the desert: Faunal remains from Bizat Ruhama and Nahal Hesi, northern Negev, Israel. Journal of Human Evolution 60/4: 492507.Google Scholar

References

Almog, R. & Yair, A. 2007. Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. Catena 70: 437–42.Google Scholar
Amit, R., Enzel, Y., Crouvi, O. et al. 2011. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 87389.Google Scholar
Bartov, Y., Goldstein, S.L., Stein, M. & Enzel, Y. 2003. Catastrophic arid episodes in the eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31: 43942.Google Scholar
Ben-David, R. 2003. Changes in Desert Margin Environments during the Climate Changes of the Upper Quaternary. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Blumberg, D.G., Neta, T., Margalit, N., Lazar, M. & Freilikher, V. 2004. Mapping exposed and buried drainage systems using remote sensing in the Negev Desert, Israel. Geomorphology 61: 239–50.Google Scholar
Bristow, C.S., Lancaster, N. & Duller, G.A.T. 2005. Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of the Geological Society 162: 315–21.Google Scholar
Calvert, S.E. & Fontugne, M.R. 2001. On the Late Pleistocene–Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean. Paleoceanography 16: 7894.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for Late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Danin, A., Bar-Or, Y., Dor, I. & Yisraeli, T. 1989. The role of cyanobacteria in stabilization of sand dunes in southern Israel. Ecologica Mediterranea 15: 5564.Google Scholar
Enzel, Y. 1984. The Geomorphology of the Lower Nahal Sekher Wadi. Unpublished M.Sc. thesis, Hebrew University of Jerusalem [Hebrew].Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the Late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–9.Google Scholar
Enzel, Y., Amit, R., Crouvi, O. & Porat, N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai–Negev erg. Quaternary Research 74: 121–31.Google Scholar
Fitzsimmons, K.E., Rhodes, E.J., Magee, J.W. & Barrows, T.T. 2007. The timing of linear dune activity in the Strzelecki and Tirari Deserts, Australia. Quaternary Science Reviews 26: 2598–616.Google Scholar
Frihy, O.E. & Stanley, D.J. 1987. Texture and coarse fraction composition of Nile Delta deposits: Facies analysis and stratigraphic correlation. Journal of African Earth Sciences 71: 237–55.Google Scholar
Fryberger, S.G. 1979. Dune forms and wind regime. In A Study of Global Sand Seas, ed. McKee, E.D., USGS Professional Paper 1052. Washington, pp. 137–69.Google Scholar
Gladfelter, B.G. 2000. The geomorphic context of the Upper Paleolithic in Wadi Gayifa, northeastern Sinai. Zeitschrift fur Geomorphologie 44: 131.Google Scholar
Goldberg, P. 1977. Late Quaternary stratigraphy of Gebel Maghara. In Prehistoric Investigations in Gebel Maghara, Northern Sinai, ed. Bar-Yosef, O. & Phillips, C.J., Qedem 7, Monographs of the Institute of Archaeology. Jerusalem: Hebrew University, pp. 1131.Google Scholar
Goldberg, P. 1986. Late Quaternary environmental history of the southern Levant. Geoarchaeology 1: 225–4.Google Scholar
Goring-Morris, A.N. & Goldberg, P. 1990. Late Quaternary dune incursions in the southern Levant: Archaeology, chronology and palaeoenvironments. Quaternary International 5: 115–37.Google Scholar
Greenbaum, N. & Ben-David, R. 2001. Geological – Geomorphological Mapping in the Shivta-Rogem Site Area Basic Data Report no. 3 for the Shivta-Rogem Site Investigation. Israel Electric Company.Google Scholar
Hamann, Y., Ehrmann, W., Schmiedl, G. et al. Sedimentation processes in the eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modeling of the terrigenous fraction in marine sediments. Marine Geology 258: 97114.Google Scholar
Harrison, J.B.J. & Yair, A. 1998. Late Pleistocene aeolian and fluvial interactions in the development of the Nizzana dune field, Negev desert, Israel. Sedimentology 45: 507–18.Google Scholar
Hemming, S.R. 2004. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42:143.Google Scholar
Hermas, E., Leprince, S. & El-Magd, I.A. 2012. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai peninsula, Egypt. Remote Sensing of Environment 121: 5160.Google Scholar
Hesse, P. 2011. Sticky dunes in a wet desert: Formation, stabilisation and modification of the Australian desert dunefields. Geomorphology 134: 30925.Google Scholar
Hesse, P.P. 2014. How do longitudinal dunes respond to climate forcing? Insights from 25 years of luminescence dating of the Australian desert dunefields. Quaternary International.Google Scholar
Kidron, G.J. 2001. Runoff-induced sediment yield from dune slopes in the Negev Desert. 2: Texture, carbonate and organic matter. Earth Surface Processes and Landforms 26: 583–99.Google Scholar
Kidron, G.J. & Benenson, I. 2014. Biocrusts serve as biomarkers for the upper 30 cm soil water content. Journal of Hydrology 509: 398405.Google Scholar
Kidron, G.J. & Tal, S.Y. 2012. The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma 179180: 104–12.Google Scholar
Kidron, G.J. & Yair, A. 1997. Rainfall–runoff relationships over encrusted dune surfaces, Nizzana, western Negev, Israel. Earth Surface Processes and Landforms 22: 1169–84.Google Scholar
Kidron, G.J. & Yair, A. 2001. Runoff-induced sediment yield from dune slopes in the Negev Desert, 1: Quantity and variability. Earth Surface Processes and Landforms 26: 461–74.Google Scholar
Kidron, G.J., Barzilay, E. & Sachs, E. 2000. Microclimate control upon sand microbiotic crust, western Negev Desert, Israel. Geomorphology 36: 118.Google Scholar
Kidron, G.J., Herrnstadt, I. & Barzilay, E. 2002. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. Journal of Arid Environments 52: 517–33.Google Scholar
Kidron, G.J., Yair, A., Vonshak, A. & Abeliovich, A. 2003. Microbiotic crust control of runoff generation on sand dunes in the Negev Desert. Water Resources Research 39: 1108.Google Scholar
Kidron, G.J., Vonshak, A., Abeliovich, A. 2008. Recovery rates of micro-biotic crusts within a dune ecosystem in the Negev Desert. Geo-morphology 100: 44452.Google Scholar
Kidron, G.J., Voshak, A. & Abeliovich, A. 2009. Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surface Processes and Landforms 34: 1594–604.Google Scholar
Kidron, G.J., Vonshak, A., Dor, I., Barinova, S. & Abeliovich, A. 2010. Properties and spatial distribution of microbiotic crusts in the Negev Desert. Catena 82: 92101.Google Scholar
Lancaster, N., Bristow, C., Bubenzer, O. et al. 2015. An introduction to the INQUA Dunes Atlas Chronologic Database. In EGU General Assembly Conference Abstracts Vol. 17, p. 5558.Google Scholar
Lange, O.L., Kidron, G.J., Büdel, B. et al. 1992. Taxonomic composition and photosynthetic characteristics of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. Functional Ecology 6: 519–27.Google Scholar
Leighton, C.L., Thomas, D.S. & Bailey, R.M. 2013. Allostratigraphy and Quaternary dune sediments: Not all bounding surfaces are the same. Aeolian Research 11: 5560.Google Scholar
Lomax, J., Hilgers, A. & Radtke, U. 2011. Palaeoenvironmental change recorded in the palaeodunefields of the western Murray Basin, South Australia. New data from single grain OSL-dating. Quaternary Science Reviews 30: 72336.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the Upper Pleistocene along the desert boundary, southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology 53: 21329.Google Scholar
Magaritz, M. & Enzel, Y. 1990. Standing-water deposits as indicators of Late Quaternary dune migration in the northwestern Negev, Israel. Climatic Change 16: 307–18.Google Scholar
McGee, D., deMenocal, P.B., Winckler, G., Stuut, J.B.W. & Bradtmiller, L.I. 2013. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth and Planetary Science Letters 371: 163–76.Google Scholar
McFarlane, M.J., Eckardt, F.D., Ringrose, S., Coetzee, S.H. & Kuhn, J.R. 2005. Degradation of linear dunes in northwest Ngamiland, Botswana and the implications for luminescence dating of periods of aridity. Quaternary International 135: 8390.Google Scholar
Mohamed, E.S. 2013. Spatial assessment of desertification in north Sinai using modified MEDLAUS model. Arabian Journal of Geosciences 6: 464759.Google Scholar
Moreno, A., Cacho, I., Canals, M. et al. 2002. Saharan dust transport and high latitude glacial climatic variability: The Alboren Sea record. Quaternary Research 58: 38328.Google Scholar
Muhs, D.R., Roskin, J., Tsoar, T. et al. 2013. Origin of the Sinai–Negev erg, Egypt and Israel: Geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69: 2848.Google Scholar
Mulitza, S., Heslop, D., Pittauerova, D. et al. 2010. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466: 226–8.Google Scholar
Munyikwa, K., Telfer, M.W., Baker, I. & Knight, C. 2011. Core drilling of Quaternary sediments for luminescence dating using the Dormer Drillmite. Ancient TL 29: 1523.Google Scholar
Murray, A.S. & Wintle, A.G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radial Meas-urements 32: 5773.Google Scholar
Palchan, D., Stein, M., Almogi-Labin, A., Erel, Y. & Goldstein, S.L. 2013. Dust transport and synoptic conditions over the Sahara–Arabia deserts during the MIS 6/5 and 2/1 transitions from grain-size, chemical and isotopic properties of Red Sea cores. Earth and Planetary Science Letters 382: 125–39.Google Scholar
Pye, K. & Tsoar, H. 1990. Aeolian Sand and Sand Dunes. Vol. 396. London: Unwin Hyman.Google Scholar
Rendell, H.M., Yair, A. & Tsoar, H. 1993. Thermoluminescence dating of sand movement in northern Negev, Israel. In The Dynamics and Environmental Context of Aeolian Sedimentary Systems, ed. Pye, K.. London: Geological Society, pp. 6974.Google Scholar
Revel, M., Ducassou, E., Grousset, F. E. et al. 2010. 100,000 years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews 29: 1342–62.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G. & Zander, A.M. 2011a. Age, origin and climatic controls on vegetated linear dunes (VLDs) in the northwestern Negev desert (Israel). Quaternary Science Reviews 30: 1649–74.Google Scholar
Roskin, J., Tsoar, H., Porat, N. & Blumberg, D.G. 2011b. Late Pleistocene regional and global palaeoclimate of dune mobilization and stabil-ization; evidence from the vegetated linear dunes of the northwestern Negev Desert, Israel. Quaternary Science Reviews 30: 3364–80.Google Scholar
Roskin, J., Rozenstein, O., Blumberg, D.G., Tsoar, H. & Porat, N. 2012. Do dune sands redden with age? The case of the northwestern Negev dunefield, Israel. Aeolian Research 5: 6375.Google Scholar
Roskin, J., Katra, I., Porat, N. & Zilberman, E. 2013a. Evolution of Middle to Late Pleistocene sandy calcareous palaeosols underlying the northwestern Negev Desert Dunefield (Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 387: 134–52.Google Scholar
Roskin, J., Katra, I. & Blumberg, D.G. 2013b. Late Holocene dune mobil-izations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness. Quaternary International 303: 1023.Google Scholar
Roskin, J., Katra, I. & Blumberg, D.G. 2014a. Particle-size fractionation of eolian sand along the Sinai–Negev erg of Egypt and Israel. Geo-logical Society of America Bulletin 126: 4765.Google Scholar
Roskin, J., Katra, I., Agha, N. et al. 2014b. Rapid anthropogenic response to short-term local aeolian and fluvial palaeoenvironmental changes during the late Pleistocene–Holocene transition. Quaternary Science Reviews 99: 176–92.Google Scholar
Roskin, J., Blumberg, D.G. & Katra, I. 2014c. Last millennium development and dynamics of vegetated linear dunes inferred from ground penetrating radar and optically stimulated luminescence ages. Sedimentology 61: 1240–60.Google Scholar
Sharon, D., Margalit, A. & Berkowicz, S.M. 2002. Locally modified surface winds on linear dunes as derived from directional rain gauges. Earth Surface Processes and Landforms 27: 867–89.Google Scholar
Siegal, Z., Tsoar, H. & Karnieli, A. 2013. The effect of a prolonged drought on vegetation density on sand dunes of the northwestern Negev Desert – field survey and conceptual modeling. Aeolian Research 9: 161–73.Google Scholar
Suter-Burri, K., Gromke, C., Leonard, K.C. & Graf, F. 2013. Spatial patterns of aeolian sediment deposition in vegetation canopies: Observations from wind tunnel experiments using colored sand. Aeolian Research 8: 6573.Google Scholar
Stanley, D.J. & Warne, A.G. 1993. Nile Delta: Recent geological evolution and human impact. Science 260: 628–34.Google Scholar
Stanley, D.J., McRea Jr., J.E. & Waldron, J.C. 1996. Nile Delta Drill Core and Sample Database for 1985–1994: Mediterranean Basin (MEDIBA) Program. Washington, DC: Smithsonian Institution Press.Google Scholar
Stein, M., Torfstein, A., Gavrieli, I. & Yechieli, Y. 2010. Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews 29: 567–75.Google Scholar
Telfer, M.W. 2014. Luminescence, desert dunes. In Encyclopedia of Scientific Dating Methods, ed. Rink, W.J. & Thompson, J.W. Springer Netherlands.Google Scholar
Telfer, M.W. & Hesse, P.P. 2013. Palaeoenvironmental reconstructions from linear dunefields: Recent progress, current challenges and future directions. Quaternary Science Reviews 78: 121.Google Scholar
Thomas, D.S. ed., 2011. Arid Zone Geomorphology: Process, Form and Change in Drylands. John Wiley & Sons.Google Scholar
Torfstein, A., Goldstein, S.L., Stein, M. & Enzel, Y. 2013. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69: 17.Google Scholar
Tsoar, H. 1989. Linear dunes – forms and formation. Progress in Physical Geography 13: 507–28.Google Scholar
Tsoar, H. 1995. Desertification in northern Sinai in the eighteenth century. Climatic Change 29: 429–38.Google Scholar
Tsoar, H. 2008. Land use and its effect on the mobilization and stabilization of the northwestern Negev sand dunes. In Arid Dune Ecosystems, ed. Breckle, S.W., Yair, A. & Veste, M.. Berlin: Springer, pp. 7989.Google Scholar
Tsoar, H. 2013. Critical environments: Sand dunes and climate change. In Treatise on Geomorphology, ed. Shroder, J., Lancaster, N., Sherman, D.J. & Baas, A.C.W., Aeolian Geomorphology 11. San Diego: Academic Press, pp. 414–27.Google Scholar
Tsoar, H. & Goodfriend, A.G. 1994. Chronology and palaeoenvironment interpretation of Holocene aeolian sands at the inland edge of the Sinai–Negev erg. The Holocene 4: 244–50.Google Scholar
Tsoar, H. & Møller, J.T. 1986. The role of vegetation in the formation of linear sand dunes. In Aeolian Geomorphology, ed. Nickling, W.G.. Boston: Allen & Unwin, pp. 7595.Google Scholar
Tsoar, H., Blumberg, D.G. & Stoler, Y. 2004. Elongation and migration of sand dunes. Geomorphology 57: 293302.Google Scholar
Tsoar, H., Blumberg, D.G. & Wenkart, R. 2008. Formation and geomorphology of the northwestern Negev sand dunes. In Arid Dune Ecosystems – The Nizzana Sands in the Negev Desert, ed. Breckle, S.W., Yair, A. & Veste, M.. Berlin: Springer, pp. 2548.Google Scholar
Vidal, L., Schneider, R.R., Marchal, O. et al. 1999. Link between the North and South Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15: 909–19.Google Scholar
Yaalon, D.H. & Dan, J. 1974. Accumulation and distribution of loess-derived deposits in the semi-desert fringe areas of Israel. Zeitschrift für Geomorphologie N.F., Supplementbände 20: 91105.Google Scholar
Yizhaq, H., Ashkenazy, Y. & Tsoar, H. 2007. Why do active and stabilized dunes coexist under the same climatic conditions? Physical Review Letters 98: 18801114.Google Scholar
Yu, L. & Lai, Z. 2014. Holocene climate change inferred from stratigraphy and OSL chronology of aeolian sediments in the Qaidam Basin, northeastern Qinghai–Tibetan Plateau. Quaternary Research 81: 488–99.Google Scholar
Yu, L., Dong, Z., Lai, Z., Qian, G. & Pan, T. 2014a. Origin and lateral migration of linear dunes in the Qaidam Basin of northwestern China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan: Comment and discussion. Geological Society of America Bulletin B31041.1.Google Scholar
Yu, L., Dong, Z., Lai, Z. & Qian, G. 2014b. Using luminescence dating to reveal the origin and depositional processes of young linear dunes in the Qaidam Basin, Qinghai-Tibetan Plateau. ICAR-8 meeting, Lanzhou, China, poster abstract.Google Scholar
Zilberman, E. 1991. Landscape evolution in the central, northern and northwestern Negev during the Neogene and the Quaternary. Geological Survey of Israel Report GSI/45/90 [Hebrew, English abstract].Google Scholar
Zilberman, E. 1993. The Late Pleistocene sequence of the northwestern Negev flood plains – a key to reconstructing the paleoclimate of southern Israel in the last glacial. Israel Journal of Earth Sciences 41: 155–67.Google Scholar
Zilberman, E., Porat, N. & Roskin, J. 2007. The Middle to Late-Pleistocene sand sheet sequence of Kerem Shalom, western Negev – an archive of coastal sand incursion. Geological Survey of Israel Report GSI/13/2007.Google Scholar

References

Alpert, P., Neeman, B.U. & Shay-El, Y. 1990. Climatological analysis of the Mediterranean cyclones using ECMWF data. Tellus 42A: 6577.Google Scholar
Amit, R. & Gerson, R. 1986. The evolution of Holocene Reg (gravelly) soils in deserts – an example from the Dead Sea region. Catena 13: 5979.Google Scholar
Amit, R. & Harrison, J.B.J. 1995. Biogenic calcic horizon development under extremely arid conditions – Nizzana sand dunes, Israel. Advances in Geoecology 28: 6588.Google Scholar
Amit, R. & Yaalon, D.H. 1996. Micromorphology of gypsum and halite in Reg soils – the Negev Desert, Israel. Earth Surface Processes and Landforms 21: 1127–43.Google Scholar
Amit, R., Gerson, R. & Yaalon, D.H. 1993. Stages and rate of the gravel shattering process by salt in desert Reg soils. Geoderma 57: 295324.Google Scholar
Amit, R., Zilberman, E. & Nahamias, Y. 2000. Chronosequence of calcic soils in Nahal Besor area. Geological Survey of Israel Report GSI/21/2000.Google Scholar
Amit, R., Enzel, Y. & Sharon, D. 2006. Permanent Quaternary hyperaridity in the Negev, Israel, resulting from regional tectonics blocking Mediterranean frontal systems. Geology 34: 509–12.Google Scholar
Amit, R., Lekach, J., Ayalon, A., Porat, N. & Grodek, T. 2007. New insight into pedogenic processes in extremely arid environment and its paleoclimate implication – the Negev Israel. Quaternary International 162: 6175.Google Scholar
Amit, R., Enzel, Y., Grodek, T. et al. 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research 74: 177–87.Google Scholar
Amit, R., Simhai, O., Ayalon, A. et al. 2011a. Transition from arid to hyper-arid environment in the southern Levant deserts as recorded by early Pleistocene cummulic aridisols. Quaternary Science Reviews 30: 312–23.Google Scholar
Amit, R., Enzel, Y., Crouvi, O. et al. 2011b. The role of the Nile in initiating a massive dust influx to the Negev late in the middle Pleistocene. Geological Society of America Bulletin 123: 873–89.Google Scholar
Amundson, R. 2004. Soil formation. In Treatise on Geochemistry 5, Surface and Ground Water Weathering and Soils, ed. Drever, J.I.. Elsevier.Google Scholar
Amundson, R.G., Chadwick, O.A., Sowers, J.M. & Doner, H.E. 1988. The relationship between modern climate and vegetation and the stable isotope chemistry of Mojave Desert soils. Quaternary Research 29: 245–54.Google Scholar
Anderson, K., Wells, S. & Graham, R. 2002. Pedogenesis of vesicular horizons Cima volcanic field, Mojave Desert, California. Soil Science Society of America Journal 66: 878–87.Google Scholar
Avni, Y. 1991. The geology, paleogeography and landscape evolution of the central Negev Highland and the western Ramon structure. Geological Survey of Israel Report, GSI/6/91 [Hebrew, English abstract].Google Scholar
Avni, Y. 1998. The Arava conglomerate: Paleogeography and tectonic implications, Israel. Geological Survey of Israel Report GSI/24/98.Google Scholar
Avni, Y., Bartov, Y., Garfunkel, Z. & Ginat, H. 2000. Evolution of the Paran drainage basin and its relation to the Plio-Pleistocene history of the Arava rift western margin, Israel. Israel Journal of Earth Sciences 49: 215–38.Google Scholar
Avnimelech, M. 1962. The main trends in the Pleistocene–Holocene history of the Israelian coastal plain. Quarternaria 6: 479–95.Google Scholar
Barzilay, E., Enzel, Y. & Amit, R. 2000. Constructing synthetic time series of rainfall events for a hyperarid environment, southern Arava, Israel. International Association of Hydrological Sciences 261: 2942.Google Scholar
Begin, Z.B. & Zilberman, E. 1997. Main stages and rate of the relief development in Israel. Geological Survey of Israel Report GSI/24/97 [Hebrew, English abstract].Google Scholar
Birkeland, P.W. 1999. Soils and Geomorphology. Oxford: Oxford University Press.Google Scholar
Brimhall, G.H., Chadwick, O.A., Lewis, C.J. et al. 1992. Deformational mass transport and invasive processes in soil evolution. Science 255: 695702.Google Scholar
Capo, R.C. & Chadwick, O.A. 1999. Sources of strontium and calcium in desert soil and calcrete. Earth and Planetary Science Letters 170: 6172.Google Scholar
Cerling, T.E. 1984. The stable isotopic composition of modern soil carbonate and its relation to climate. Earth Planetary Science Letters 71: 229–40.Google Scholar
Cerling, T.E. 1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291: 377400.Google Scholar
Cerling, T.E., Quade, J., Wang, Y. & Bowman, J. 1989. Soil and paleosols as ecologic and paleoecologic indicators. Nature 341: 138–9.Google Scholar
Chadwick, O.A. & Goldstien, R.D. 2004. Control of dilation and collapse during weathering and soil formation on Hawaiian basalts. In Water–Rock Interaction, vol.1, ed. Wanty, R.B. & Seal, R.R.. London: Taylor and Francis, pp. 1115.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N. & Sandler, A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert, Israel. Quaternary Research 70: 275–82.Google Scholar
Crouvi, O., Amit, R., Porat, N. et al. 2009. Significance of primary hilltop loess in reconstructing dust chronology, accretion rates and sources: An example from the Negev desert, Israel. Journal of Geophysical Research 114: F02017.Google Scholar
Dan, J. & Yaalon, D.H. 1982. Automorphic saline soils in Israel. Catena Supplement 1: 103–15.Google Scholar
Dan, J., Yaalon, D.H., Koyumdjisky, H. & Raz, Z. 1976. The soils of Israel, Pamphlet No. 159. Map scale 1:500,000. Bet Dagan: Division of Scientific Publication, The Volcani Center.Google Scholar
Dan, J., Yaalon, D.H., Moshe, R. & Nissim, S. 1982. Evolution of Reg soils in southern Israel and Sinai. Geoderma 28: 173202.Google Scholar
Dayan, U. & Abramski, R. 1983. Heavy rain in the Middle East related to unusual jet stream properties. Bulletin of the American Meteor-ological Society 64: 1138–40.Google Scholar
Enzel, Y., Ken-Tor, R., Sharon, D. et al. 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and regional winter rainfall. Quaternary Research 60: 263–73.Google Scholar
Enzel, Y., Amit, R., Dayan, U. et al. 2008. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Global and Planetary Change 60: 165–92.Google Scholar
Enzel, Y., Amit, R., Grodek, T. et al. 2012. Late Quaternary weathering, erosion, and deposition in Nahal Yael, Israel: An impact of climate change on an arid watershed. Geological Society of America Bulletin 124: 705–22. doi:10.1130/B30538.1.Google Scholar
Ewing, S.A., Sutter, B., Owen, J. et al. 2006. A threshold in soil formation at Earth's arid–hyperarid transition. Geochimica et Cosmochimica Acta 70: 5293–322.Google Scholar
Gerson, R. & Amit, R. 1987. Rates and modes of dust accretion and depos-ition in an arid region – the Negev, Israel. Geological Society, London, Special Publication 35: 157–69.Google Scholar
Gerson, R., Amit, R. & Grossman, S. 1985. Dust availability in desert terrains – a study in the deserts of Israel and the Sinai. For the US Army Research, Development and Standardization Group, UK contract no. DAJA 45-83-C-0041. Jerusalem: Institute of Earth Sciences, Hebrew University of Jerusalem.Google Scholar
Gile, L.H. 1975. Holocene soils and soil-geomorphic relations in an arid region of southern New Mexico. Quaternary Research 5: 321–60.Google Scholar
Gile, L.H., Hawley, J.W. & Grossman, R.B. 1981. Soils and Geomorphology in the Basin and Range, Southern New Mexico – Guidebook to the Desert Project, Bureau of Mines and Mineral Resources Memoir 39. New Mexico.Google Scholar
Ginat, H. 1996. Paleogeography and Landscape Evolution of Naha Hiyyon and Nahal Zihor Basins. Unpublished Ph.D. thesis, Hebrew University of Jerusalem [Hebrew, extended English abstract].Google Scholar
Ginat, H., Zilberman, E. & Amit, R. 2002. Red sedimentary units as indicators of early Pleistocene tectonic activity in the southern Negev desert Israel. Geomorphology 45: 127–46.Google Scholar
Ginat, H., Zilberman, E. & Saragusti, I. 2003. Early Pleistocene freshwater lake deposits in the Nahal Zihor, southern Negev, Israel. Quaternary Research 59: 445–58.Google Scholar
Goodfriend, G.A. 1999. Terrestrial stable isotope records of Late Quaternary paleoclimates in the eastern Mediterranean region. Quaternary Science Reviews 18: 501–13.Google Scholar
Goodfriend, G. & Magaritz, M. 1988. Paleosols and late Pleistocene rainfall fluctuations in the Negev desert. Nature 332: 144–6.Google Scholar
Greenbaum, N., Ben-David, R. & Lettis, W. 2000. Pliocene shorelines and associated fluvial systems in the north-western Negev. In Ma'alot 2000, Israel Geological Society Annual Meeting Abstracts, ed. Baer, G. & Avni, Y.. Jerusalem: Israel Geological Society.Google Scholar
Guralnik, B., Matmon, A., Avni, Y. & Fink, D. 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting. Earth and Planetary Science Letters 290: 132–41.Google Scholar
Harden, J.W., Taylor, E.M., Reheis, M.C. & McFadden, L.D. 1991. Calcic, gypsic, and siliceous soil chronosequences in arid and semi-arid environments. In Occurrence, Characteristics and Genesis of Carbonate, Gypsum and Silica Accumulations in Soils, ed. Nettleton, W.D., Soil Science Society of America Special publication 26: 117.Google Scholar
Horowitz, A. 1979. The Quaternary of Israel. New York/London: Academic Press.Google Scholar
Kahana, R., Ziv, B., Enzel, Y. & Dayan, U. 2002. Synoptic climatology and major floods in the Negev desert, Israel. International Journal of Climatology 22: 867–82.Google Scholar
Machette, M.N. 1985. Calcic soils of the American Southwest. In Soils and Quaternary Geology of the Southwestern US, ed. Weide, D.L, Geological Society of America, Special Paper 203: 122.Google Scholar
Magaritz, M. 1986. Environmental changes recorded in the Upper Pleistocene along the desert boundary, southern Israel. Paleogeography, Paleoclimatology, Paleoecology 53: 213–29.Google Scholar
Magaritz, M. & Heller, J. 1980. A desert migration indicator – oxygen isotopic composition of land snail shells. Paleogeography, Paleoclimat-ology, Paleoecology 32: 153–62.Google Scholar
Magaritz, M., Gavish, E., Bakler, N. & Kafri, U. 1979. Carbon and oxygen isotope composition – indicators of cementation environment in recent, Holocene and Pleistocene sediments along the coast of Israel. Journal of Sedimentology Petrology 49: 401–12.Google Scholar
Magaritz, M., Kaufman, A. & Yaalon, D.H. 1981. Calcium carbonate nodules in soils: 18O/16O and 13C/12C ratios and 14C contents. Geoderma 25: 157–72.Google Scholar
Matmon, A., Simhai, O., Amit, R. et al. 2009. Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geological Society of America 121: 688–97.Google Scholar
McDonald, E.V., Pierson, F.B., Flerchinger, G.A. & McFadden, L.D. 1996. Application of a soil–water balance model to evaluate the influence of Holocene climate change on calcic soils, Mojave Desert, California, USA. Geoderma 74: 167–92.Google Scholar
McFadden, L.D. & Tinsely, J.C. 1985. Rate and depth of pedogenic-carbonate accumulation in soils: Formation and testing of a compartment model. In Soils and Quaternary Geology of the Southwestern US, ed. Weide, D.L, Geological Society of America, Special Paper 203: 2342.Google Scholar
McFadden, L.D., Wells, S.G. & Jercinovic, M.J. 1987. Influences of eolian and pedogenic processes on the evolution and origin of desert pavements. Geology 15: 504–8.Google Scholar
McFadden, L.D., Amundson, R.G. & Chadwick, O.A. 1991. Numerical modeling, chemical and isotopic studies of carbonate accumulation in soils of arid regions. In Occurrence, Characteristics and Genesis of Carbonate, Gypsum and Silica Accumulations in Soils, ed. Nettleton, W.D., SSSA Special Publication 26: 1735.Google Scholar
McFadden, L.D., McDonald, E.V., Wells, S.G. et al. 1998. The vesicular layer of desert soils: Genesis and relationship to climate change and desert pavements based on numerical modeling carbonate translocation behavior and stable isotope and optical dating studies. Geo-morphology 24: 101–46.Google Scholar
Meadows, D.G., Young, M.H. & McDonald, E.V. 2008. Influence of relative surface age on hydraulic properties and infiltration on soils associated with desert pavements. Catena 72: 169–78.Google Scholar
Porat, N., Amit, R., Enzel, Y. et al. 2010. Abandonment ages of alluvial landforms in the hyperarid Negev determined by luminescence dating. Journal of Arid Environments 74: 861–9.Google Scholar
Quade, J., Cerling, T.E. & Bowman, J.R. 1989. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geological Society of America Bulletin 101: 464–75.Google Scholar
Quade, J., Chivas, A.R. & McCulloch, M.T. 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Paleogeography, Paleoclimatology, Paleoecology 113: 103117.Google Scholar
Quade, J., Rech, J.A., Latorre, C. et al. 2007. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama desert, northern Chile. Geochimica et Cosmochimica Acta 71: 3772–95.Google Scholar
Rubin, S., Ziv, B. & Paldor, N. 2007. Tropical plumes over eastern north Africa as a source of rain in the Middle East. Monthly Weather Review 135: 4135–48.Google Scholar
Sharon, D. 1972. Spottiness of rainfall in a desert area. Journal of Hydrology 17: 161–75.Google Scholar
Sharon, D. & Kutiel, H. 1986. The distribution of rainfall intensity in Israel, its regional and seasonal variations and its climatological evaluation. Journal of Climatology 6: 277–91.Google Scholar
Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys 2nd edn. Nat-ural Resources Conservation Service. US Department of Agriculture Handbook 436.Google Scholar
Tsvieli, Y. & Zangvil, A. 2007. Synoptic climatological analysis of Red Sea Trough and non-Red Sea Trough rain situations over Israel. Advances in Geosciences 12: 137–43.Google Scholar
Tubi, A. & Dayan, U. 2014. Tropical plumes over the Middle East: Climatology and synoptic conditions. Atmospheric Research 145–6: 168–81.Google Scholar
Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A. & Frumkin, A. 2010. Middle–Late Quaternary paleoclimate of northern margins of the Saharan–Arabian Desert: Reconstruction from speleothems of Negev Desert, Israel. Quaternary Science Reviews 29: 2647–62.Google Scholar
Wang, Y., Cerling, T.E., Quade, J. et al. 1993. Stable isotopes of paleo-sols and fossil teeth as paleoecology and paleoclimate indicators: An example from the St. David formation, Arizona. In Climate Change in Continental Isotopic Records, ed. Swart, P.K., Lohmann, K.C., McKenzie, J. & Savin, S., American Geophysical Uniion, Geophysical Monograph 78: 241–8.Google Scholar
Wells, S.G., McFadden, L.D. & Dohrenwend, J.C. 1987. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, eastern Mojave Desert, California. Quaternary Research 27: 130–46.Google Scholar
Wells, S.G., McFadden, L.D., Poths, J. & Olinger, C.T. 1995. Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts. Geology 23: 613–6. doi:10.1130/0091–7613 (1995) 023.Google Scholar
Yaalon, D.H. 1971. Soil forming processes in time and space. In Paleoped-ology: Origin, Nature and Dating of Paleosols, ed. Yaalon, D.H.. Jerusalem: International Society of Soil Science and Israel Universities Press, pp. 2939.Google Scholar
Yair, A. 1990. The role of topography and surface cover upon soil formation along hillslopes in arid climates. Geomorphology 3: 287–99.Google Scholar
Yair, A. & Berkowicz, S.M. 1989. Climatic and non climatic controls of aridity: The case of northern Negev of Israel. Catena Supplement 14: 145–58.Google Scholar
Zangvil, A. & Isakson, A. 1995. Structure of water vapor field associated with an early spring rainstorm over the eastern Mediterranean. Israel Journal of Earth Sciences 44: 159–68.Google Scholar
Zilberman, E. 1986. Pliocene–Early Pleistocene surfaces in the northwestern Negev – paleogeography and tectonic implications. Israel Geological Survey Report GSI/86/26 [Hebrew, English summary].Google Scholar
Ziv, B. 2001. A subtropical rainstorm associated with a tropical plume over Africa and the Middle-East. Theoretical and Applied Climatology 69: 91102.Google Scholar

References

Abed, A. 2009. Geology of Jordan and its Environment and Waters. Amman: Jordanian Geologists Association (Arabic).Google Scholar
Abed, A.M. & Yaghan, R. 2000. On the paleoclimate of Jordan during the Last Glacial Maximum. Palaeogreography, Palaeoclimatology, Palaeoecology 160: 2333.Google Scholar
Abed, A.M., Yasin, S., Sadaqa, R. & Al-Hawari, Z. 2008. The paleoclimate of the eastern desert of Jordan during marine isotope stage 9. Quaternary Research 69: 458–68.Google Scholar
Allison, R.J., Grove, J.R., Higgitt, D.L. et al. 2000. Geomorphology of the Eastern Badia Basalt Plateau, Jordan. Geographical Journal 166: 352–70.Google Scholar
Al-Malabeh, A. 1994. Geochemistry of two volcanic cones from the intracontinental plateau basalt of Harra El-Jabban, NE-Jordan. Geochemical Journal 28: 517–40.Google Scholar
Ames, C.J.H. & Cordova, C.E. 2015. Middle and Late Pleistocene landscape evolution at the Druze Marsh site in northeast Jordan: implications for population continuity and hominin dispersal. Geoarchaeology 30: 307–29.Google Scholar
Ames, C.J.H., Nowell, A., Cordova, C.E., Pokines, J.T. & Bisson, M.S. 2014. Paleoenvironmental change and settlement dynamics in the Druze Marsh: Results of recent excavation at an open-air Paleolithic site. Quaternary International 331: 6073.Google Scholar
Barker, G.W., Adams, R., Creighton, O.H. et al. 1998. Environment and land use in the Wadi Faynan, southern Jordan: The second season of geoarchaeology and landscape archaeology (1997). Levant 30: 525.Google Scholar
Bender, F. 1974. Geology of Jordan. Berlin: Gebrüder Borntraeger.Google Scholar
Besançon, J. & Hours, F. 1985. Prehistory and geomorphology in northern Jordan: A preliminary outline. In Studies in the History and Archaeology of Jordan, Vol. 2, ed. Hadidi, A.. Amman: Department of Antiquities of Jordan, pp. 5966.Google Scholar
Clark, G.A., Schuldenrein, J., Donaldson, M.L. et al. 1997. Chronostratigraphic contexts of Middle Paleolithic horizons at the ‘Ain Difla rockshelter (WHS 634), west-central Jordan. In The Prehistory of Jordan II: Perspectives from 1997, ed. Gebel, H.G.K., Kafafi, Z. & Rollefson, G.O.. Berlin: Ex-Oriente, pp. 77100.Google Scholar
Copeland, L. & Vita-Finzi, C. 1978. Archaeological dating of geological deposits in Jordan. Levant 10: 1025.Google Scholar
Cordova, C.E. 2007. Millennial Landscape Change in Jordan: Geoarchaeology and Cultural Ecology. Tucson: University of Arizona Press.Google Scholar
Cordova, C.E. 2008. Floodplain degradation and settlement history in Wadi al-Wala and Wadi ash-Shallalah, Jordan. Geomorphology 101: 443–57.Google Scholar
Cordova, C.E., Foley, C., Nowell, A. & Bisson, M. 2005. Landforms, sediments, soil development and prehistoric site settings in the Madaba-Dhiban Plateau, Jordan. Geoarchaeology 20: 2956.Google Scholar
Cordova, C.E., Nowell, A., Bisson, M., Ames, C. & Kalchgruber, R. 2011. Geomorphological and soil stratigraphic patterns associated with the Middle Paleolithic on the Madaba Plateau, Jordan: The case of the Ma'in site complex. Journal of the Israel Prehistoric Society – Mitekufat Haeven 41: 536.Google Scholar
Cordova, C.E., Nowell, A., Bisson, M. et al. 2013. Interglacial and glacial desert refugia and the Middle Paleolithic of the Azraq oasis, Jordan. Quaternary International 300: 94110.Google Scholar
Cordova, C.E., DeWitt, R. & Winsborough, B. 2014. Geology, landforms, and sediments in Wadi Rum. In The Sands of Time: The Desert Neolithic Settlement at Ayn Abu Nukhayla, ed. Henry, D. & Beaver, J.. Berlin: ex-oriente, pp. 1328.Google Scholar
Davies, C.P. 2000. Reconstruction of Paleoenvironments from Lacustrine Deposits of the Jordan Plateau. Unpublished Ph.D. thesis, Arizona State University.Google Scholar
Davies, C.P. 2005. Quaternary paleoenvironments and potential for human exploitation of the Jordan Plateau desert interior. Geoarcheology 20: 379400.Google Scholar
Donahue, J. 1985. Hydrologic and topographic change during and after Early Bronze occupation at Bab edh-Dhra and Numeira. In Studies in the History and Archaeology of Jordan, Vol. 2, ed. Hadidi, A.. Amman: Department of Antiquities of Jordan, pp. 131–40.Google Scholar
Frumkin, A., Bar-Matthews, M. & Vaks, A. 2008. Paleoenvironment of Jawa Basalt Plateau, Jordan, inferred from calcite speleothems from a lava tube. Quaternary Research 70: 358–67.Google Scholar
Garrard, A.N., Betts, A., Byrd, B., Colledge, S. & Hunt, C. 1988. A summary of paleoenvironmental and prehistoric investigation in the Azraq Basin. In The Prehistory of Jordan. The State of Research in 1986, ed. Garrard, A.N. & Gebel, H.G., BAR International Series 396. Oxford: British Archaeological Reports, pp. 311–37.Google Scholar
Gebel, H.G.K. 2009. The intricacy of Neolithic rubble layers. The Ba'ja, Basta, and 'Ain Hahub evidence. Neo-Lithics 01/09: 3348.Google Scholar
Goudie, A.S., Migon, P., Allison, J. & Rosser, N. 2002. Sandstone geo-morphology of the Al-Quwayra area of south Jordan. Zeitschrift für Geomorphologie 46: 365–90.Google Scholar
Henry, D.O. 1997. Cultural and geologic successions of Middle and Upper Paleolithic deposits in the Jebel Qalkha area of southern Jordan. In The Prehistory of Jordan II. Perspectives from 1997, ed. Gebel, H.G.K., Kafafi, Z. & Rollefson, G.O.. Berlin: ex oriente, pp. 6976.Google Scholar
Huckeriede, R. & Wiesemann, G. 1968. Der jungpleistozäne Pluvial-See von El Jafr und weitere Daten zum Quartär Jordaniens. Geologica et Palaeontologica 2: 7395.Google Scholar
Ibrahim, K.M. 1996. The Regional Geology of Al-Azraq Area. Map Sheet No. 35531. Bulletin, Geological Mapping Division, Geology Direct-orate, Natural Resources Authority, Amman.Google Scholar
Jones, M.D. & Richter, T. 2011. Paleoclimatic and archeological implications of Pleistocene and Holocene environments in Azraq, Jordan. Quaternary Research 76: 363–72.Google Scholar
Landmann, G., Abu Qudaira, G.M., Shawabkeh, K., Wrede, K. & Kempe, S. 2002. Geochemistry of the Lisan and Damya Formations in Jordan and implications for paleoclimate. Quaternary International 89: 4557.Google Scholar
Lucke, B., Kemnitz, H., Baumler, R. & Schmidt, M. 2013. Red Mediterranean soils in Jordan – new insights in their origin, genesis, and role in environmental archives. Catena 112: 20–4.Google Scholar
Mabry, J. 1992. Alluvial Cycles and Early Agricultural Settlement Phases in the Jordan Valley. Unpublished Ph.D. thesis, University of Arizona.Google Scholar
Macumber, P.G. 2001. Evolving landscape and environment in Jordan. In The Archaeology of Jordan, ed. MacDonald, B., Adams, R. & Bienkowski, P.. Sheffield: Sheffield Academic Press, pp. 130.Google Scholar
Macumber, P.G. & Head, M.J. 1991. Implications of the Wadi al-Hammeh sequences for the terminal drying of Lake Lisan, Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology 84: 163–73.Google Scholar
Maher, L.A. 2011. Reconstructing paleolandscapes and prehistoric occupation of Wadi Ziqlab, northern Jordan. Geoarchaeology 26: 649–92.Google Scholar
Mandel, R.D. & Simmons, A.H. 1988. A preliminary assessment of the geomorphology of ‘Ain Ghazal. In The Prehistory of Jordan. The State of Research in 1986, ed. Garrard, A.N. & Gebel, H.G.. BAR Inter-national Series 396. Oxford: British Archaeological Reports, pp. 431–36.Google Scholar
Moumani, K., Alexander, J. & Bateman, M.D. 2003. Sedimentology of the Late Quaternary Wadi Hasa Marl Formation of central Jordan: A record of climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 221–42.Google Scholar
Petit-Maire, N., Carbonel, P., Reyss, J.L. et al. 2010. A vast Eemian paleolake in southern Jordan (29° N). Global and Planetary Change 72: 368–73.Google Scholar
Pokines, J.T. & Ames, C.J.H. 2015. Test excavations at Wadi Zarqa Ma'in 1, a natural sinkhole faunal trap site, Hashemite Kingdom of Jordan. Bulletin of the American Schools of Oriental Research 273: 121–37.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L. & Hayes, A. 2002. Holocene atmosphere–ocean interactions: Records from Greenland and the Aegean Sea. Climate Dynamics 18: 587–93.Google Scholar
Rollefson, G. 2009. Slippery slope: the Late Neolithic rubble layer in the southern Levant. Neo-Lithics 01/09: 1218.Google Scholar
Schuldenrein, J. 2007. A reassessment of the Holocene stratigraphy of the Wadi Hasa Terrace and Hasa Formation, Jordan. Geoarchaeology 22: 559–88.Google Scholar
Schuldenrein, J. & Clark, G.A. 2001. Prehistoric landscapes and settlement geography along the Wadi Hasa, west-central Jordan. Part I: Geoarchaeology, human palaeoecology and ethnographic modelling. Environmental Archaeology 6: 2338.Google Scholar
Steinitz, G. & Bartov, Y. 1992. The Miocene–Pleistocene history of the Dead Sea segment of the rift in light of K–Ar ages of basalts. Israel Journal of Earth Sciences 40: 199208.Google Scholar
Turner, B.R. & Makhlouf, I. 2005. Quaternary sandstones, northeast Jordan: Age, depositional environments and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 229: 230–50.Google Scholar
Zielhofer, C., Clare, L., Rollefson, G. et al. 2012. The decline of the early Neolithic population center of 'Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley. Quaternary Research 78: 427441.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×