Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T11:52:19.420Z Has data issue: false hasContentIssue false

Chapter 13 - Thyroid

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 398 - 572
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Bethesda, MD: ARP Press, 2002: 91169.Google Scholar
McNicol, A.M., Lewis, P.D.. The endocrine system. In Lewis, P.D., Emeritus, S.W., eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Organ, G.M., Organ, C.H. Jr. Thyroid gland and surgery of the thyroglossal duct: exercise in applied embryology. World J Surg 2000;24:886890.Google Scholar
Murray, D.. The thyroid gland. In Kalman, K., Asa, S.L., eds. Functional Endocrine Pathology, 2nd edn. Oxford: Blackwell, 1998:295380.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Kay, C., Abrahams, S., McClain, P.. The weight of normal thyroid glands in children. Arch Pathol 1966;82:349352.Google Scholar
Sobrinho-Simoes, M.A., Sambade, M.C., Goncalves, V.. Latent thyroid carcinoma at autopsy: a study from Oporto, Portugal. Cancer 1979;43:17021706.Google Scholar
Mochizuki, Y., Mowafy, R., Pasternack, B.. Weights of human thyroids in New York City. Health Phys 1963;9:12991301.CrossRefGoogle ScholarPubMed
Pankow, B.G., Michalak, J., McGee, M.K.. Adult human thyroid weight. Health Phys 1985;49:10971103.CrossRefGoogle ScholarPubMed
Hegedus, L., Karstrup, S., Rasmussen, N.. Evidence of cyclic alterations of thyroid size during the menstrual cycle in healthy women. Am J Obstet Gynecol 1986;155:142145.Google Scholar
Kendall, C.H., Sanderson, P.R., Cope, J., Talbot, I.C.. Follicular thyroid tumours: a study of laminin and type IV collagen in basement membrane and endothelium. J Clin Pathol 1985;38:11001105.Google Scholar
Isotalo, P.A., Lloyd, R.V.. Presence of birefringent crystals is useful in distinguishing thyroid from parathyroid gland tissues. Am J Surg Pathol 2002;26:813814.Google Scholar
Harach, H.R.. Solid cell nests of the thyroid. J Pathol 1988;155:191200.Google Scholar
Kabel, P.J., Voorbij, H.A., De Haan, M., van der Gaag, R.D., Drexhage, H.A.. Intrathyroidal dendritic cells. J Clin Endocrinol Metab 1988;66:199207.CrossRefGoogle ScholarPubMed
Haimoto, H., Hosoda, S., Kato, K.. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest 1987;57:489498.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA:WB Saunders, 1990.Google Scholar
Pianzola, H.M., Ottino, A., Castelletto, R.H.. Solid cell nests of the thyroid. Hum Pathol 1995;26:929930.Google Scholar
Mizukami, Y., Nonomura, A., Michigishi, T., Noguchi, M., Hashimoto, T., Nakamura, S., et al. Solid cell nests of the thyroid. A histologic and immunohistochemical study. Am J Clin Pathol 1994;101:186191.CrossRefGoogle ScholarPubMed
DeLellis, R.A., May, L., Tashjian, A.H. Jr., Wolfe, H.J.. C-cell granule heterogeneity in man. An ultrastructural immunocytochemical study. Lab Invest 1978;38:263269.Google Scholar
Martin, V., Martin, L., Viennet, G., Hergel, M., Carbillet, J.P., Fellmann, D.. Ultrastructural features of “solid cell nest” of the human thyroid gland: a study of 8 cases. Ultrastruct Pathol 2000;24:18.CrossRefGoogle ScholarPubMed
Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Green, W.I.. The physiology of the thyroid gland and its hormones. In Green, W.I., ed. The Thyroid. New York: Elsevier, 1987:146.Google Scholar
Pittman, J.A. Jr. Thyrotropin-releasing hormone. Adv Intern Med 1974;19:303325.Google ScholarPubMed
Wilber, J.F.. Thyrotropin releasing hormone: secretion and actions. Annu Rev Med 1973;24:353364.Google Scholar
Yamada, M., Radovick, S., Wondisford, F.E., Nakayama, Y., Weintraub, B.D., Wilber, J.F.. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing hormone. Mol Endocrinol 1990;4:551556.Google Scholar
Michalkiewicz, M., Huffman, L.J., Connors, J.M., Hedge, G.A.. Alterations in thyroid blood flow induced by varying levels of iodine intake in the rat. Endocrinology. 1989;125:5460.Google Scholar
Zannini, M., Francis-Lang, H., Plachov, D., Di Lauro, R.. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol Cell Biol 1992;12:42304241.Google Scholar
Di Lauro, R., Obici, S., Condliffe, D., Ursini, V.M., Musti, A., Moscatelli, C., et al. The sequence of 967 amino acids at the carboxyl-end of rat thyroglobulin. Location and surroundings of two thyroxine-forming sites. Eur J Biochem 1985;148:711.Google Scholar
Sinclair, A.J., Lonigro, R., Civitareale, D., Ghibelli, L., Di Lauro, R.. The tissue-specific expression of the thyroglobulin gene requires interaction between thyroid-specific and ubiquitous factors. Eur J Biochem 1990;193:311318.CrossRefGoogle ScholarPubMed
Ishii, H., Inada, M., Tanaka, K., Mashio, Y., Naito, K., Nishikawa, M., et al. Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin. J Clin Endocrinol Metab 1983;57:500505.Google Scholar
Laresen, P.R., Davies, T.F., Hay, I.D.. The thyroid gland. In Wilson, J.D., Foster, D.W., Kronenberg, H.M., Larsen, P.R., eds. Williams Textbook of Endocrinology, 9th edn. Philadelphia PA: WB Saunders; 1998:389515.Google Scholar
Austin, L.A., Heath, H., 3rd. Calcitonin: physiology and pathophysiology. N Engl J Med 1981;304:269278.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Lester, S.C.. Thyroid and parathyroid glands. In Lester, S.C., ed. Manual of Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2010:555563.Google Scholar
Westra, W.H., Hruban, R.H., Phelps, T.H., Isacson, C.. Thyroid. In Westra, W.H., Hruban, R.H., Phelps, T.H., Isacson, C., eds. Surgical Pathology Dissection An Illustrated Guide, 2nd edn. New York: Springer, 2003:202205.Google Scholar
Cibas, E.S.. Thyroid. In Cibas, E.S., Ducatman, B., eds. Cytology, Diagnostic Principles and Clinical Correlates, 2nd edn. New York:WB Saunders, 2003:247272.Google Scholar
Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009;19:11591165.Google Scholar
Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 2009;132:658665.Google Scholar
Crippa, S., Mazzucchelli, L., Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid fine-needle aspiration specimens. Am J Clin Pathol 2010;134:343344; author reply 5.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Rastogi, M.V., LaFranchi, S.H.. Congenital hypothyroidism. Orphanet J Rare Dis 2010;5:17.Google Scholar
McNicol, A.M., Lewis, P.D.. The endocrine system. In Lewis, P.D., Emeritus, S.W., eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Bethesda, MD: ARP Press, 2002: 91169.Google Scholar
Jain, S.N.. Lingual thyroid. Int Surg 1969;52:320325.Google ScholarPubMed
Jaques, D.A., Chambers, R.G., Oertel, J.E.. Thyroglossal tract carcinoma. A review of the literature and addition of eighteen cases. Am J Surg 1970;120:439446.Google Scholar
Sohn, N., Gumport, S.L., Blum, M.. Thyroglossal duct carcinoma. N Y State J Med 1974;74:20042005.Google Scholar
Stanley, D.G., Robinson, F.W.. Thyroid carcinoma in thyroglossal duct cysts: a case report and literature review. Am Surg 1970;36:581582.Google Scholar
LiVolsi, V.A., Perzin, K.H., Savetsky, L.. Carcinoma arising in median ectopic thyroid (including thyroglossal duct tissue). Cancer 1974;34:13031315.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Nussbaum, M., Buchwald, R.P., Ribner, A., Mori, K., Litwins, J.. Anaplastic carcinoma arising from median ectopic thyroid (thyroglossal duct remnant). Cancer 1981;48:27242728.Google Scholar
Hathaway, B.M.. Innocuous accessory thyroid nodules. Arch Surg 1965;90:222227.CrossRefGoogle ScholarPubMed
Sisson, J.C., Schmidt, R.W., Beierwaltes, W.H.. Sequestered nodular goiter. N Engl J Med 1964;270:927932.Google Scholar
Assi, A., Sironi, M., Di Bella, C., Declich, P., Cozzi, L., Pareschi, R.. Parasitic nodule of the right carotid triangle. Arch Otolaryngol Head Neck Surg 1996;122:14091411.Google Scholar
Pistono, M., Occhetta, E., Sarasso, G., Piccinino, C., Bortnik, M., Aina, S., et al. [Intracardiac ectopic thyroid: a report of a clinical case with a long-term follow-up.] Cardiologia 1999;44:8388.Google Scholar
Jamshidi, M., Kasirye, O., Smith, D.J.. Ectopic thyroid nodular goiter presenting as a porta hepatis mass. Am Surg 1998;64:305306.Google ScholarPubMed
Pollice, L., Caruso, G.. Struma cordis. Ectopic thyroid goiter in the right ventricle. Arch Pathol Lab Med 1986;110:452453.Google Scholar
Curtis, L.E., Sheahan, D.G.. Heterotopic tissues in the gallbladder. Arch Pathol 1969;88:677683.Google Scholar
Kurman, R.J., Prabha, A.C.. Thyroid and parathyroid glands in the vaginal wall: report of a case. Am J Clin Pathol 1973;59:503507.Google Scholar
Ruchti, C., Balli-Antunes, M., Gerber, H.A.. Follicular tumor in the sellar region without primary cancer of the thyroid. Heterotopic carcinoma? Am J Clin Pathol 1987;87:776780.Google Scholar
Romero-Rojas, A., Bella-Cueto, M.R., Meza-Cabrera, I.A., Cabezuelo-Hernandez, A., Garcia-Rojo, D., Vargas-Uricoechea, H., et al. Ectopic thyroid tissue in the adrenal gland: a report of two cases with pathogenetic implications. Thyroid 2013;23:16441650.Google Scholar
Bone, R.C., Biller, H.F., Irwin, T.M.. Intralaryngotracheal thyroid. Ann Otol Rhinol Laryngol 1972;81:424428.Google Scholar
Hardwick, D.F., Cormode, E.J., Riddell, D.G.. Respiratory distress and neck mass in a neonate. J Pediatr. 1976;89:501505.CrossRefGoogle ScholarPubMed
Pang, Y.T.. Ectopic multinodular goitre. Singapore Med J. 1998;39:169170.Google Scholar
Kakudo, K., Shan, L., Nakamura, Y., Inoue, D., Koshiyama, H., Sato, H.. Clonal analysis helps to differentiate aberrant thyroid tissue from thyroid carcinoma. Hum Pathol 1998;29:187190.Google Scholar
Scully, R.E., Young, R.H., Clemnent, P.B.. Atlas of Tumor Pathology, 3rd Series, Fascicle 23: Tumors of the Ovary, Maldeveloped Gonads, Fallopian Tube, and Broad Ligament. Washington, DC: Armed Forces Institute of Pathology, 1999.Google Scholar
Izumi, T., Araki, Y., Satoh, H., Katoh, K., Ueda, Y., Yuhki, T., et al. [A case report of postoperative thyroid crisis accompanied with struma ovarii.] Masui 1990;39:391395.Google Scholar
Rutgers, J.L., Scully, R.E.. Functioning ovarian tumors with peripheral steroid cell proliferation: a report of twenty-four cases. Int J Gynecol Pathol 1986;5:319337.Google Scholar
Logani, S., Baloch, Z.W., Snyder, P.J., Weinstein, R., LiVolsi, V.A.. Cystic ovarian metastasis from papillary thyroid carcinoma: a case report. Thyroid 2001;11:10731075.CrossRefGoogle ScholarPubMed
Young, R.H., Jackson, A., Wells, M.. Ovarian metastasis from thyroid carcinoma 12 years after partial thyroidectomy mimicking struma ovarii: report of a case. Int J Gynecol Pathol 1994;13:181185.Google Scholar
Jacobsen, G.K., Talerman, A.. Atlas of Germ Cell Tumors. Copenhagen: Munksgaard, 1989.Google Scholar
Devaney, K., Snyder, R., Norris, H.J., Tavassoli, F.A.. Proliferative and histologically malignant struma ovarii: a clinicopathological study of 54 cases. Int J Gynecol Pathol 1993;12:333343.Google Scholar
Doldi, N., Taccagni, G.L., Bassan, M., Frigerio, L., Mangili, G., Jansen, A.M., et al. Hashimoto's disease in a papillary carcinoma of the thyroid originating in a teratoma of the ovary (malignant struma ovarii). Gynecol Endocrinol 1998;12:4142.CrossRefGoogle Scholar
Bonadio, A.G.. [Hashimoto's thyroiditis in “struma ovarii.” Case report and review of the literature.] Minerv Endocrinol 2002;27:4952.Google Scholar
Griffiths, A.N., Jain, B., Vine, S.J.. Papillary thyroid carcinoma of struma ovarii. J Obstet Gynaecol 2004;24:9293.CrossRefGoogle ScholarPubMed
Ro, J.Y., Sahin, A.A., el-Naggar, A.K., Ordóñez, N.G., Mackay, B., Llamas, L.L., et al. Intraluminal crystalloids in struma ovarii. Immunohistochemical, DNA flow cytometric, and ultrastructural study. Arch Pathol Lab Med 1991;115:145149.Google Scholar
Ribeiro-Silva, A., Bezerra, A.M., Serafini, L.N.. Malignant struma ovarii: an autopsy report of a clinically unsuspected tumor. Gynecol Oncol 2002;87:213215.Google Scholar
Bhansali, A., Jain, V., Rajwanshi, A., Lodha, S., Dash, R.J.. Follicular carcinoma in a functioning struma ovarii. Postgrad Med J. 1999;75:617618.CrossRefGoogle Scholar
Piana, S., Damiani, S., Santini, D.. Oxyphilic follicular tumor arising in struma ovarii. Tumori 1994;80:482484.Google Scholar
Olinici, C.D., Mera, M.. Poorly differentiated ("insular") thyroid carcinoma of the ovary. Morphol Embryol (Bucur) 1988;34:135137.Google Scholar
Schmidt, J., Derr, V., Heinrich, M.C., Crum, C.P., Fletcher, J.A., Corless, C.L., et al. BRAF in papillary thyroid carcinoma of ovary (struma ovarii). Am J Surg Pathol 2007;31:13371343.Google Scholar
Boutross-Tadross, O, Saleh, R, Asa, SL. Follicular variant papillary thyroid carcinoma arising in struma ovarii. Endocr Pathol 2007;18:182186.Google Scholar
Fayemi, A.O., Ali, M., Braun, E.V.. Oxalosis in hemodialysis patients: a pathologic study of 80 cases. Arch Pathol Lab Med 1979;103:5862.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
MacMahon, H.E., Lee, H.Y., Rivelis, C.F.. Birefringent crystals in human thyroid. Acta Endocrinol (Copenh) 1968;58:172176.Google Scholar
Reid, J.D., Choi, C.H., Oldroyd, N.O.. Calcium oxalate crystals in the thyroid. Their identification, prevalence, origin, and possible significance. Am J Clin Pathol 1987;87:443454.Google Scholar
Richter, M.N., Mc, C.K.. Anisotropic crystals in the human thyroid gland. Am J Pathol 1954;30:545553.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Hashimoto, H.. Notes on lymphomatic thyroid changes (struma lymphomatosa). Arch Klin Chirur. 1912;97:219.Google Scholar
Weetman, A.P.. Chronic autoimmune thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:721732.Google Scholar
del Prete, G.F., Maggi, E., Mariotti, S., Tiri, A., Vercelli, D., Parronchi, P., et al. Cytolytic T lymphocytes with natural killer activity in thyroid infiltrate of patients with Hashimoto's thyroiditis: analysis at clonal level. J Clin Endocrinol Metab 1986;62:5257.Google Scholar
Burman, P., Totterman, T.H., Oberg, K., Karlsson, F.A.. Thyroid autoimmunity in patients on long term therapy with leukocyte-derived interferon. J Clin Endocrinol Metab 1986;63:10861090.Google Scholar
Chopra, I.J., Solomon, D.H., Chopra, U., Yoshihara, E., Terasaki, P.I., Smith, F.. Abnormalities in thyroid function in relatives of patients with Graves' disease and Hashimoto's thyroiditis: lack of correlation with inheritance of HLA-B8. J Clin Endocrinol Metab 1977;45:4554.CrossRefGoogle ScholarPubMed
Doniach, D., Bottazzo, G.F., Russell, R.C.. Goitrous autoimmune thyroiditis (Hashimoto's disease). Clin Endocrinol Metab 1979;8:6380.Google Scholar
Ewins, D.L., Rossor, M.N., Butler, J., Roques, P.K., Mullan, M.J., McGregor, A.M.. Association between autoimmune thyroid disease and familial Alzheimer's disease. Clin Endocrinol (Oxf) 1991;35:9396.Google Scholar
Kennedy, R.L., Jones, T.H., Cuckle, H.S.. Down's syndrome and the thyroid. Clin Endocrinol (Oxf) 1992;37:471476.Google Scholar
Shalitin, S., Phillip, M.. Autoimmune thyroiditis in infants with Down's syndrome. J Pediatr Endocrinol Metab 2002;15:649652.Google Scholar
Roitt, I.M., Doniach, D.. A reassessment of studies on the aggregation of thyroid autoimmunity in families of thyroiditis patients. Clin Exp Immunol 1967;2(suppl):727736.Google Scholar
Roitt, I.M., Doniach, D., Campbell, P.N., al, E.. Autoantibodies in Hashimoto's thyroiditis (lymphadenoid goitre). Lancet 1956;ii:820.Google Scholar
Trotter, W.R., Belyavin, G., Waddams, A.. Precipitating and complement-fixing antibodies in Hashimoto's disease. Proc R Soc Med 1957;50:961962.Google ScholarPubMed
Weetman, A.P., McGregor, A.M.. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev 1994;15:788830.Google Scholar
Tomer, Y., Davies, T.F.. Infection, thyroid disease, and autoimmunity. Endocr Rev 1993;14:107120.Google Scholar
Valtonen, V.V., Ruutu, P., Varis, K., Ranki, M., Malkamaki, M., Makela, P.H.. Serological evidence for the role of bacterial infections in the pathogenesis of thyroid diseases. Acta Med Scand 1986;219:105111.Google Scholar
Dayan, C.M., Daniels, G.H.. Chronic autoimmune thyroiditis. N Engl J Med 1996;335:99107.Google Scholar
Hanafusa, T., Pujol-Borrell, R., Chiovato, L., Russell, R.C., Doniach, D., Bottazzo, G.F.. Aberrant expression of HLA-DR antigen on thyrocytes in Graves' disease: relevance for autoimmunity. Lancet 1983;ii:11111115.Google Scholar
Lloyd, R.V., Johnson, T.L., Blaivas, M., Sisson, J.C., Wilson, B.S.. Detection of HLA-DR antigens in paraffin-embedded thyroid epithelial cells with a monoclonal antibody. Am J Pathol 1985;120:106111.Google ScholarPubMed
Tamai, H., Kimura, A., Dong, R.P., Matsubayashi, S., Kuma, K., Nagataki, S., et al. Resistance to autoimmune thyroid disease is associated with HLA-DQ. J Clin Endocrinol Metab 1994;78:9497.Google Scholar
Yu, M., Xu, M., Savas, L., Khan, A.. Discordant expression of Ii and HLA-DR in thyrocytes: a possible pathogenetic factor in Hashimoto's thyroiditis. Endocr Pathol 1998;9:201208.Google Scholar
Londei, M., Bottazzo, G.F., Feldmann, M.. Human T-cell clones from autoimmune thyroid glands: specific recognition of autologous thyroid cells. Science 1985;228:8589.Google Scholar
Giordano, C., Stassi, G., De Maria, R., Todaro, M., Richiusa, P., Papoff, G., et al. Potential involvement of FAS and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 1997;275:960963.Google Scholar
Williams, N.. Thyroid disease: a case of cell suicide? Science 1997;275:926.Google Scholar
Arscott, P.L., Baker, J.R. Jr. Apoptosis and thyroiditis. Clin Immunol Immunopathol 1998;87:207217.CrossRefGoogle ScholarPubMed
Palazzo, F.F., Hammond, L.J., Goode, A.W., Mirakian, R.. Death of the autoimmune thyrocyte: is it pushed or does it jump? Thyroid 2000;10:561572.Google Scholar
Andrikoula, M., Tsatsoulis, A.. The role of Fas-mediated apoptosis in thyroid disease. Eur J Endocrinol 2001;144:561568.Google Scholar
Lin, J.D.. The role of apoptosis in autoimmune thyroid disorders and thyroid cancer. Br Med J 2001;322:15251527.Google Scholar
Stassi, G., Zeuner, A., Di Liberto, D., Todaro, M., Ricci-Vitiani, L., De Maria, R.. Fas–FasL in Hashimoto's thyroiditis. J Clin Immunol 2001;21:1923.Google Scholar
Mitsiades, N., Poulaki, V., Mitsiades, C.S., Koutras, D.A., Chrousos, G.P.. Apoptosis induced by FasL and TRAIL/Apo2L in the pathogenesis of thyroid diseases. Trends Endocrinol Metab 2001;12:384390.CrossRefGoogle ScholarPubMed
Eguchi, K.. Apoptosis in autoimmune diseases. Intern Med 2001;40:275284.Google Scholar
Phelps, E., Wu, P., Bretz, J., Baker, J.R. Jr. Thyroid cell apoptosis. A new understanding of thyroid autoimmunity. Endocrinol Metab Clin North Am 2000;29:375388, viii.Google Scholar
Hammond, L.J., Lowdell, M.W., Cerrano, P.G., Goode, A.W., Bottazzo, G.F., Mirakian, R.. Analysis of apoptosis in relation to tissue destruction associated with Hashimoto's autoimmune thyroiditis. J Pathol 1997;182:138144.Google Scholar
Stassi, G., Todaro, M., Bucchieri, F., Stoppacciaro, A., Farina, F., Zummo, G., et al. Fas/Fas ligand-driven T cell apoptosis as a consequence of ineffective thyroid immunoprivilege in Hashimoto's thyroiditis. J Immunol 1999;162:263267.Google Scholar
Mitsiades, N., Poulaki, V., Kotoula, V., Mastorakos, G., Tseleni-Balafouta, S., Koutras, D.A., et al. Fas/Fas ligand up-regulation and Bcl-2 down-regulation may be significant in the pathogenesis of Hashimoto's thyroiditis. J Clin Endocrinol Metab 1998;83:21992203.Google Scholar
Jiang, Z., Savas, L., Patwardhan, N.A., Wuu, J., Khan, A.. Frequency and distribution of DNA fragmentation in Hashimoto's thyroiditis and development of papillary thyroid carcinoma. Endocr Pathol 1999;10:137144.Google Scholar
Baloch, Z.W., LiVolsi, V.A.. Pathology of thyroid gland. In LiVolsi, V.A., Asa, S.L.. eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Berho, M., Suster, S.. Clear nuclear changes in Hashimoto's thyroiditis. A clinicopathologic study of 12 cases. Ann Clin Lab Sci. 1995;25:513521.Google Scholar
Harach, H.R., Williams, E.D.. Fibrous thyroiditis–an immunopathological study. Histopathology 1983;7:739751.Google Scholar
Katz, S.M., Vickery, A.L. Jr. The fibrous variant of Hashimoto's thyroiditis. Hum Pathol 1974;5:161170.Google Scholar
Deshpande, V.. IgG4-related disease. Introduction. Semin Diagn Pathol 2012;29:175176.Google Scholar
Deshpande, V., Huck, A., Ooi, E., Stone, J.H., Faquin, W.C., Nielsen, G.P.. Fibrosing variant of Hashimoto thyroiditis is an IgG4 related disease. J Clin Pathol 2012;65:725728.Google Scholar
Kakudo, K., Li, Y., Hirokawa, M., Ozaki, T.. Diagnosis of Hashimoto's thyroiditis and IgG4-related sclerosing disease. Pathol Int 2011;61:175183.Google Scholar
Kakudo, K., Li, Y., Taniguchi, E., Mori, I., Ozaki, T., Nishihara, E., et al. IgG4-related disease of the thyroid glands. Endocr J. 2012;59:273281.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Washington, DC: Armed Forces Institute of Pathology, 2002: 91169.Google Scholar
Muller, A.F., Drexhage, H.A., Berghout, A.. Postpartum thyroiditis and autoimmune thyroiditis in women of childbearing age: recent insights and consequences for antenatal and postnatal care. Endocr Rev 2001;22:605630.Google Scholar
Roti, E., Uberti, E.. Post-partum thyroiditis: a clinical update. Eur J Endocrinol 2002;146:275279.Google Scholar
Stagnaro-Green, A.. Postpartum thyroiditis: prevalence, etiology and clinical implications. Thyroid Today 1993;16:111.Google Scholar
Farwell, A.P.. Infectious thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000: 10441050.Google Scholar
Miyauchi, A., Matsuzuka, F., Kuma, K., Takai, S.. Piriform sinus fistula: an underlying abnormality common in patients with acute suppurative thyroiditis. World J Surg 1990;14:400405.Google Scholar
Jeng, L.B., Lin, J.D., Chen, M.F.. Acute suppurative thyroiditis: a ten-year review in a Taiwanese hospital. Scand J Infect Dis 1994;26:297300.Google Scholar
Hay, I.D.. Thyroiditis: a clinical update. Mayo Clin Proc 1985;60:836843.Google Scholar
Szabo, S.M., Allen, D.B.. Thyroiditis. Differentiation of acute suppurative and subacute. Case report and review of the literature. Clin Pediatr (Phila) 1989;28:171174.CrossRefGoogle ScholarPubMed
Farwell, A.P., Braverman, L.E.. Inflammatory thyroid disorders. Otolaryngol Clin North Am 1996;29:541556.Google Scholar
Fernandez, J.F., Anaissie, E.J., Vassilopoulou-Sellin, R., Samaan, N.A.. Acute fungal thyroiditis in a patient with acute myelogenous leukaemia. J Intern Med 1991;230:539541.Google Scholar
Goodwin, R.A. Jr., Shapiro, J.L., Thurman, G.H., Thurman, S.S., Des Prez, R.M.. Disseminated histoplasmosis: clinical and pathologic correlations. Medicine (Baltimore). 1980;59:133.Google Scholar
Loeb, J.M., Livermore, B.M., Wofsy, D.. Coccidioidomycosis of the thyroid. Ann Intern Med 1979;91:409411.Google Scholar
Lewin, S.R., Street, A.C., Snider, J.. Suppurative thyroiditis due to Nocardia asteroides. J Infect. 1993;26:339340.Google Scholar
Reichert, C.M., O'Leary, T.J., Levens, D.L., Simrell, C.R., Macher, A.M.. Autopsy pathology in the acquired immune deficiency syndrome. Am J Pathol 1983;112:357382.Google Scholar
Frank, T.S., LiVolsi, V.A., Connor, A.M.. Cytomegalovirus infection of the thyroid in immunocompromised adults. Yale J Biol Med 1987;60:18.Google Scholar
Horsburgh, C.R. Jr. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med 1991;324:13321338.Google Scholar
Robillon, J.F., Sadoul, J.L., Guerin, P., Iafrate-Lacoste, C., Talbodec, A., Santini, J., et al. Mycobacterium avium intracellulare suppurative thyroiditis in a patient with Hashimoto's thyroiditis. J Endocrinol Invest 1994;17:133134.Google Scholar
Emerson, C.H., Farwell, A.P.. Sporadic silent thyroiditis, postpartum thyroiditis, and subacute thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:573589.Google Scholar
Daniels, G.H.. Atypical subacute thyroiditis: preliminary observations. Thyroid 2001;11:691695.Google Scholar
Obuobie, K., Al-Sabah, A., Lazarus, J.H.. Subacute thyroiditis in an immunosuppressed patient. J Endocrinol Invest 2002;25:169171.Google Scholar
Benker, G., Olbricht, T., Windeck, R., Wagner, R., Albers, H., Lederbogen, S., et al. The sonographical and functional sequelae of de Quervain's subacute thyroiditis: long-term follow-up. Acta Endocrinol (Copenh) 1988;117:435441.Google Scholar
de Pauw, B.E., de Rooy, H.A.. De Quervain's subacute thyroiditis. A report on 14 cases and a review of the literature. Neth J Med 1975;18:7078.Google Scholar
Singer, P.A.. Primary hypothyroidism due to other causes. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000: 755761.Google Scholar
de Lange, W.E., Freling, N.J., Molenaar, W.M., Doorenbos, H.. Invasive fibrous thyroiditis (Riedel's struma): a manifestation of multifocal fibrosclerosis? A case report with review of the literature. Q J Med 1989;72:709717.Google Scholar
Best, T.B., Munro, R.E., Burwell, S., Volpe, R.. Riedel's thyroiditis associated with Hashimoto's thyroiditis, hypoparathyroidism, and retroperitoneal fibrosis. J Endocrinol Invest 1991;14:767772.Google Scholar
Volpe, R.. Is silent thyroiditis an autoimmune disease? Arch Intern Med 1988;148:19071908.Google Scholar
Carney, J.A., Moore, S.B., Northcutt, R.C., Woolner, L.B., Stillwell, G.K.. Palpation thyroiditis (multifocal granulomatour folliculitis). Am J Clin Pathol 1975;64:639647.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Bogazzi, F., Bartalena, L., Gasperi, M., Braverman, L.E., Martino, E.. The various effects of amiodarone on thyroid function. Thyroid 2001;11:511519.Google Scholar
Smyrk, T.C., Goellner, J.R., Brennan, M.D., Carney, J.A.. Pathology of the thyroid in amiodarone-associated thyrotoxicosis. Am J Surg Pathol 1987;11:197204.Google Scholar
Berens, S.C., Bernstein, R.S., Robbins, J., Wolff, J.. Antithyroid effects of lithium. J Clin Invest 1970;49:13571367.Google Scholar
Ricarte-Filho, J.C., Li, S., Garcia-Rendueles, M.E., Montero-Conde, C., Voza, F., Knauf, J.A., et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:49354944.Google Scholar
Shibuya, K., Gilmour, S., Oshima, A.. Time to reconsider thyroid cancer screening in Fukushima. Lancet 2014;383:18831884.Google Scholar
Rhodes, C.J.. The Fukushima Daiichi nuclear accident. Sci Prog. 2014;97:7286.Google Scholar
Yamashita, S.. Tenth Warren, K. Sinclair keynote address-the Fukushima nuclear power plant accident and comprehensive health risk management. Health Phys 2014;106:166180.Google Scholar
Carr, R.F., LiVolsi, V.A.. Morphologic changes in the thyroid after irradiation for Hodgkin's and non-Hodgkin's lymphoma. Cancer 1989;64:825829.Google Scholar
Droese, M., Kempken, K., Schneider, M.L., Hor, G.. [Cytologic changes in aspiration biopsy smears from various conditions of the thyroid treated with radioiodine (author's transl).] Verh Dtsch Ges Pathol 1973;57:336338.Google Scholar
Favus, M.J., Schneider, A.B., Stachura, M.E., Arnold, J.E., Ryo, U.Y., Pinsky, S.M., et al. Thyroid cancer occurring as a late consequence of head-and-neck irradiation. Evaluation of 1056 patients. N Engl J Med 1976;294:10191025.Google Scholar
Holten, I.. Acute response of the thyroid to external radiation. Acta Pathol Microbiol Immunol Scand Suppl 1983;283:1111.Google Scholar
Kennedy, J.S., Thomson, J.A.. The changes in the thyroid gland after irradiation with 131I or partial thyroidectomy for thyrotoxicosis. J Pathol 1974;112:6581.Google Scholar
Yamashita, S.. [Lessons learnt from Chernobyl and health risk management after Fukushima nuclear disaster.] Nihon Geka Gakkai Zasshi 2012;113:309313.Google Scholar
Yamashita, S., Saenko, V.. Mechanisms of disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab 2007;3:422429.Google Scholar
Suzuki, K., Yamashita, S.. Low-dose radiation exposure and carcinogenesis. Jpn J Clin Oncol 2012;42:563568.Google Scholar
Fogelfeld, L., Wiviott, M.B., Shore-Freedman, E., Blend, M., Bekerman, C., Pinsky, S., et al. Recurrence of thyroid nodules after surgical removal in patients irradiated in childhood for benign conditions. N Engl J Med 1989;320:835840.Google Scholar
Schneider, A.B., Recant, W., Pinsky, S.M., Ryo, U.Y., Bekerman, C., Shore-Freedman, E.. Radiation-induced thyroid carcinoma. Clinical course and results of therapy in 296 patients. Ann Intern Med 1986;105:405412.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Cappell, D.F., Hutchison, H.E., Jowett, M.. Transfusional siderosis. The effects of excessive iron deposits on the tissues. J Pathol Bacteriol 1957;74:245249.Google Scholar
Oliver, R.A.. Siderosis following transfusion of blood. J Pathol Bacteriol 1959;77:171176.Google Scholar
Alexander, C.B., Herrera, G.A., Jaffe, K., Yu, H.. Black thyroid: clinical manifestations, ultrastructural findings, and possible mechanisms. Hum Pathol 1985;16:7278.Google Scholar
Benitz, K.F., Roberts, G.K., Yusa, A.. Morphologic effects of minocycline in laboratory animals. Toxicol Appl Pharmacol 1967;11:150170.Google Scholar
Billano, R.A., Ward, W.Q., Little, W.P.. Minocycline and black thyroid. JAMA 1983;249:1887.Google Scholar
Gordon, G., Sparano, B.M., Kramer, A.W., Kelly, R.G., Iatropoulos, M.J.. Thyroid gland pigmentation and minocycline therapy. Am J Pathol 1984;117:98109.Google Scholar
Kurosumi, M., Fujita, H.. Fine structural aspects on the fate of rat black thyroids induced by minocycline. Virchows Arch B Cell Pathol Incl Mol Pathol 1986;51:207213.Google Scholar
Matsubara, F., Mizukami, Y., Tanaka, Y.. Black thyroid. Morphological, biochemical and geriatric studies on the brown granules in the thyroid follicular cells. Acta Pathol Jpn. 1982;32:1322.Google ScholarPubMed
Bell, C.D., Kovacs, K., Horvath, E., Rotondo, F.. Histologic, immunohistochemical, and ultrastructural findings in a case of minocycline-associated “black thyroid.” Endocr Pathol 2001;12:443451.Google Scholar
Thompson, A.D., Pasieka, J.L., Kneafsey, P., DiFrancesco, L.M.. Hypopigmentation of a papillary carcinoma arising in a black thyroid. Mod Pathol 1999;12:11811185.Google Scholar
Pastolero, G.C., Asa, S.L.. Drug-related pigmentation of the thyroid associated with papillary carcinoma. Arch Pathol Lab Med 1994;118:7983.Google Scholar

References

Lamberg, BA. Endemic goitre: iodine deficiency disorders. Ann Med 1991;23:367372.Google Scholar
Kelly, FC, Snedden, WW. Prevalence and geographical distribution of endemic goitre. Bull World Health Organ. 1958;18:5173.Google Scholar
Kouame, P, Koffi, M, Ake, O, Nama-Diarra, AJ, Chaventre, A. [Management strategies for endemic goiter in developing countries.] Med Trop (Mars) 1999;59:401410.Google Scholar
Gaitan, E., Nelson, N.C., Poole, G.V. Endemic goiter and endemic thyroid disorders. World J Surg 1991;15:205215.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, Lopez, BS, Tischler, AS. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Khan, A, Nosé, V. Pathology of thyroid gland. In Lloyd, RV, ed. Endocrine Pathology. New York: Springer, 2010:181235.Google Scholar
Fuhrer, D, Bockisch, A, Schmid, KW. Euthyroid goiter with and without nodulesdiagnosis and treatment. Dtsch Arztebl Int 2012;109:506515; quiz 16.Google Scholar
Delange, FM. Intrinsic and extrinsic variables: iodine deficiency. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:295316.Google Scholar
Nosé, V, Paner, GP, Greenson, JK, Rodriguez, FJ, Ko, CJ, Morgan, E. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Luo, J, McManus, C, Chen, H, Sippel, RS. Are there predictors of malignancy in patients with multinodular goiter? J Surg Res 2012;174:207210.CrossRefGoogle ScholarPubMed
Krohn, K, Fuhrer, D, Bayer, Y, et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 2005;26:504524.Google Scholar
Chaudhary, V, Bano, S. Thyroid ultrasound. Indian J Endocrinol Metab 2013;17:219227.Google Scholar
Lee, YH, Kim, DW, In, HS, et al. Differentiation between benign and malignant solid thyroid nodules using an US classification system. Korean J Radiol 2011;12:559567.Google Scholar
A. Syrenicz, A, Koziolek, A, Ciechanowicz, A, Sieradzka, A, Binczak-Kuleta, M, Parczewski, M. New insights into the diagnosis of nodular goiter. Thyroid Res 2014;7:6.Google Scholar
Berghout, A, Wiersinga, WM, Smits, NJ, Touber, JL. Interrelationships between age, thyroid volume, thyroid nodularity, and thyroid function in patients with sporadic nontoxic goiter. Am J Med 1990;89:602608.Google Scholar
Albores-Saavedra, J, Wu, J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol 2006;17:118.Google Scholar
McNicol, AM, Lewis, PD. The endocrine system. In Lewis, PD, Emeritus, SW, eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Muddegowda, PH, Srinivasan, S, Lingegowda, JB, Kurpad, RR, Murthy, KS. Spectrum of cytology of neck lesions: comparative study from two centers. J Clin Diagn Res 2014;8:4445.Google Scholar
Stagnaro-Green, A, Abalovich, M, Alexander, E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:10811125.Google Scholar
Vanderpump, MPJ, Turnbridge, WM. The epidemiology of thyroid diseases. In Braverman, LE, Utiger, RD, eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:467473.Google Scholar
Hermus, AR, Huysmans, DA. Pathogenesis of nontoxic diffuse and nodular goiter. In Braverman, LE, Utiger, RD, eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:861865.Google Scholar
Girgis, CM, Champion, BL, Wall, JR. Current concepts in Graves' disease. Ther Adv Endocrinol Metab 2011;2:135144.Google Scholar
Brent, GA. Clinical practice. Graves disease. N Engl J Med 2008;358:25942605.Google Scholar
Manji, N, Carr-Smith, JD, Boelaert, K, et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J Clin Endocrinol Metab 2006;91:48734880.Google Scholar
Ploski, R, Szymanski, K, Bednarczuk, T. The genetic basis of Graves' disease. Curr Genomics. 2011;12:542563.Google Scholar
Amodio, F, Di Martino, S, Esposito, S, et al. [Role of flowmetric analysis and of color-Doppler ultrasonography with contrast media in the different phases and follow-up of Graves' disease.] Radiol Med 2001;102:233237.Google Scholar
Tonacchera, M, Chiovato, L, Pinchera, A, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab 1998;83:492498.Google Scholar
Van Sande, J, Parma, J, Tonacchera, M, et al. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 1995;80:25772585.Google Scholar
Parma, J, Duprez, L, Van Sande, J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993;365: 649651.Google Scholar
Porcellini, A, Ciullo, I, Laviola, L, et al. Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy. J Clin Endocrinol Metab 1994;79:657661.Google Scholar
Trulzsch, B, Krohn, K, Wonerow, P, et al. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med (Berl). 2001;78:684691.Google Scholar
Farfel, Z, Bourne, HR, Iiri, T. The expanding spectrum of G protein diseases. N Engl J Med 1999;340:10121020.Google Scholar
Liu, J, Bargren, A, Schaefer, S, et al. Total thyroidectomy: a safe and effective treatment for Graves' disease. J Surg Res 2011;168:14.Google Scholar
Wassner, AJ, Brown, RS. Hypothyroidism in the newborn period. Curr Opin Endocrinol Diabetes Obes. 2013;20:449454.Google Scholar
Park, SM, Chatterjee, VK. Genetics of congenital hypothyroidism. J Med Genet 2005;42:379389.Google Scholar
Khamisi, S, Lindgren, P, Karlsson, FA. A rare case of dyshormonogenetic fetal goiter responding to intra-amniotic thyroxine injections. Eur Thyroid J. 2014;3:5156.Google Scholar
Hashemipour, M, Rostampour, N, Nasry, P, et al. The role of ultrasonography in primary congenital hypothyroidism. J Res Med Sci. 2011;16:11221128.Google Scholar
Nishiyama, RH. Overview of surgical pathology of the thyroid gland. World J Surg 2000;24:898906.Google Scholar
Camargo, R, Limbert, E, Gillam, M, et al. Aggressive metastatic follicular thyroid carcinoma with anaplastic transformation arising from a long-standing goiter in a patient with Pendred's syndrome. Thyroid 2001;11:981988.Google Scholar
Everett, LA, Glaser, B, Beck, JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997;17:411422.Google Scholar
Everett, LA, Green, ED. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 1999;8:18831891.Google Scholar
Scott, DA, Wang, R, Kreman, TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 1999;21:440443.Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar
Jamal, MN, Arnaout, MA, Jarrar, R. Pendred's syndrome: a study of patients and relatives. Ann Otol Rhinol Laryngol 1995;104:957962.Google Scholar
Sheffield, VC, Kraiem, Z, Beck, JC, et al. Pendred syndrome maps to chromosome 7q21–34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 1996;12:424426.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Vickery, AL Jr. The diagnosis of malignancy in dyshormonogenetic goitre. Clin Endocrinol Metab 1981;10:317335.Google Scholar
James, PD. Amyloid goitre. J Clin Pathol 1972;25:683688.Google Scholar
Schroder, S, Bocker, W, Husselmann, H, et al. Adenolipoma (thyrolipoma) of the thyroid gland report of two cases and review of literature. Virchows Arch A Pathol Anat Histopathol 1984;404:99103.Google Scholar
Pinto, A, Nosé, V. Localized amyloid in thyroid: are we missing it? Adv Anat Pathol 2013;20:6167.Google Scholar
Amado, JA, Ondiviela, R, Palacios, S, et al. Fast growing goitre as the first clinical manifestation of systemic amyloidosis. Postgrad Med J. 1982;58: 171172.Google Scholar
Arean, VM, Klein, RE. Amyloid goiter. Review of the literature and report of a case. Am J Clin Pathol 1961;36: 341355.Google Scholar
Daoud, F, Nieman, RE, Vilter, RW. Amyloid goiter in a case of generalized primary amyloidosis. Am J Med 1967;43:604608.Google Scholar
Kennedy, JS, Thomson, JA, Buchanan, WM. Amyloid in the thyroid. Q J Med 1974;43:127143.Google Scholar
Vanguri, VK, Nosé, V. Transthyretin amyloid goiter in a renal allograft recipient. Endocr Pathol 2008;19:6673.Google Scholar

References

Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25: 1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
LiVolsi, VA, Merino, MJ. Worrisome histologic alterations following fine-needle aspiration of the thyroid (WHAFFT). Pathol Annu 1994;29:99120.Google Scholar
Chui, MH, Cassol, CA, Asa, SL, Mete, O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Arch 2013;462:557563.Google Scholar
Johnson, RL, Hasteh, F. Thyroid cyst wall atypia in a patient with a history of malignant melanoma: a pitfall in fine-needle aspiration cytology. Diagn Cytopathol 2013;41:716719.Google Scholar
LiVolsi, VA. Hashimoto's thyroiditis: is the epithelium premalignant? International Congress Series 2007;1299:281288.Google Scholar
Baloch, ZW, Wu, H, LiVolsi, VA. Post-fine-needle aspiration spindle cell nodules of the thyroid (PSCNT). Am J Clin Pathol 1999;111:7074.Google Scholar
Baloch, ZW, LiVolsi, VA. Post fine-needle aspiration histologic alterations of thyroid revisited. Am J Clin Pathol 1999;112:311316.Google Scholar
Vergilio, J, Baloch, ZW, LiVolsi, VA. Spindle cell metaplasia of the thyroid arising in association with papillary carcinoma and follicular adenoma. Am J Clin Pathol 2002;117:199204.Google Scholar
Corrado, S, Corsello, SM, Maiorana, A, Rossi, ED, Pontecorvi, A, et al. Papillary thyroid carcinoma with predominant spindle cell component: report of two rare cases and discussion on the differential diagnosis with other spindled thyroid neoplasm. Endocr Pathol 2014;25:307314.Google Scholar
Woenckhaus, C, Cameselle-Teijeiro, J, Ruiz-Ponte, C, Abdulkader, I, Reyes-Santías, R, et al. Spindle cell variant of papillary thyroid carcinoma. Histopathology 2004;45: 424427.Google Scholar
Papotti, M, Arrondini, M, Tavaglione, V, Veltri, A, Volante, M. Diagnostic controversies in vascular proliferations of the thyroid gland. Endocr Pathol 2008;19: 175183.Google Scholar
Sapino, A, Papotti, M, Macrì, L, Satolli, MA, Bussolati, G. Intranodular reactive endothelial hyperplasia in adenomatous goitre. Histopathol 1995;26:457462.Google Scholar
Kefeli, M, Mete, O. An unusual malignant thyroid nodule: coexistence of epithelioid angiosarcoma and follicular variant papillary thyroid carcinoma. Endocr Pathol 2014;25:350352.Google Scholar
Axiotis, CA, Merino, MJ, Ain, K, Norton, JA. Papillary endothelial hyperplasia in the thyroid following fine-needle aspiration. Arch Pathol Lab Med 1991;115:240242.Google Scholar
Winkler, A, Mueller, B, Diem, P. Masson's papillary endothelial hyperplasia mimicking a poorly differentiated thyroid carcinoma: a case report. Eur J Endocrinol 2001;145:667668.Google Scholar
Aida, N, Yamada, N, Asano, G, Tanaka, S. 3-D analysis of vascular and capsular invasion in thyroid follicular carcinoma. Pathol Int 2001;51:425430.Google Scholar
Layfield, LJ, Lones, MA. Necrosis in thyroid nodules after fine needle aspiration biopsy. Report of two cases. Acta Cytol 1991;35:427430.Google Scholar
Das, DK, Janardan, C, Pathan, SK, George, SS, Sheikh, ZA. Infarction in a thyroid nodule after fine needle aspiration: report of 2 cases with a discussion of the cause of pitfalls in the histopathologic diagnosis of papillary thyroid carcinoma. Acta Cytol 2009;53:571575.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Us-Krasovec, M, Golouh, R. Papillary thyroid carcinoma with exuberant nodular fasciitis-like stroma in a fine needle aspirate. A case report. Acta Cytol 1999;43: 11011104.Google Scholar
Papi, G, Corrado, S, LiVolsi, VA. Primary spindle cell lesions of the thyroid gland; an overview. Am J Clin Pathol 2006;125(suppl:S95123.Google Scholar
Gopal, PP, Montone, KT, Baloch, Z, Tuluc, M, LiVolsi, V. The variable presentations of anaplastic spindle cell squamous carcinoma associated with tall cell variant of papillary thyroid carcinoma. Thyroid 2011;21:493499.Google Scholar
Santeusanio, G, Schiaroli, S, Ortenzi, A, Mulè, A, Perrone, G, et al. Solitary fibrous tumour of thyroid: report of two cases with immunohistochemical features and literature review. Head Neck Pathol 2008;2:231235.Google Scholar
Kim, SW, Oh, YL, Choi, JY, Lee, JI, Chung, JH, et al. Postoperative spindle cell nodule after thyroidectomy: a case mimicking recurrence with anaplastic transformation of thyroid cancer. Head Neck 2013;35:E1317.Google Scholar
Llamas-Gutierrez, FJ, Falcon-Escobedo, R, De Anda-Gonzalez, J, Angeles-Angeles, A. Spindle epithelial tumor with thymus-like differentiation of the thyroid (SETTLE): Report of two cases (one associated with a parathyroid adenoma). Ann Diagn Pathol 2013;17:217221.Google Scholar
Tanboon, J, Keskool, P. Leiomyosarcoma: a rare tumor of the thyroid. Endocr Pathol 2013;24:136143.Google Scholar
Hayashi, T, Mete, O. Head and neck paragangliomas: what does the pathologist need to know? Diagn Pathol 2014;20: 316325.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Dralle, H, Musholt, TJ, Schabram, J, Steinmüller, T, Frilling, A, et al. German Association of Endocrine Surgeons practice guideline for the surgical management of malignant thyroid tumors. Langenbecks Arch Surg 2013;398:347375.Google Scholar
Seethala, R, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, et al. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar
Deshpande, AH, Bobhate, SK. Cytological features of dyshormonogenetic goiter: case report and review of the literature. Diagn Cytopathol 2005;33:252254.Google Scholar
Rakoff-Nahoum, S. Why cancer and inflammation? Yale J Biol Med 2006;79:123130.Google Scholar
Coussens, LM, Werb, Z. Inflammation and cancer. Nature 2002;420: 860867.Google Scholar
Hussain, SP, Hofseth, LJ, Harris, CC. Radical causes of cancer. Nat Rev Cancer 2003;3:276285.Google Scholar
Frank, R, Baloch, ZW, Gentile, C, Watt, CD, LiVolsi, VA. Multifocal fibrosing thyroiditis and its association with papillary thyroid carcinoma using BRAF pyrosequencing. Endocr Pathol 2014;25:236240.Google Scholar
Teijeiro, JC, Carrillo, KH, Eloy, C, Ares, MS, Fricke, CA, et al. Multifocal sclerosing thyroiditis: morphological, immunohistochemical and molecular studies of three cases. Virchow Archiv 2014;465(suppl 1):S207.Google Scholar
Rhoden, KJ, Unger, K, Salvatore, G, Yilmaz, Y, Vovk, V, et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 2006;91:24142423.Google Scholar
Prasad, ML, Huang, Y, Pellegata, NS, de la Chapelle, A, Kloos, RT. Hashimoto's thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 2004;45:3946.Google Scholar
Fusco, A, Chiappetta, G, Hui, P, Garcia-Rostan, G, Golden, L, et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol 2002;160:21572167.CrossRefGoogle ScholarPubMed
Jankovic, B, Le, KT, Hershman, JM. Clinical review. Hashimoto's thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab 2013;98:474482.Google Scholar
Chou, A, Fraser, S, Toon, CW, Clarkson, A, Sioson, L, et al. A detailed clinicopathological study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol 2015;39:652659.Google Scholar

References

Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25: 1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Asa, SL, Mete, O. Thyroid neoplasms of follicular cell derivation: a simplified approach. Semin Diagn Pathol 2013;30:178185.Google Scholar
Mazzaferri, EL. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am J Med 1992;93:359362.Google Scholar
Gharib, H. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr Pract 2004;10:3139.Google Scholar
Rojeski, MT, Gharib, H. Nodular thyroid disease. Evaluation and management. N Engl J Med 1985;313:428436.Google Scholar
Mazzaferri, EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553559.Google Scholar
Wiest, PW, Hartshorne, MF, Inskip, PD, Crooks, LA, Vela, BS, et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J Ultrasound Med 1998;17:487496.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Chaikhoutdinov, I, Mitzner, R, Goldenberg, D. Incidental thyroid nodules: incidence, evaluation, and outcome. Otolaryngol Head Neck Surg 2014;150:939942.Google Scholar
Chen, AY, Bernet, VJ, Carty, SE, Davies, TF, Ganly, I, et al. American Thyroid Association statement on optimal surgical management of goiter. Thyroid 2014;24:181189.Google Scholar
Shin, JJ, Grillo, HC, Mathisen, D, Katlic, MR, Zurakowski, D, et al. The surgical management of goiter: Part I. Preoperative evaluation. Laryngoscope 2011;121:6067.Google Scholar
Hedayati, N, McHenry, CR. The clinical presentation and operative management of nodular and diffuse substernal thyroid disease. Am Surg 2002;68:245251.Google Scholar
Hughes, K, Eastman, C. Goitre: causes, investigation and management. Aust Fam Physician. 2012;41:572576.Google Scholar
Sturniolo, G, Gagliano, E, Tonante, A, Taranto, F, Vermiglio, F, et al. Toxic multinodular goitre. Personal case histories and literature review. G Chir. 2013;34:257259.Google Scholar
Wallaschofski, H, Orda, C, Georgi, P, Miehle, K, Paschke, R. Distinction between autoimmune and non-autoimmune hyperthyroidism by determination of TSH-receptor antibodies in patients with the initial diagnosis of toxic multinodular goiter. Horm Metab Res 2001;33:504507.Google Scholar
Smith, JJ, Chen, X, Schneider, DF, Nookala, R, Broome, JT, et al. Toxic nodular goiter and cancer: a compelling case for thyroidectomy. Ann Surg Oncol 2013;20: 13361340.Google Scholar
Lee, ES, Kim, JH, Na, DG, Paeng, JC, Min, HS, et al. Hyperfunction thyroid nodules: their risk for becoming or being associated with thyroid cancers. Korean J Radiol 2013;14:643652.Google Scholar
Führer, D, Tannapfel, A, Sabri, O, Lamesch, P, Paschke, R. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases. Endocr Relat Cancer 2003;10:591600.Google Scholar
Lado-Abeal, J, Celestino, R, Bravo, SB, Garcia-Rendueles, ME, de la Calzada, J, et al. Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma (PAX8–PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocr Relat Cancer 2010;17:599610.Google Scholar
Mete, O, Rotstein, L, Asa, SL. Controversies in thyroid pathology: thyroid capsule invasion and extrathyroidal extension. Ann Surg Oncol 2010;17:386391.Google Scholar
Cassol, CA, Noria, D, Asa, SL. Ectopic thyroid tissue within the gall bladder: case report and brief review of the literature. Endocr Pathol 2010;21:263265.Google Scholar
Ianni, F, Perotti, G, Prete, A, Paragliola, RM, Ricciato, MP, et al. Thyroid scintigraphy: an old tool is still the gold standard for an effective diagnosis of autonomously functioning thyroid nodules. J Endocrinol Invest 2013;36:233236.Google Scholar
Kleinau, G, Jaeschke, H, Worth, CL, Mueller, S, Gonzalez, J, et al. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLOS ONE 2010;18: e9745.Google Scholar
Liu, Z, Fan, F, Xiao, X, Sun, Y. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR) by mutating Ile691 in the cytoplasmic tail segment. PLOS ONE 2011;6:e16335.Google Scholar
Acharya, S, Sarafoglou, K, LaQuaglia, M, Lindsley, S, Gerald, W, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer 2003;97:23972403.Google Scholar
Shore, RE, Hildreth, N, Dvoretsky, P, Pasternack, B, Andresen, E. Benign thyroid adenomas among persons X-irradiated in infancy for enlarged thymus glands. Radiat Res 1993;134:217223.Google Scholar
Monnier, A. Late effects of ionizing radiations on the thyroid gland. Cancer Radiother 1997;1:717731.Google Scholar
Knudsen, N, Laurberg, P, Perrild, H, Bülow, I, Ovesen, L, et al. Risk factors for goiter and thyroid nodules. Thyroid 2002;12:879888.Google Scholar
Knudsen, N, Bülow, I, Laurberg, P, Ovesen, L, Perrild, H, et al. Association of tobacco smoking with goiter in a low-iodine-intake area. Arch Intern Med 2002;162:439443.Google Scholar
Barbesino, G. Drugs affecting thyroid function. Thyroid 2010;20:763770.Google Scholar
McCord, EL, Goenka, S. Development of thyroid follicular adenoma on simvastatin therapy. Tenn Med 2000;93:210212.Google Scholar
Duprez, L, Parma, J, Van Sande, J, Allgeier, A, Leclère, J et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet 1994;7: 396401.Google Scholar
Alberti, L, Proverbio, MC, Costagliola, S, Weber, G, Beck-Peccoz, P, et al. A novel germline mutation in the TSH receptor gene causes non-autoimmune autosomal dominant hyperthyroidism. Eur J Endocrinol 2001;145: 249254.Google Scholar
Duprez, L, Parma, J, Costagliola, S, Hermans, J, Van Sande, J, et al. Constitutive activation of the TSH receptor by spontaneous mutations affecting the N-terminal extracellular domain. FEBS Lett 1997;409: 469474.Google Scholar
Rodien, P, Brémont, C, Sanson, ML, Parma, J, Van Sande, J, et al. Familial gestational hyperthyroidism caused by a mutant thyrotropin receptor hypersensitive to human chorionic gonadotropin. N Engl J Med 1998;339: 18231826.Google Scholar
Biebermann, H, Schöneberg, T, Hess, C, Germak, J, Gudermann, T, et al. The first activating TSH receptor mutation in transmembrane domain 1 identified in a family with nonautoimmune hyperthyroidism. J Clin Endocrinol Metab 2001;86: 44294433.Google Scholar
Lee, YS, Poh, L, Loke, KY. An activating mutation of the thyrotropin receptor gene in hereditary non-autoimmune hyperthyroidism. J Pediatr Endocrinol Metab 2002;15: 211215.Google Scholar
Parma, J, Van Sande, J, Swillens, S, Tonacchera, M, Dumont, J, et al. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3′, 5′-monophosphate and inositol phosphate-Ca2+ cascades. Mol Endocrinol 1995;9: 725733.Google Scholar
Tonacchera, M, Van Sande, J, Cetani, F, Swillens, S, Schvartz, C, et al. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia. J Clin Endocrinol Metab 1996;81: 547554.Google Scholar
Schwab, KO, Gerlich, M, Broecker, M, Söhlemann, P, Derwahl, M, et al. Constitutively active germline mutation of the thyrotropin receptor gene as a cause of congenital hyperthyroidism. J Pediatr 1997;131: 899904.Google Scholar
Khoo, DH, Parma, J, Rajasoorya, C, Ho, SC, Vassart, G. A germline mutation of the thyrotropin receptor gene associated with thyrotoxicosis and mitral valve prolapse in a Chinese family. J Clin Endocrinol Metab 1999;84: 14591462.Google Scholar
Palos-Paz, F, Perez-Guerra, O, Cameselle-Teijeiro, J, Rueda-Chimeno, C, Barreiro-Morandeira, F, et al. for the Galician Group for the Study of Toxic Multinodular Goitre. Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain. Eur J Endocrinol 2008;159:623631.Google Scholar
Murakami, M, Kamiya, Y, Yanagita, Y, Mori, M. Gs alpha mutations in hyperfunctioning thyroid adenomas. Arch Med Res 1999;30:514521.Google Scholar
Eszlinger, M, Jaeschke, H, Paschke, R. Insights from molecular pathways: potential pharmacologic targets of benign thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2007;14:393397.Google Scholar
Tonacchera, M, Chiovato, L, Pinchera, A, Agretti, P, Fiore, E, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab 1998;83:492498.Google Scholar
Liu, C, Wu, C, Wang, F, Zhou, M. Mutations of GNAS and TSHR genes in subclinical toxic multinodular goiter. Ann Otol Rhinol Laryngol 2010;119:118124.Google Scholar
Krohn, K, Reske, A, Ackermann, F, Müller, A, Paschke, R. RAS mutations are rare in solitary cold and toxic thyroid nodules. Clin Endocrinol (Oxf) 2001;55:241248.Google Scholar
Lemoine, NR, Mayall, ES, Wyllie, FS, Williams, ED, Goyns, M, et al. High frequency of RAS oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159164.Google Scholar
Namba, H, Rubin, SA, Fagin, JA. Point mutations of RAS oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 1990;4:14741479.Google Scholar
Esapa, CT, Johnson, SJ, Kendall-Taylor, P, Lennard, TW, Harris, PE. Prevalence of RAS mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 1999;50:529535.Google Scholar
Cassol, CA, Asa, SL. Molecular pathology of thyroid. Diagn Histopathol 2011;17:124139.Google Scholar
Nikiforov, YE. Molecular analysis of thyroid tumors. Mod Pathol 2011;24(suppl 2):S34S43.Google Scholar
Capella, G, Matias-Guiu, X, Ampudia, X, de Leiva, A, Perucho, M, et al. RAS oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagn Mol Pathol 1996;5:4552.Google Scholar
Nikiforova, MN, Lynch, RA, Biddinger, PW, Alexander, EK, Dorn, GW 2nd, et al. RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003;88:23182326.Google Scholar
Dwight, T, Thoppe, SR, Foukakis, T, Lui, WO, Wallin, G, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:44404445.Google Scholar
Marques, AR, Espadinha, C, Catarino, AL, Moniz, S, Pereira, T, et al. Expression of PAX8PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:39473952.Google Scholar
Ciampi, R, Zhu, Z, Nikiforov, YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 2005;16:99105.Google Scholar
Roque, L, Serpa, A, Clode, A, Castedo, S, Soares, J. Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation: a cytogenetic and in situ hybridization study. Lab Invest 1999;79:369378.Google Scholar
Belge, G, Roque, L, Soares, J, Bruckmann, S, Thode, B, et al. Cytogenetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet CytoGenet 1998;101:4248.Google Scholar
Rippe, V, Drieschner, N, Meiboom, M, Murua, Escobar H, Bonk, U, et al. Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene 2003;22:61116114.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Laury, AR, Bongiovanni, M, Tille, JC, Kozakewich, H, Nosé, V. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 2011;21:135144.Google Scholar
Nosé, V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol 2010;17:428436.Google Scholar
Smith, JR, Marqusee, E, Webb, S, Nosé, V, Fishman, SJ, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab 2011;96:3437.Google Scholar
Nosé, V. Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol 2010;21:219226.Google Scholar
Dotto, J, Nosé, V. Familial thyroid carcinoma: a diagnostic algorithm. Adv Anat Pathol 2008;15:332349.Google Scholar
Salpea, P, Stratakis, CA. Carney complex and McCune–Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014;386:8591.Google Scholar
Matyakhina, L, Pack, S, Kirschner, LS, Pak, E, Mannan, P, et al. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 2003;40:268277.Google Scholar
Rath, SR, Bartley, A, Charles, A, Powers, N, Baynam, G, et al. Multinodular Goiter in children: an important pointer to a germline DICER1 mutation. J Clin Endocrinol Metab 2014;99:19471948.Google Scholar
Rio Frio, T, Bahubeshi, A, Kanellopoulou, C, Hamel, N, Niedziela, M, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA 2011;305:6877.Google Scholar
Rossing, M, Gerdes, AM, Juul, A, Rechnitzer, C, Rudnicki, M, et al. A novel DICER1 mutation identified in a female with ovarian Sertoli–Leydig cell tumor and multinodular goiter: a case report. J Med Case Rep 2014;8:112.Google Scholar
Darrat, I, Bedoyan, JK, Chen, M, Schuette, JL, Lesperance, MM. Novel DICER1 mutation as cause of multinodular goiter in children. Head Neck 2013;35:E369E371.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
Hunt, JL, ed. Molecular Pathology of Endocrine Diseases. New York: Springer, 2010.Google Scholar
Apel, RL, Ezzat, S, Bapat, BV, Pan, N, LiVolsi, VA, et al. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol 1995;4:113121.Google Scholar
Aeschimann, S, Kopp, PA, Kimura, ET, Zbaeren, J, Tobler, A, et al. Morphological and functional polymorphism within clonal thyroid nodules. J Clin Endocrinol Metab 1993;77:846851.Google Scholar
Kopp, P, Kimura, ET, Aeschimann, S, Oestreicher, M, Tobler, A, et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J Clin Endocrinol Metab 1994;79:134139.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Krohn, K, Paschke, R. Somatic mutations in thyroid nodular disease. Mol Genet Metab 2002;75:202208.Google Scholar
Hazard, JB, Kenyon, R. Atypical adenoma of the thyroid. Am Med Assoc Arch Pathol 1954;58: 554563.Google Scholar
Carney, JA, Ryan, J, Goellner, JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 1987;11:583591.Google Scholar
Salvatore, G, Chiappetta, G, Nikiforov, YE, Decaussin-Petrucci, M, Fusco, A, et al. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-RAF and N-RAS point mutations. Eur J Cancer 2005;41:816821.Google Scholar
Lloyd, RV. Hyalinizing trabecular tumors of the thyroid: a variant of papillary carcinoma? Adv Anat Pathol 2002;9:711.Google Scholar
Lenggenhager, D, Maggio, EM, Moch, H, Rössle, M. HBME-1 expression in hyalinizing trabecular tumours of the thyroid gland. Histopathology 2013;62:10921097.Google Scholar
Gaffney, RL, Carney, JA, Sebo, TJ, Erickson, LA, Volante, M et al. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol 2003;27:494498.Google Scholar
Nosé, V, Volante, M, Papotti, M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol 2008;19:18.Google Scholar
Carney, JA, Hirokawa, M, Lloyd, RV, Papotti, M, Sebo, TJ. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol 2008;32:18771889.Google Scholar
Gowrishankar, S, Pai, SA, Carney, JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology 2008;52:529531.Google Scholar
Mete, O, Asa, SL. Images in endocrine pathology: thyrotoxicosis associated with destructive thyroiditis. Endocr Pathol 2012;23:212214.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Ordóñez, NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012;19:140151.Google Scholar
Nonaka, D. Study of parathyroid transcription factor GCM2 expression in parathyroid lesions. Am J Surg Pathol 2011;35:145151.Google Scholar
Ordóñez, NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol 2013;20:352360.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Barletta, JA, Bellizzi, AM, Hornick, JL. Immunohistochemical staining of thyroidectomy specimens for PTEN can aid in the identification of patients with Cowden syndrome. Am J Surg Pathol 2011;35:15051511.Google Scholar
Asa, SL, Mete, O. Tumors of endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar

References

DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25:1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
Asa, SL, Mete, O. Thyroid neoplasms of follicular cell derivation: a simplified approach. Semin Diagn Pathol 2013;30:178185.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, Mandel, SJ, Mazzaferri, EL, McIver, B, Pacini, F, Schlumberger, M, Sherman, SI, Steward, DL, Tuttle, RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Chaikhoutdinov, I, Mitzner, R, Goldenberg, D. Incidental thyroid nodules: incidence, evaluation, and outcome. Otolaryngol Head Neck Surg 2014;150:939942.Google Scholar
Howlader, N, Noone, AM, Krapcho, M, Garshell, J, Neyman, N, Altekruse, SF, Kosary, CL, Yu, M, Ruhl, J, Tatalovich, Z, Cho, H, Mariotto, A, Lewis, DR, Chen, HS, Feuer, EJ, Cronin, KA. 2013 SEER Cancer Statistics Review, 1975–2010. Bethesda, MD: National Cancer Institute, 2013 (http://seer.cancer.gov/csr/1975_2010/, updated June 2013, accessed 4 October 2015).Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Ahn, HS, Kim, HJ, Welch, HG. Korea's thyroid-cancer “epidemic”: screening and overdiagnosis. N Engl J Med 2014;371:17651767.Google Scholar
Jung, CK, Little, MP, Lubin, JH, Brenner, AV, Wells, SA Jr., Sigurdson, AJ, Nikiforov, YE. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab 2014;99:E276E285.Google Scholar
Hsiao, SJ, Nikiforov, Y. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer 2014;21:T301T313.Google Scholar
Soares, P, Celestino, R, Gaspar da Rocha, A, Sobrinho-Simões, M. Papillary thyroid microcarcinoma: how to diagnose and manage this epidemic? Int J Surg Pathol 2014;22:113119.Google Scholar
Smith, JJ, Chen, X, Schneider, DF, Nookala, R, Broome, JT, Sippel, RS, Chen, H, Solorzano, CC. Toxic nodular goiter and cancer: a compelling case for thyroidectomy. Ann Surg Oncol 2013;20:13361340.Google Scholar
Lee, ES, Kim, JH, Na, DG, Paeng, JC, Min, HS, Choi, SH, Sohn, CH, Chang, KH. Hyperfunction thyroid nodules: their risk for becoming or being associated with thyroid cancers. Korean J Radiol 2013;14:643652.Google Scholar
Führer, D, Tannapfel, A, Sabri, O, Lamesch, P, Paschke, R. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases. Endocr Relat Cancer 2003;10:591600.Google Scholar
Lado-Abeal, J, Celestino, R, Bravo, SB, Garcia-Rendueles, ME, de la Calzada, J, Castro, I, Castro, P, Espadinha, C, Palos, F, Soares, P, Alvarez, CV, Sobrinho-Simões, M, Cameselle-Teijeiro, J. Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocr Relat Cancer 2010;17:599610.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Prazeres, H, Torres, J, Soares, P, Sobrinho-Simões, M. The familial counterparts of follicular cell-derived thyroid tumors. Int J Surg Pathol 2010;18:233234.Google Scholar
Nosé, V. Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol 2010;21:219226.Google Scholar
Nosé, V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol 2010;17:428436.Google Scholar
Zhang, Y, Nosé, V. Endocrine tumors as part of inherited tumor syndromes. Adv Anat Pathol 2011;18:206218.Google Scholar
Khan, A, Smellie, J, Nutting, C, Harrington, K, Newbold, K. Familial nonmedullary thyroid cancer: a review of the genetics. Thyroid 2010;20:795780.Google Scholar
Sheth, S. Role of ultrasonography in thyroid disease. Otolaryngol Clin North Am 2010;43:239255.Google Scholar
Horvath, E, Majlis, S, Rossi, R, Franco, C, Niedmann, JP, Castro, A, Dominguez, M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009;94:17481751.Google Scholar
Tae, HJ, Lim, DJ, Baek, KH, Park, WC, Lee, YS, Choi, JE, Lee, JM, Kang, MI, Cha, BY, Son, HY, Lee, KW, Kang, SK. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid 2007;17:461466.Google Scholar
Ito, Y, Amino, N, Yokozawa, T, Ota, H, Ohshita, M, Murata, N, Morita, S, Kobayashi, K, Miyauchi, A. Ultrasonographic evaluation of thyroid nodules in 900 patients: comparison among ultrasonographic, cytological, and histological findings. Thyroid 2007;17:12691276.Google Scholar
Salmaslioglu, A, Erbil, Y, Dural, C, Issever, H, Kapran, Y, Ozarmagan, S, Tezelman, S. Predictive value of sonographic features in preoperative evaluation of malignant thyroid nodules in a multinodular goiter. World J Surg 2008;32:19481954.Google Scholar
Kwak, JY, Han, KH, Yoon, JH, Moon, HJ, Son, EJ, Park, SH, Jung, HK, Choi, JS, Kim, BM, Kim, EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892899.Google Scholar
Nam-Goong, IS, Kim, HY, Gong, G, Lee, HK, Hong, SJ, Kim, WB, Shong, YK. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:2128.Google Scholar
Frates, MC, Benson, CB, Doubilet, PM, Kunreuther, E, Contreras, M, Cibas, ES, Orcutt, J, Moore, FD Jr., Larsen, PR, Marqusee, E, Alexander, EK. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:34113417.Google Scholar
Gustafson, S, Zbuk, KM, Scacheri, C, Eng, C. Cowden syndrome. Semin Oncol 2007;34:428434.Google Scholar
Ngeow, J, Ni, Y, Tohme, R, Song Chen, F, Bebek, G, Eng, C. Germline alterations in RASAL1 in Cowden syndrome patients presenting with follicular thyroid cancer and in individuals with apparently sporadic epithelial thyroid cancer. J Clin Endocrinol Metab 2014;99: E13161321.Google Scholar
Xing, M. RASAL1 in thyroid cancer: promise from a new friend. J Clin Endocrinol Metab 2014;99:36193621.Google Scholar
Mahdi, H, Mester, JL, Nizialek, EA, Ngeow, J, Michener, C, Eng, C. Germline PTEN, SDHB–D, and KLLN alterations in endometrial cancer patients with Cowden and Cowden-like syndromes: an international, multicenter, prospective study. Cancer 2015;121:688696.Google Scholar
Ni, Y, He, X, Chen, J, Moline, J, Mester, J, Orloff, MS, Ringel, MD, Eng, C. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependent destabilization of p53. Hum Mol Genet 2012;21:300310.Google Scholar
Ngeow, J, Mester, J, Rybicki, LA, Ni, Y, Milas, M, Eng, C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab 2011;96:E2063E2071.Google Scholar
Harach, HR, Williams, GT, Williams, ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 1994;25:549561.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, Taymans, SE, Giatzakis, C, Cho, YS, Cho-Chung, YS, Stratakis, CA. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.Google Scholar
Salpea, P, Stratakis, CA. Carney complex and McCune–Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014;386:8591.Google Scholar
Matyakhina, L, Pack, S, Kirschner, LS, Pak, E, Mannan, P, Jaikumar, J, Taymans, SE, Sandrini, F, Carney, JA, Stratakis, CA. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 2003;40:268277.Google Scholar
Stratakis, CA, Courcoutsakis, NA, Abati, A, Filie, A, Doppman, JL, Carney, JA, Shawker, T. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab 1997;82:20372043.Google Scholar
Weinstein, LS, Shenker, A, Gejman, PV, Merino, MJ, Friedman, E, Spiegel, AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325:16881695.Google Scholar
Doros, L, Schultz, KA, Stewart, DR, Bauer, AJ, Williams, G, Rossi, CT, Carr, A, Yang, J, Dehner, LP, Messinger, Y, Hill, AD.DICER-1 related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K eds. GeneReviews. Seattle, WA: University of Washington, 2014 (http://www.ncbi.nlm.nih.gov/books/NBK196157/, accessed 10 September 2015).Google Scholar
Rath, SR, Bartley, A, Charles, A, Powers, N, Baynam, G, Jones, T, Priest, JR, Foulkes, WD, Choong, CS. Multinodular goiter in children: an important pointer to a germline DICER1 mutation. J Clin Endocrinol Metab 2014;99:19471948.Google Scholar
Rio Frio, T, Bahubeshi, A, Kanellopoulou, C, Hamel, N, Niedziela, M, Sabbaghian, N, Pouchet, C, Gilbert, L, O'Brien, PK, Serfas, K, Broderick, P, Houlston, RS, Lesueur, F, Bonora, E, Muljo, S, Schimke, RN, Bouron-Dal Soglio, D, Arseneau, J, Schultz, KA, Priest, JR, Nguyen, VH, Harach, HR, Livingston, DM, Foulkes, WD, Tischkowitz, M. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA 2011;305:6877.Google Scholar
Rossing, M, Gerdes, AM, Juul, A, Rechnitzer, C, Rudnicki, M, Nielsen, FC, Vo Hansen, T. A novel DICER1 mutation identified in a female with ovarian Sertoli-Leydig cell tumor and multinodular goiter: a case report. J Med Case Rep 2014;8:112.Google Scholar
Darrat, I, Bedoyan, JK, Chen, M, Schuette, JL, Lesperance, MM. Novel DICER1 mutation as cause of multinodular goiter in children. Head Neck 2013;35:E369371.Google Scholar
Winer, DA, Winer, S, Rotstein, L, Asa, SL, Mete, O. Villous papillary thyroid carcinoma: a variant associated with marfan syndrome. Endocr Pathol 2012;23:254259.Google Scholar
Nikiforov, YE. Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr Pathol 2006;17:307317.Google Scholar
Thomas, G, Unger, K, Krznaric, M, Galpine, A, Bethel, J, Tomlinson, C, Woodbridge, M, Butcher, S. The Chernobyl tissue bank: a repository for biomaterial and data used in integrative and systems biology modeling the human response to radiation. Genes (Basel) 2012;3:278290.Google Scholar
Fridman, M, Savva, N, Krasko, O, Mankovskaya, S, Branovan, DI, Schmid, KW, Demidchik, Y. Initial presentation and late results of treatment of post-Chernobyl papillary thyroid carcinoma in children and adolescents of Belarus. J Clin Endocrinol Metab 2014;99:29322941.Google Scholar
Cardis, E, Howe, G, Ron, E, Bebeshko, V, Bogdanova, T, Bouville, A, Carr, Z, Chumak, V, Davis, S, Demidchik, Y, Drozdovitch, V, Gentner, N, Gudzenko, N, Hatch, M, Ivanov, V, Jacob, P, Kapitonova, E, Kenigsberg, Y, Kesminiene, A, Kopecky, KJ, Kryuchkov, V, Loos, A, Pinchera, A, Reiners, C, Repacholi, M, Shibata, Y, Shore, RE, Thomas, G, Tirmarche, M, Yamashita, S, Zvonova, I. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 2006;26:127140.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, Brenner, AV, Little, MP, Bogdanova, TI, Evdokimova, VN, Hatch, M, Zurnadzy, LY, Nikiforova, MN, Yue, NJ, Zhang, M, Mabuchi, K, Tronko, MD, Nikiforov, YE. ETV6–NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Ory, C, Ugolin, N, Hofman, P, Schlumberger, M, Likhtarev, IA, Chevillard, S. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors. Thyroid 2013;23:13901400.Google Scholar
Tronko, M, Bogdanova, T, Voskoboynyk, L, Zurnadzhy, L, Shpak, V, Gulak, L. Radiation induced thyroid cancer: fundamental and applied aspects. Exp Oncol 2010;32:200204.Google Scholar
Ricarte-Filho, JC, Li, S, Garcia-Rendueles, ME, Montero-Conde, C, Voza, F, Knauf, JA, Heguy, A, Viale, A, Bogdanova, T, Thomas, GA, Mason, CE, Fagin, JA. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:49354944.Google Scholar
Santoro, M, Carlomagno, F. Oncogenic rearrangements driving ionizing radiation-associated human cancer. J Clin Invest 2013;123:45664568.Google Scholar
Vejbjerg, P, Knudsen, N, Perrild, H, Carlé, A, Laurberg, P, Pedersen, IB, Rasmussen, LB, Ovesen, L, Jørgensen, T. Effect of a mandatory iodization program on thyroid gland volume based on individuals' age, gender, and preceding severity of dietary iodine deficiency: a prospective, population-based study. J Clin Endocrinol Metab 2007;92:13971401.Google Scholar
Belfiore, A, La Rosa, GL, La Porta, GA, Giuffrida, D, Milazzo, G, Lupo, L, Regalbuto, C, Vigneri, R. Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 1992;93:363369.Google Scholar
Albores-Saavedra, J, Henson, DE, Glazer, E, Schwartz, AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype–papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol 2007;18:17.Google Scholar
Poncin, S, Van Eeckoudt, S, Humblet, K, Colin, IM, Gérard, AC. Oxidative stress: a required condition for thyroid cell proliferation. Am J Pathol 2010;176:13551363.Google Scholar
Poncin, S, Gérard, AC, Boucquey, M, Senou, M, Calderon, PB, Knoops, B, Lengelé, B, Many, MC, Colin, IM. Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 2008;149:424433.Google Scholar
Karbownik-Lewiska, M, Kokoszko-Bilska, A. Oxidative damage to macromolecules in the thyroid: experimental evidence. Thyroid Res 2012;5:25.Google Scholar
Pitoia, F, Abelleira, E, Bueno, F, Urciuoli, C, Schmidt, A, Niepomniszcze, H. Insulin resistance is another factor that increases the risk of recurrence in patients with thyroid cancer. Endocrine 2015;48:894901.Google Scholar
Bae, MJ, Kim, SS, Kim, WJ, Yi, YS, Jeon, YK, Kim, BH, Lee, BJ, Lee, JC, Kim, IJ, Wang, SG, Kim, YK. High prevalence of papillary thyroid cancer in Korean women with insulin resistance. Head Neck 2014; doi: 10.1002/hed.23848.Google Scholar
Marcello, MA, Cunha, LL, Batista, FA, Ward, LS. Obesity and thyroid cancer. Endocr Relat Cancer 2014;21:T255271.Google Scholar
Pazaitou-Panayiotou, K, Polyzos, SA, Mantzoros, CS. Obesity and thyroid cancer: epidemiologic associations and underlying mechanisms. Obes Rev 2013;14:10061022.Google Scholar
Malaguarnera, R, Morcavallo, A, Belfiore, A. The insulin and IGF-I pathway in endocrine glands carcinogenesis. J Oncol 2012;2012:635614.Google Scholar
Guo, S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014;220:T1T23.Google Scholar
Vella, V, Sciacca, L, Pandini, G, Mineo, R, Squatrito, S, Vigneri, R, Belfiore, A. The IGF system in thyroid cancer: new concepts. Mol Pathol 2001;54:121124.Google Scholar
Banu, KS, Govindarajulu, P, Aruldhas, MM. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol 2001;12:315327.Google Scholar
Adamson, LA, Fowler, LJ, Clare-Salzler, MJ, Hobbs, JA. Parvovirus B19 infection in Hashimoto's thyroiditis, papillary thyroid carcinoma, and anaplastic thyroid carcinoma. Thyroid 2011;21:411417.Google Scholar
Adamson-Small, LA, Fowler, LJ, Hobbs, JA. Parvovirus b19 persistence in abnormal thyroid tissue of a mature cystic ovarian teratoma: a case report. Endocr Pathol 2014;25:339343.Google Scholar
Stamatiou, D, Derdas, SP, Symvoulakis, EK, Sakorafas, GH, Zoras, O, Spandidos, DA. Investigation of BK virus, Epstein–Barr virus and human papillomavirus sequences in postoperative thyroid gland specimens. Int J Biol Markers 2014; 30:e104e110.Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159:676690.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
Laury, AR, Bongiovanni, M, Tille, JC, Kozakewich, H, Nosé, V. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 2011;21:135144.Google Scholar
Chui, MH, Cassol, CA, Asa, SL, Mete, O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Arch 2013;462:557563.Google Scholar
Cassol, CA, Asa, SL. Molecular pathology of thyroid. Diagn Histopathol 2011;17:124139.Google Scholar
Nikiforov, YE. Molecular analysis of thyroid tumors. Mod Pathol 2011;24(suppl 2):S34S43.Google Scholar
Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013;13, 184199.Google Scholar
Maurer, G, Tarkowski, B, Baccarini, M. Raf kinases in cancer: roles and therapeutic opportunities. Oncogene 2011;30:34773488.Google Scholar
Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28: 742e62.Google Scholar
Vadysirisack, DD, Venkateswaran, A, Zhang, Z, Jhiang, SM. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Endocr Relat Cancer 2007;14:421432.Google Scholar
Gao, WL, Wie, LL, Chao, YG, Wie, L, Song, TL. Prognostic prediction of BRAF(V600E) and its relationship with sodium iodide symporter in classic variant of papillary thyroid carcinomas. Clin Lab. 2012;58:919926.Google Scholar
Fenton, MS, Marion, KM, Salem, AK, Hogen, R, Naeim, F, Hershman, JM. Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid 2010;20:965974.Google Scholar
D'Agostino, M, Sponziello, M, Puppin, C, Celano, M, Maggisano, V, Baldan, F, Biffoni, M, Bulotta, S, Durante, C, Filetti, S, Damante, G, Russo, D. Different expression of TSH receptor and NIS genes in thyroid cancer: role of epigenetics. J Mol Endocrinol 2014;52:121131.Google Scholar
Pierotti, MA., Bongarzone, I., Borrello, MG, Mariani, C., Miranda, C, Sozzi, G, Greco, A. Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 1995;18: 130133.Google Scholar
McFadden, DG, Dias-Santagata, D, Sadow, PM, Lynch, KD, Lubitz, C, Donovan, SE, Zheng, Z, Le, L, Iafrate, AJ, Daniels, GH. Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2014;99:E24572462.Google Scholar
Ciampi, R, Zhu, Z, Nikiforov, YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 2005;16:99105.Google Scholar
Hamatani, K, Mukai, M, Takahashi, K, Hayashi, Y, Nakachi, K, Kusunoki, Y. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid 2012;22:11531159.Google Scholar
Park, G, Kim, TH, Lee, HO, Lim, JA, Won, JK, Min, HS, Lee, KE, Park do, J, Park, YJ, Park, WY. Standard immunohistochemistry efficiently screens for anaplastic lymphoma kinase rearrangements in differentiated thyroid cancer. Endocr Relat Cancer 2015;22:5563.Google Scholar
Pérot, G, Soubeyran, I, Ribeiro, A, Bonhomme, B, Savagner, F, Boutet-Bouzamondo, N, Hostein, I, Bonichon, F, Godbert, Y, Chibon, F. Identification of a recurrent STRN/ALK fusion in thyroid carcinomas. PLOS ONE 2014;9:e87170.Google Scholar
Asa, SL, Mete, O. Tumors of the endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar
He, H, Jazdzewski, K, Li, W, Liyanarachchi, S, Nagy, R, Volinia, S, Calin, GA, Liu, CG, Franssila, K, Suster, S, Kloos, RT, Croce, CM, de la Chapelle, A. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005;102:1907519080.Google Scholar
Pallante, P, Visone, R, Ferracin, M, Ferraro, A, Berlingieri, MT, Troncone, G, Chiappetta, G, Liu, CG, Santoro, M, Negrini, M, Croce, CM, Fusco, A. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 2006;13:497508.Google Scholar
Felli, N, Fontana, L, Pelosi, E, Botta, R, Bonci, D, Facchiano, F, Liuzzi, F, Lulli, V, Morsilli, O, Santoro, S, Valtieri, M, Calin, GA, Liu, CG, Sorrentino, A, Croce, CM, Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005;102:1808118086.Google Scholar
Weber, F, Teresi, RE, Broelsch, CE, Frilling, A, Eng, C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 2006;91:3584e91.Google Scholar
Visone, R, Russo, L, Pallante, P, De Martino, I, Ferraro, A, Leone, V, Borbone, E, Petrocca, F, Alder, H, Croce, CM, Fusco, A. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007;14:791798.Google Scholar
Nikiforova, MN, Tseng, GC, Steward, D, Diorio, D, Nikiforov, YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93:1600e8.Google Scholar
Kim, HJ, Kim, YH, Lee, DS, Chung, JK, Kim, S. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. J Nucl Med 2008;49:1686e93.Google Scholar
Tetzlaff, MT, Liu, A, Xu, X, Master, SR, Baldwin, DA, Tobias, JW, Livolsi, VA, Baloch, ZW. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol 2007;18:163173.Google Scholar
Peng, Y, Li, C, Luo, DC, Ding, JW, Zhang, W, Pan, G. Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules. 2014;19:1158611599.Google Scholar
Máximo, V, Lima, J, Prazeres, H, Soares, P, Sobrinho-Simões, M. The biology and the genetics of Hürthle cell tumors of the thyroid. Endocr Relat Cancer 2012;19:R131R147.Google Scholar
Bonora, E, Porcelli, AM, Gasparre, G, Biondi, A, Ghelli, A, Carelli, V, Baracca, A, Tallini, G, Martinuzzi, A, Lenaz, G, Rugolo, M, Romeo, G. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 2006;66:60876096.Google Scholar
Máximo, V, Sobrinho-Simões, M. Mitochondrial DNA “common” deletion in Hürthle cell lesions of the thyroid. J Pathol 2000;192:561562.Google Scholar
Máximo, V, Sobrinho-Simões, M. Hürthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 2000;437:107115.Google Scholar
Rogounovitch, T, Saenko, V, Yamashita, S. Mitochondrial DNA and human thyroid diseases. Endocr J 2004;51:265277.Google Scholar
Máximo, V, Botelho, T, Capela, J, Soares, P, Lima, J, Taveira, A, Amaro, T, Barbosa, AP, Preto, A, Harach, HR, Williams, D, Sobrinho-Simões, M. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer 2005;92:18921898.Google Scholar
Harach, HR, Lesueur, F, Amati, P, Brown, A, Canzian, F, Kraimps, JL, Levillain, P, Menet, E, Romeo, G, Bonneau, D. Histology of familial thyroid tumours linked to a genemapping to chromosome 19p13.2. J Pathol 1999;189:387393.Google Scholar
Asa, SL. My approach to oncocytic tumours of the thyroid. J Clin Pathol 2004;57:225232.Google Scholar
Mete, O, Rotstein, L, Asa, SL. Controversies in thyroid pathology: thyroid capsule invasion and extrathyroidal extension. Ann Surg Oncol 2010;17:386391.Google Scholar
Asa, SL, Giordano, TJ, LiVolsi, VA. Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: does follicular variant papillary thyroid carcinoma exist? Thyroid 2015;25:12.Google Scholar
Lindsay, S. Carcinoma of the Thyroid Gland. A Clinical and Pathological Study of 293 Patients at the University of California Hospital. Springfield, IL: Charles C Thomas, 1960.Google Scholar
Chem, KT, Rosai, J. Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol 1977;1:123130.Google Scholar
Rosai, J, Carcangiu, ML, DeLellis, RA. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992.Google Scholar
LiVolsi, VA. Papillary thyroid carcinoma: an update. Mod Pathol 2011;24: S1S9.Google Scholar
Serra, S, Asa, SL. Controversies in thyroid pathology: the diagnosis of follicular neoplasms. Endocr Pathol 2008;19:156165.Google Scholar
LiVolsi, VA, Baloch, ZW. The many faces of follicular variant of papillary thyroid carcinoma. Pathol Case Rev 2009;14:214218.Google Scholar
Elsheikh, TM, Asa, SL, Chan, JK, DeLellis, RA, Heffess, CS, LiVolsi, VA, Wenig, BM. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 2008;130:736744.Google Scholar
Lloyd, RV, Erickson, LA, Casey, MB, Lam, KY, Lohse, CM, Asa, SL, Chan, JK, DeLellis, RA, Harach, HR, Kakudo, K, LiVolsi, VA, Rosai, J, Sebo, TJ, Sobrinho-Simoes, M, Wenig, BM, Lae, ME. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 2004;28:13361340.Google Scholar
Ghossein, R. Problems and controversies in the histopathology of thyroid carcinomas of follicular cell origin. Arch Pathol Lab Med 2009;133:683691.Google Scholar
Ghossein, R. Update to the College of American Pathologists reporting on thyroid carcinomas. Head Neck Pathol 2009;3:8693.Google Scholar
Nikiforov, YE, Biddinger, PW, Thompson, LDR. Diagnostic Pathology and Molecular Genetics of the Thyroid. A Comprehensive Guide for Practicing Thyroid Pathology. Baltimore, MD: Lippincott Williams &Wilkins, 2009.Google Scholar
LiVolsi, VA, Baloch, ZW. Follicular-patterned tumors of the thyroid: the battle of benign vs. malignant vs. so-called uncertain. Endocr Pathol 2011;22:184189.Google Scholar
DeGroot, LJ, Kaplan, EL, Shukla, MSM, Salti, G, Straus, FH. Morbidity and mortality in follicular thyroid carcinoma. J Clin Endocrinol Metab 1995;80:29462953.Google Scholar
Furlan, JC, Bedrad, YC, Rosen, IB. Clinicopathologic significance of histologic vascular invasion in papillary and follicular thyroid carcinomas. J Am Coll Surg 2004;198:341348.Google Scholar
Ozaki, O, Ito, K, Sugino, K. Clinico-pathologic study of pulmonary metastasis of differentiated thyroid carcinoma: age-, sex-, and histology-matched case–control study. Int Surg 1993;78:218220.Google Scholar
Simpson, WJ, McKinney, SE, Carruthers, JS, Gospodarowicz, MK, Sutcliffe, SB, Panzarella, T. Papillary and follicular thyroid cancer: prognostic factors in 1578 patients. Am J Med 1987;83:479488.Google Scholar
Ramsed, JD. Angiogenesis of the thyroid gland. J Endocrinol 2000;166:475480.Google Scholar
Mills, SE. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007.Google Scholar
Foschini, MP, Papotti, M, Parmeggiani, A, Tallini, G, Castaldini, L, Meringolo, D, Eusebi, V. Three-dimensional reconstruction of vessel distribution in benign and malignant lesions of thyroid. Virchows Arch 2004;445:189198.Google Scholar
Kumar, V, Abbas, AK, Fausto, N, Aster, JC, eds. Robbins and Cotran Pathologic Basis of Disease, 8th edn. Philadelphia PA: Elsevier-Saunders, 2010.Google Scholar
Crissman, JD, Hatfield, JS, Menter, DG, Sloane, B, Honn, KV. Morphological study of the interaction of Intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 1988;48:40654072.Google Scholar
Hejna, M, Raderer, M, Zielinsky, CC. Inhibition of metastases by anticoagulants. J Nat Cancer Inst 1999;91:2236.Google Scholar
Letai, A, Kuter, DI. Cancer, coagulation, and anticoagulation. Oncologist 1999;4:443449.Google Scholar
Loreto, MF, De Martinis, M, Corsi, MP, Modesti, M, Ginaldi, L. Coagulation and cancer: implications for diagnosis and management. Pathol Oncol Res 2000;6:301312.Google Scholar
Nash, GF, Walsh, DC, Kakkar, AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2001;2:608613.Google Scholar
Trikha, M, Nakada, MT. Platelets and cancer: implications for antiangiogenic therapy. Semin Thromb Haemost 2002;28:3944.Google Scholar
Gay, LJ, Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011;11:123134.Google Scholar
Seethala, RR, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, Richardson, MS, Shah, J, Thompson, LDR, Nikiforov, YE. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Lang, W, Choritz, H, Hundeshagen, H. Risk factors in follicular thyroid carcinomas: a retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol 1986;10:246255.Google Scholar
Erovic, BM, Kim, D, Cassol, C, Goldstein, DP, Irish, JC, Asa, SL, Mete, O.Prognostic and predictive markers in medullary thyroid carcinoma. Endocr Pathol 2012;23:232242.Google Scholar
Erovic, BM, Harris, L, Jamali, M, Goldstein, DP, Irish, JC, Asa, SL, Mete, O. Biomarkers of parathyroid carcinoma. Endocr Pathol 2012;23:221231.Google Scholar
Erovic, BM, Goldstein, DP, Kim, D, Mete, O, Brierley, J, Tsang, R, Freeman, JL, Asa, SL, Rotstein, L, Irish, JC. Parathyroid cancer: outcome analysis of 16 patients treated at the Princess Margaret Hospital. Head Neck 2013;35:3539.Google Scholar
Standring, S. Thyroid gland. In Stranding, S, ed. Gray's Anatomy. The Anatomical Basis of Clinical Practice, 39th edn. Edinburgh: Churchill Livingstone, 2005:560564.Google Scholar
Stewart, WB, Rizzolo, LL. Embryology and surgical anatomy of the thyroid and parathyroid glands. In Oertli, D, Udelsman, R, eds. Surgery of the Thyroid and Parathyroid Glands. New York: Springer, 2007:1320.Google Scholar
Ranade, AV, Rai, R, Pai, MM, Nayak, SR, Prakash Krisnamurthy, A, Narayana, S. Anatomical variations of the thyroid gland: possible surgical implications. Singapore Med J 2008;49:831834.Google Scholar
Loukas, M, Merbs, W, Tubbs, RS, Curry, B, Jordan, R. Levator glandulae thyroideae muscle with three slips. Anat Sci Int 2008;83:273276.Google Scholar
Niu, D, Murata, S, Kondo, T, Nakazawa, T, Kawasaki, T, Ma, D, Yamane, T, Nakamura, N, Katoh, R. Involvement of centrosomes in nuclear irregularity of thyroid carcinoma cells. Virchows Arch 2009;455:149157.Google Scholar
Papotti, M, Manazza, AD, Chiarle, R, Bussolati, G. Confocal microscope analysis and tridimensional reconstruction of papillary thyroid carcinoma nuclei. Virchows Arch 2004;444:350355.Google Scholar
Rosai, J, Kuhn, E, Carcangiu, ML. Pitfalls in thyroid tumour pathology. Histopathology 2006;49:107120.Google Scholar
Al-Brahim, N, Asa, SL. Papillary thyroid carcinoma: an overview. Arch Pathol Lab Med 2006;130:10571062.Google Scholar
Albores-Saavedra, J, Gould, E, Vardaman, C, Vuitch, F. The macrofollicular variant of papillary thyroid carcinoma: a study of 17 cases. Hum Pathol 1991;22:11951205.Google Scholar
Jakubowski, M, Hunt, JL. BRAF mutational analysis in papillary carcinomas with mixed follicular and papillary growth patterns. Am J Surg Pathol 2009;33:15901593.Google Scholar
Howitt, BE, Jia, Y, Sholl, LM, Barletta, JA. Molecular alterations in partially-encapsulated or well circumscribed follicular variant of papillary thyroid carcinoma. Thyroid 2013;23:12561262.Google Scholar
Chetty, R. Follicular patterned lesions of the thyroid gland: a practical algorithmic approach. J Clin Pathol 2011;64:737741.Google Scholar
Liu, J, Singh, B, Tallini, G, Carlson, DL, Katabi, N, Shaha, A, Tuttle, RM, Ghossein, RA. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 2006;107:12551264.Google Scholar
Ghossein, R. Encapsulated malignant follicular cell-derived thyroid tumors. Endocr Pathol 2010;21:212218.Google Scholar
Vivero, M, Kraft, S, Barletta, JA. Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid 2013;23:273279.Google Scholar
Fridman, MV, Savva, NN, Krasko, OV, Zborovskaya, AA, Mankovskaya, SV, Kurt Werner, S, Demidchik, YE. Clinical and pathologic features of “sporadic” papillary thyroid carcinoma registered in the years 2005 to 2008 in children and adolescents of Belarus. Thyroid 2012;22:10161024.Google Scholar
LiVolsi, VA, Abrosimov, AA, Bogdanova, T, Fadda, G, Hunt, JL, Ito, M, Rosai, J, Thomas, GA, Williams, ED. The Chernobyl thyroid cancer experience: pathology. Clin Oncol 2011;23:261267.Google Scholar
Baloch, Z, LiVolsi, VA, Tondon, R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called “real thyroid carcinomas.” J Clin Pathol 2013;66:733743.Google Scholar
Leonardo, E, Volante, M, Barbareschi, M, Cavazza, A, Dei Tos, AP, Bussolati, G, Papotti, M. Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact? Appl Immunohistochem Mol Morphol 2007;15:220223.Google Scholar
Nosé, V, Volante, M, Papotti, M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol 2008;19:18.Google Scholar
Carney, JA, Hirokawa, M, Lloyd, RV, Papotti, M, Sebo, TJ. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol 2008;32:18771889.Google Scholar
Gowrishankar, S, Pai, SA, Carney, JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology 2008;52:529531.Google Scholar
Lenggenhager, D, Maggio, EM, Moch, H, Rössle, M. HBME-1 expression in hyalinizing trabecular tumours of the thyroid gland. Histopathology 2013;62:10921097.Google Scholar
Carney, JA, Ryan, J, Goellner, JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 1987;11:583591.Google Scholar
Salvatore, G, Chiappetta, G, Nikiforov, YE, Decaussin-Petrucci, M, Fusco, A, Carney, JA, Santoro, M. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-Raf and N-Ras point mutations. Eur J Cancer 2005;41:816821.Google Scholar
Cheung, CC, Boerner, SL, MacMillan, CM, Ramyar, L, Asa, SL. Hyalinized trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 2000;24:16221626.Google Scholar
Gaffney, RL, Carney, JA, Sebo, TJ, Erickson, LA, Volante, M, Papotti, M, Lloyd, RV. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol 2003;27:494498.Google Scholar
Papotti, M, Volante, M, Giuliano, A, Fassina, A, Fusco, A, Bussolati, G, Santoro, M, Chiappetta, G. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol 2000;24:16151621.Google Scholar
Vickery, AL Jr., Carcangiu, ML, Johannessen, JV, Sobrinho-Simoes, M. Papillary carcinoma. Semin Diagn Pathol 1985;2:90100.Google Scholar
McElvanna, K, McCusker, G, Stirling, I. Diffuse sclerosing variant of papillary thyroid carcinoma: a rare cause of goitre in a young patient. Ulster Med J 2007;76:113114.Google Scholar
Lam, AK, Lo, CY. Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution. Ann Surg Oncol 2006;13:176181.Google Scholar
Carcangiu, ML, Bianchi, S. Diffuse sclerosing variant of papillary thyroid carcinoma. Clinicopathologic study of 15 cases. Am J Surg Pathol 1989;13:10411049.Google Scholar
Soares, J, Limbert, E, Sobrinho-Simoes, M. Diffuse sclerosing variant of papillary thyroid carcinoma. A clinicopathologic study of 10 cases. Pathol Res Pract 1989;185:200206.Google Scholar
Takagi, N, Hirokawa, M, Nobuoka, Y, Higuchi, M, Kuma, S, Miyauchi, A. Diffuse sclerosing variant of papillary thyroid carcinoma: a study of fine needle aspiration cytology in 20 patients. Cytopathology 2014;25:199204.Google Scholar
Regalbuto, C, Malandrino, P, Tumminia, A, Le Moli, R, Vigneri, R, Pezzino, V. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid 2011;21:383389.Google Scholar
Kameyama, K, Mukai, M, Takami, H, Ito, K. Cribriform–morular variant of papillary thyroid carcinoma: ultrastructural study and somatic/germline mutation analysis of the APC gene. Ultrastruct Pathol 2004;28:97102.Google Scholar
Xu, B, Yoshimoto, K, Miyauchi, A, Kuma, S, Mizusawa, N, Hirokawa, M, Sano, T. Cribriform–morular variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the beta-catenin gene. J Pathol 2003;199:5867.Google Scholar
Cameselle-Teijeiro, J, Ruiz-Ponte, C, Loidi, L, Suarez-Peñaranda, J, Baltar, J, Sobrinho-Simoes, M. Somatic but not germline mutation of the APC gene in a case of cribriform–morular variant of papillary thyroid carcinoma. Am J Clin Pathol 2001;115:486493.Google Scholar
Ng, SB, Sittampalam, K, Goh, YH, Eu, KW. Cribriform–morular variant of papillary carcinoma: the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma. A case report with clinical and molecular genetic correlation. Pathology 2003;35:4246.Google Scholar
Cameselle-Teijeiro, J, Chan, JK. Cribriform–morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma? Mod Pathol 1999;12:400411.Google Scholar
Hirokawa, M, Kuma, S, Miyauchi, A, Qian, ZR, Nakasono, M, Sano, T, Kakudo, K. Morules in cribriform–morular variant of papillary thyroid carcinoma: Immunohistochemical characteristics and distinction from squamous metaplasia. APMIS 2004;112:275282.Google Scholar
Levy, RA, Hui, VW, Sood, R, Fish, S, Markowitz, AJ, Wong, RJ, Guillem, JG. Cribriform–morular variant of papillary thyroid carcinoma: an indication to screen for occult FAP. Fam Cancer 2014;13:547551.Google Scholar
Ito, Y, Miyauchi, A, Ishikawa, H, Hirokawa, M, Kudo, T, Tomoda, C, Miya, A. Our experience of treatment of cribriform morular variant of papillary thyroid carcinoma; difference in clinicopathological features of FAP-associated andsporadic patients. Endocr J 2011;58:685689.Google Scholar
Yang, GC, Stern, CM, Messina, AV. Cystic papillary thyroid carcinoma in fine needle aspiration may represent a subset of the encapsulated variant in WHO classification. Diagn Cytopathol 2010;38:721726.Google Scholar
Chan, JK, Carcangiu, ML, Rosai, J. Papillary carcinoma of thyroid with exuberant nodular fasciitis-like stroma. Report of three cases. Am J Clin Pathol 1991;95:309314.Google Scholar
Basu, S, Nair, N, Shet, T, Borges, AM. Papillary thyroid carcinoma with exuberant nodular fasciitis-like stroma: treatment outcome and prognosis. J Laryngol Otol 2006;120:338342.Google Scholar
LiVolsi, VA, Asa, SL. Endocrine Pathology. Philadelphia, PA: Churchil Livingstone, 2002.Google Scholar
Yang, YJ, LiVolsi, VA, Khurana, KK. Papillary thyroid carcinoma with nodular fasciitis-like stroma. Pitfalls in fine-needle aspiration cytology. Arch Pathol Lab Med 1999;123:838841.Google Scholar
Vestfrid, MA. Papillary carcinoma of the thyroid gland with lipomatous stroma: report of a peculiar histological type of thyroid tumour. Histopathology 1986;10:97100.Google Scholar
Bisi, H, Longatto Filho, A, de Camargo, RY, Fernandes, VS. Thyroid papillary carcinoma lipomatous type: report of two cases. Pathologica 1993;85:761764.Google Scholar
Bruno, J, Ciancia, EM, Pingitore, R. Thyroid papillary adenocarcinoma; lipomatous-type. Virchows Arch A Pathol Anat Histopathol 1989;414:371373.Google Scholar
Akslen, LA, Maehle, BO. Papillary thyroid carcinoma with lipomatous stroma. Am J Surg Pathol 1997;21:12561257.Google Scholar
Ostrowski, MA, Asa, SL, Chamberlain, D, Moffar, FL. Myxomatous change in papillary carcinoma of thyroid. Surg Pathol. 1989;2:249256.Google Scholar
Kuma, S, Hirokawa, M, Miyauchi, A, Kakudo, K. Oncocytic thyroid carcinoma with extensive myxoid stroma. Histopathology 2003;42:514516.Google Scholar
Kondo, T, Kato, K, Nakazawa, T, Miyata, K, Murata, SI, Katoh, R. Mucinous carcinoma (poorly differentiated carcinoma with extensive extracellular mucin deposition) of the thyroid: a case report with immunohistochemical studies. Hum Pathol 2005;36:698701.Google Scholar
Cretney, A, Mow, C. Mucinous variant of follicular carcinoma of the thyroid gland. Pathology 2006;38:184186.Google Scholar
Murakami, S, Sakata, H, Okubo, K, Tsuji, Y, Kayano, H. Thyroid adenoma with extensive extracellular mucin deposition: report of a case. Surg Today 2007;37:226229.Google Scholar
Morrison, C, Wakely, P Jr. Aspiration cytopathology of metastatic mucinous papillary thyroid carcinoma. Mod Pathol 2001;14:361365.Google Scholar
Mlynek, ML, Richter, HJ, Leder, LD. Mucins in carcinomas of the thyroid. Cancer 1985;56: 26472650.Google Scholar
Chan, JKC, Tse, CC. Mucin production in metastatic papillary carcinoma of the thyroid. Hum Pathol 1988;19: 195200.Google Scholar
Ghossein, R, Livolsi, VA. Papillary thyroid carcinoma tall cell variant. Thyroid 2008;18:11791181.Google Scholar
LiVolsi, VA. Papillary carcinoma tall cell variant (TCV): a review. Endocr Pathol 2010;21:1215.Google Scholar
Silver, CE, Owen, RP, Rodrigo, JP, Rinaldo, A, Devaney, KO, Ferlito, A. Aggressive variants of papillary thyroid carcinoma. Head Neck 2011;33:10521059.Google Scholar
Abrosimov, A, Kozhushnaia, SM. Papillary thyroid carcinoma from tall and columnar cells. Arkh Patol 2011;73:5054.Google Scholar
Akslen, LA, LiVolsi, VA. Prognostic significance of histologic grading compared with subclassification of papillary thyroid carcinoma. Cancer 2000;88:19021908.Google Scholar
van den Brekel, MW, Hekkenberg, RJ, Asa, SL, Tomlinson, G, Rosen, IB, Freeman, JL. Prognostic features in tall cell papillary carcinoma and insular thyroid carcinoma. Laryngoscope 1997;107:254259.Google Scholar
Ganly, I, Ibrahimpasic, T, Rivera, M, Nixon, I, Palmer, F, Patel, SG, Tuttle, RM, Shah, JP, Ghossein, R. Prognostic implications of papillary thyroid carcinoma with tall-cell features. Thyroid 2014;24:662670.Google Scholar
Solomon, A, Gupta, PK, LiVolsi, VA, Baloch, ZW. Distinguishing tall cell variant of papillary thyroid carcinoma from usual variant of papillary thyroid carcinoma in cytologic specimens. Diagn Cytopathol 2002;27:143148.Google Scholar
Evans, HL. Columnar-cell carcinoma of the thyroid. A report of two cases of an aggressive variant of thyroid carcinoma. Am J Clin Pathol 1986;85:7780.Google Scholar
LiVolsi, VA. Surgical Pathology of The Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Mizukami, Y, Nonomura, A, Michigishi, T, Noguchi, M, Nakamura, S, Hashimoto, T. Columnar cell carcinoma of the thyroid gland: a case report and review of the literature. Hum Pathol 1994;25:10981101.Google Scholar
Gaertner, EM, Davidson, M, Wenig, BM. The columnar cell variant of thyroid papillary carcinoma. Case report and discussion of an unusually aggressive thyroid papillary carcinoma. Am J Surg Pathol 1995;19:940947.Google Scholar
Wenig, BM, Thompson, LD, Adair, CF, Shmookler, B, Heffess, CS. Thyroid papillary carcinoma of columnar cell type: a clinicopathologic study of 16 cases. Cancer 1998;82:740753.Google Scholar
Enriquez, ML, Baloch, ZW, Montone, KT, Zhang, PJ, LiVolsi, VA. CDX2 expression in columnar cell variant of papillary thyroid carcinoma. Am J Clin Pathol 2012;137:722726.Google Scholar
Bongiovanni, M, Piana, S, Frattini, M, Giovanella, L, Spitale, A, Ragazzi, M, Ciarrocchi, A. CDX2 expression in columnar variant of papillary thyroid carcinoma. Thyroid 2013;23:14981499.Google Scholar
Sujoy, V, Pinto, A, Nosé, V. Columnar cell variant of papillary thyroid carcinoma: a study of 10 cases with emphasis on CDX2 expression. Thyroid 2013;23:714719.Google Scholar
Asioli, S, Erickson, LA, Sebo, TJ, Zhang, J, Jin, L, Thompson, GB, Lloyd, RV. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol 2010;34:4452.Google Scholar
Asioli, S, Erickson, LA, Righi, A, Lloyd, RV. Papillary thyroid carcinoma with hobnail features: histopathologic criteria to predict aggressive behavior. Hum Pathol 2013;44:320328.Google Scholar
Asioli, S, Maletta, F, Pagni, F, Pacchioni, D, Vanzati, A, Mariani, S, Palestini, N, Lloyd, RV, Sapino, A. Cytomorphologic and molecular features of hobnail variant of papillary thyroid carcinoma: case series and literature review. Diagn Cytopathol 2014;42:7884.Google Scholar
Lubitz, CC, Economopoulos, KP, Pawlak, AC, Lynch, K, Dias-Santagata, D, Faquin, WC, Sadow, PM. Hobnail variant of papillary thyroid carcinoma: an institutional case series and molecular profile. Thyroid 2014;24:958965.Google Scholar
Hürthle, K. Beitrage zur Kenntiss der Secretionsvorgangs in der Schilddruse. Arch Gesamte Physiol 1894;56:144.Google Scholar
Askanazy, M. Patologisch anatomische Beitrage zur Kenntiss des Morbus Basedowii, insbesondere uber die dabei auftretende Muskelerkrankung. Dtsch Arch Klin Med 1898;61:118186.Google Scholar
Cheung, CC, Ezzat, S, Ramgar, L, Freeman, JL, Asa, SL. Molucular basis of Hürthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 2000;85:878882.Google Scholar
Sobrinho-Simões, M, Eloy, C, Magalhães, J, Lobo, C, Amaro, T. Follicular thyroid carcinoma. Mod Pathol 2011;24(suppl 2):S10S18.Google Scholar
Carcangiu, ML, Sibley, RK, Rosai, J. Clear cell change in primary thyroid tumors. A study of 38 cases. Am J Surg Pathol 1985;9:705722.Google Scholar
Vergilio, J, Baloch, ZW, LiVolsi, VA. Spindle cell metaplasia of the thyroid arising in association with papillary carcinoma and follicular adenoma. Am J Clin Pathol 2002;117:199204.Google Scholar
Corrado, S, Corsello, SM, Maiorana, A, Rossi, ED, Pontecorvi, A, Fadda, G, Papi, G. Papillary thyroid carcinoma with predominant spindle cell component: report of two rare cases and discussion on the differential diagnosis with other spindled thyroid neoplasm. Endocr Pathol 2014;25:307314.Google Scholar
Woenckhaus, C, Cameselle-Teijeiro, J, Ruiz-Ponte, C, Abdulkader, I, Reyes-Santías, R, Sobrinho Simões, M. Spindle cell variant of papillary thyroid carcinoma. Histopathology 2004;45: 424427.Google Scholar
Apel, RL, Asa, SL, LiVolsi, VA. Papillary Hürthle cell carcinoma with lymphocytic stroma. “Warthin-like tumor” of the thyroid. Am J Surg Pathol 1995;19:810814.Google Scholar
Baloch, ZW, LiVolsi, VA. Warthin-like papillary carcinoma of the thyroid. Arch Pathol Lab Med 2000;124:11921195.Google Scholar
Erşen, A, Durak, MG, Canda, T, Sevınç, AI, Saydam, S, Koçdor, MA. Warthin-like papillary carcinoma of the thyroid: a case series and review of the literature. Turk Patoloji Derg 2013;29:150155.Google Scholar
Lam, KY, Lo, CY, Wei, WI. Warthin tumor-like variant of papillary thyroid carcinoma: a case with dedifferentiation (anaplastic changes) and aggressive biological behavior. Endocr Pathol 2005;16:8389.Google Scholar
Fadda, G, Mulè, A, Zannoni, GF, Vincenzoni, C, Ardito, G, Capelli, A. Fine needle aspiration of a warthin-like thyroid tumor. Report of a case with differential diagnostic criteria vs. other lymphocyte-rich thyroid lesions. Acta Cytol 1998;42:9981002.Google Scholar
Urano, M, Abe, M, Kuroda, M, Mizoguchi, Y, Horibe, Y, Kasahara, M, Tanaka, K, Sudo, K, Hirasawa, Y. Warthin-like tumor variant of papillary thyroid carcinoma: case report and literature review. Pathol Int 2001;51:707712.Google Scholar
Thompson, LD, Wieneke, JA, Paal, E, Frommelt, RA, Adair, CF, Heffess, CS: A clinicopathologic study of minimally invasive follicular carcinoma of the thyroid gland with a review of the English literature. Cancer 2001;91:505524.Google Scholar
Huang, CC, Hsueh, C, Liu, FH, Chao, TC, Lin, JD: Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol 2011;20:16.Google Scholar
Romero-Rojas, AE, Diaz-Perez, JA, Mastrodimos, M, Chinchilla, SI. Follicular thyroid carcinoma with signet ring cell morphology: fine-needle aspiration cytology, histopathology, and immunohistochemistry. Endocr Pathol 2013;24:239245.Google Scholar
Trovisco, V, Soares, P, Preto, A, de Castro, IV, Lima, J, Castro, P, Máximo, V, Botelho, T, Moreira, S, Meireles, AM, Magalhães, J, Abrosimov, A, Cameselle-Teijeiro, J, Sobrinho-Simões, M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch 2005;446:589595.Google Scholar
Musholt, PB, Musholt, TJ, Morgenstern, SC, Worm, K, Sheu, SY, Schmid, KW. Follicular histotypes of oncocytic thyroid carcinomas do not carry mutations of the BRAF hot-spot. World J Surg 2008;32:722728.Google Scholar
Finkelstein, A, Levy, GH, Hui, P, Prasad, A, Virk, R, Chhieng, DC, Carling, T, Roman, SA, Sosa, JA, Udelsman, R, Theoharis, CG, Prasad, ML. Papillary thyroid carcinomas with and without BRAFV600E mutations are morphologically distinct. Histopathology 2012;60:10521059.Google Scholar
Santarpia, L, Myers, JN, Sherman, SI, Trimarchi, F, Clayman, GL, El-Naggar, AK. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010;116:29742983.Google Scholar
Couto, JP, Prazeres, H, Castro, P, Lima, J, Máximo, V, Soares, P, Sobrinho-Simões, M.How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol 2009;62:414421.Google Scholar
Giordano, TJ, Beaudenon-Huibregtse, S, Shinde, R, Langfield, L, Vinco, M, Laosinchai-Wolf, W, Labourier, E. Molecular testing for oncogenic gene mutations in thyroid lesions: a case–control validation study in 413 postsurgical specimens. Hum Pathol 2014;45:13391347.Google Scholar
Chou, A, Fraser, S, Toon, CW, Clarkson, A, Sioson, L, Farzin, M, Cussigh, C, Aniss, A, O'Neill, C, Watson, N, Clifton-Bligh, RJ, Learoyd, DL, Robinson, BG, Selinger, CI, Delbridge, LW, Sidhu, SB, O'Toole, SA, Sywak, M, Gill, AJ. A detailed clinicopathologic study of alk-translocated papillary thyroid carcinoma. Am J Surg Pathol 2014;39:652659.Google Scholar
Kim, TH, Park, YJ, Lim, JA, Ahn, HY, Lee, EK, Lee, YJ, Kim, KW, Hahn, SK, Youn, YK, Kim, KH, Cho, BY, Park do, J. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 2012;118:17641773.Google Scholar
Xing, M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 2010;32: 8693.Google Scholar
Kwak, JY, Kim, EK, Chung, WY, Moon, HJ, Kim, MJ, Choi, JR. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 2009;253:854860.Google Scholar
Howell, GM, Carty, SE, Armstrong, MJ, Lebeau, SO, Hodak, SP, Coyne, C, Stang, MT, McCoy, KL, Nikiforova, MN, Nikiforov, YE, Yip, L. Both BRAFV600E mutation and older age (≥65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol 2011;18:35663571.Google Scholar
Cheng, S, Serra, S, Mercado, M, Ezzat, S, Asa, SL. A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res 2011;17:23852394.Google Scholar
Niederer-Wüst, SM, Jochum, W, Förbs, D, Brändle, M, Bilz, S, Clerici, T, Oettli, R, Müller, J, Haile, SR, Ess, S, Stoeckli, SJ, Broglie, MA. Impact of clinical risk scores and BRAFV600E mutation status on outcome in papillary thyroid cancer. Surgery 2015;157:119125.Google Scholar
Walczyk, A, Kowalska, A, Kowalik, A, Sygut, J, Wypiórkiewicz, E, Chodurska, R, Pięciak, L, Góźdź, S. The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome? Clin Endocrinol (Oxf) 2014;80:899904.Google Scholar
Choi, SY, Park, H, Kang, MK, Lee, DK, Lee, KD, Lee, HS, Kim, SW, Lee, EN, Hong, JC. The relationship between the BRAF(V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. World J Surg Oncol 2013;11:291.Google Scholar
Gouveia, C, Can, NT, Bostrom, A, Grenert, JP, van Zante, A, Orloff, LA. Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg 2013;139:11641170.Google Scholar
Barbaro, D, Incensati, RM, Materazzi, G, Boni, G, Grosso, M, Panicucci, E, Lapi, P, Pasquini, C, Miccoli, P. The BRAFV600E mutation in papillary thyroid cancer with positive or suspected pre-surgical cytological finding is not associated with advanced stages or worse prognosis. Endocrine 2014;45:462468.Google Scholar
Ahn, D, Park, JS, Sohn, JH, Kim, JH, Park, SK, Seo, AN, Park, JY. BRAFV600E mutation does not serve as a prognostic factor in Korean patients with papillary thyroid carcinoma. Auris Nasus Larynx 2012;39:198203.Google Scholar
Nam, JK, Jung, CK, Song, BJ, Lim, DJ, Chae, BJ, Lee, NS, Park, WC, Kim, JS, Jung, SS, Bae, JS. Is the BRAF(V600E) mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am J Surg 2012;203:436441.Google Scholar
Ito, Y, Yoshida, H, Kihara, M, Kobayashi, K, Miya, A, Miyauchi, A. BRAF(V600E) mutation analysis in papillary thyroid carcinoma: is it useful for all patients? World J Surg 2014;38:679687.Google Scholar
Givens, DJ, Buchmann, LO, Agarwal, AM, Grimmer, JF, Hunt, JP. BRAFV600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope 2014;124:E389E393.Google Scholar
Li, C, Aragon Han, P, Lee, KC, Lee, LC, Fox, AC, Beninato, T, Thiess, M, Dy, BM, Sebo, TJ, Thompson, GB, Grant, CS, Giordano, TJ, Gauger, PG, Doherty, GM, Fahey, TJ 3rd, Bishop, J, Eshleman, JR, Umbricht, CB, Schneider, EB, Zeiger, MA. Does BRAFV600E mutation predict aggressive features in papillary thyroid cancer? Results from four endocrine surgery centers. J Clin Endocrinol Metab 2013;98:37023712.Google Scholar
Zheng, X, Wei, S, Han, Y, Li, Y, Yu, Y, Yun, X, Ren, X, Gao, M. Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol 2013;20:22662273.Google Scholar
Fugazzola, L, Puxeddu, E, Avenia, N, Romei, C, Cirello, V, Cavaliere, A, Faviana, P, Mannavola, D, Moretti, S, Rossi, S, Sculli, M, Bottici, V, Beck-Peccoz, P, Pacini, F, Pinchera, A, Santeusanio, F, Elisei, R. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer 2006;13:455464.Google Scholar
Costa, AM, Herrero, A, Fresno, MF, Heymann, J, Alvarez, JA, Cameselle-Teijeiro, J, García-Rostán, G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008;68:618634.Google Scholar
Kurt, B, Yalçın, S, Alagöz, E, Karslıoğlu, Y, Yigit, N, Günal, A, Deveci, MS. The relationship of the BRAF(V600E) mutation and the established prognostic factors in papillary thyroid carcinomas. Endocr Pathol 2012;23:135140.Google Scholar
Vinagre, J, Almeida, A, Pópulo, H, Batista, R, Lyra, J, Pinto, V, Coelho, R, Celestino, R, Prazeres, H, Lima, L, Melo, M, da Rocha, AG, Preto, A, Castro, P, Castro, L, Pardal, F, Lopes, JM, Santos, LL, Reis, RM, Cameselle-Teijeiro, J, Sobrinho-Simões, M, Lima, J, Máximo, V, Soares, P. Frequency of TERT promoter mutations in human cancers. Nat Commun 2013; 4:2185.Google Scholar
Liu, T, Wang, N, Cao, J, Sofiadis, A, Dinets, A, Zedenius, J, Larsson, C, Xu, D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 2014;33:49784984.Google Scholar
Melo, M, da Rocha, AG, Vinagre, J, Batista, R, Peixoto, J, Tavares, C, Celestino, R, Almeida, A, Salgado, C, Eloy, C, Castro, P, Prazeres, H, Lima, J, Amaro, T, Lobo, C, Martins, MJ, Moura, M, Cavaco, B, Leite, V, Cameselle-Teijeiro, JM, Carrilho, F, Carvalheiro, M, Máximo, V, Sobrinho-Simões, M, Soares, P. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014;99:E754765.Google Scholar
Xing, M, Liu, R, Liu, X, Murugan, AK, Zhu, G, Zeiger, MA, Pai, S, Bishop, J. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014;32:27182726.Google Scholar
Liu, X, Qu, S, Liu, R, Sheng, C, Shi, X, Zhu, G, Murugan, AK, Guan, H, Yu, H, Wang, Y, Sun, H, Shan, Z, Teng, W, Xing, M. TERT promoter mutations and their association with BRAFV600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 2014;99:E1130E1136.Google Scholar
Soares, P, Celestino, R, Melo, M, Fonseca, E, Sobrinho-Simões, M. Prognostic biomarkers in thyroid cancer. Virchows Arch 2014;464:333346.Google Scholar
Giannelli, SM, McPhaul, L, Nakamoto, J, Gianoukakis, AG. Familial adenomatous polyposis-associated, cribriform morular variant of papillary thyroid carcinoma harboring a K-RAS mutation: case presentation and review of molecular mechanisms. Thyroid 2014;24:11841189.Google Scholar
Cameselle-Teijeiro, J, Menasce, LP, Yap, BK, Colaco, RJ, Castro, P, Celestino, R, Ruíz-Ponte, C, Soares, P, Sobrinho-Simões, M. Cribriform–morular variant of papillary thyroid carcinoma: molecular characterization of a case with neuroendocrine differentiation and aggressive behavior. Am J Clin Pathol 2009;131:134142.Google Scholar
Schuetze, D, Hoschar, AP, Seethala, RR, Assaad, A, Zhang, X, Hunt, JL. The T1799A BRAF mutation is absent in cribriform–morular variant of papillary carcinoma. Arch Pathol Lab Med 2009;133:803805.Google Scholar
Rossi, ED, Revelli, L, Martini, M, Taddei, A, Pintus, C, Panunzi, C, Fadda, G. Cribriform–morular variant of papillary thyroid carcinoma in an 8-year-old girl: a case report with immunohistochemical and molecular testing. Int J Surg Pathol 2012;20:629632.Google Scholar
Jung, CK, Choi, YJ, Lee, KY, Bae, JS, Kim, HJ, Yoon, SK, Son, YI, Chung, JH, Oh, YL. The cytological, clinical, and pathological features of the cribriform–morular variant of papillary thyroid carcinoma and mutation analysis of CTNNB1 and BRAF genes. Thyroid 2009;19:905913.Google Scholar
Barletta, JA, Bellizzi, AM, Hornick, JL. Immunohistochemical staining of thyroidectomy specimens for PTEN can aid in the identification of patients with Cowden syndrome. Am J Surg Pathol 2011;35:15051511.Google Scholar
Ordóñez, NG. Value of thyroid transcription factor-1 immunostaining in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol 2012;20:429444.Google Scholar
Ordóñez, NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012;19:140151.Google Scholar
Cheung, CC, Ezzat, S, Freeman, JL, Rosen, IB, Asa, SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 2001;14:338342.Google Scholar
Barut, F, Onak Kandemir, N, Bektas, S, Bahadir, B, Keser, S, Ozdamar, SO. Universal markers of thyroid malignancies: galectin-3, HBME-1, and cytokeratin-19. Endocr Pathol 2010;21:8089.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Nga, ME, Lim, GS, Soh, CH, Kumarasinghe, MP. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma. Diagn Cytopathol 2008;36:550556.Google Scholar
Liu, YY, Morreau, H, Kievit, J, Romijn, JA, Carrasco, N, Smit, JW. Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-[gamma], and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma. Eur J Endocrinol 2008;158:375384.Google Scholar
Shahebrahimi, K, Madani, SH, Fazaeli, AR, Khazaei, S, Kanani, M, Keshavarz, A. Diagnostic value of CD56 and nm23 markers in papillary thyroid carcinoma. Indian J Pathol Microbiol 2013;56:25.Google Scholar
Nechifor-Boila, A, Borda, A, Sassolas, G, Hafdi-Nejjari, Z, Borson-Chazot, F, Lifante, JC, Sturm, N, Lavérriere, MH, Berger, N, Decaussin-Petrucci, M. Immunohistochemical markers in the diagnosis of papillary thyroid carcinomas: the promising role of combined immunostaining using HBME-1 and CD56. Pathol Res Pract 2013;209:585592.Google Scholar
Nechifor-Boilă, A, Cătană, R, Loghin, A, Radu, TG, Borda, A. Diagnostic value of HBME-1, CD56, galectin-3 and cytokeratin-19 in papillary thyroid carcinomas and thyroid tumors of uncertain malignant potential. Rom J Morphol Embryol 2014;55:4956.Google Scholar
Torregrossa, L, Faviana, P, Camacci, T, Materazzi, G, Berti, P, Minuto, M, Elisei, R, Vitti, P, Miccoli, P, Basolo, F. Galectin-3 is highly expressed in nonencapsulated papillary thyroid carcinoma but weakly expressed in encapsulated type; comparison with Hector Battifora mesothelial cell 1 immunoreactivity. Hum Pathol 2007;38:14821488.Google Scholar
Davidov, T, Nagar, M, Kierson, M, Chekmareva, M, Chen, C, Lu, SE, Lin, Y, Chernyavsky, V, Potdevin, L, Arumugam, D, Barnard, N, Trooskin, S. Carbonic anhydrase 4 and crystallin α-B immunoreactivity may distinguish benign from malignant thyroid nodules in patients with indeterminate thyroid cytology. J Surg Res 2014;190:565574.Google Scholar
Yorukoglu, A, Yalcin, N, Avci, A, Cakalagaoglu, F, Yaylali, G, Akin, F, Haciyanli, M, Ozden, A. Significance of IMP3, nucleophosmin, and Ki-67 expression in papillary thyroid carcinoma. Int J Surg Pathol 2014;23:512.Google Scholar
Slosar, M, Vohra, P, Prasad, M, Fischer, A, Quinlan, R, Khan, A. Insulin-like growth factor mRNA binding protein 3 (IMP3) is differentially expressed in benign and malignant follicular patterned thyroid tumors. Endocr Pathol 2009;20:149157.Google Scholar
Pusztaszeri, MP, Sadow, PM, Faquin, WC. CD117: a novel ancillary marker for papillary thyroid carcinoma in fine-needle aspiration biopsies. Cancer Cytopathol 2014;122:596603.Google Scholar
Cui, W, Sang, W, Zheng, S, Ma, Y, Liu, X, Zhang, W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab 2012;58:673680.Google Scholar
Abd El Atti, RM, Shash, LS. Potential diagnostic utility of CD56 and claudin-1 in papillary thyroid carcinoma and solitary follicular thyroid nodules. J Egypt Natl Canc Inst 2012;24:175184.Google Scholar
El Demellawy, D, Nasr, AL, Babay, S, Alowami, S. Diagnostic utility of CD56 immunohistochemistry in papillary carcinoma of the thyroid. Pathol Res Pract 2009;205:303309.Google Scholar
Ma, H, Xu, S, Yan, J, Zhang, C, Qin, S, Wang, X, Li, N. The value of tumor markers in the diagnosis of papillary thyroid carcinoma alone and in combination. Pol J Pathol 2014;65:202209.Google Scholar
Paunovic, I, Isic, T, Havelka, M, Tatic, S, Cvejic, D, Savin, S. Combined immunohistochemistry for thyroid peroxidase, galectin-3, CK19 and HBME-1 in differential diagnosis of thyroid tumors. APMIS 2012;120:368379.Google Scholar
Darr, EA, Patel, AD, Yu, G, Komorowski, Z, McCormick, S, Tiwari, R, Schantz, SP, Geliebter, J. Reduced Cx43 gap junction plaque expression differentiates thyroid carcinomas from benign disease. Arch Otolaryngol Head Neck Surg 2011;137:11611165.Google Scholar
Zhu, X, Sun, T, Lu, H, Zhou, X, Lu, Y, Cai, X, Zhu, X. Diagnostic significance of CK19, RET, galectin-3 and HBME-1 expression for papillary thyroid carcinoma. J Clin Pathol 2010;63:786789.Google Scholar
Nasr, MR, Mukhopadhyay, S, Zhang, S, Katzenstein, AL. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: Utility of HBME1 combined with CK19immunostaining. Mod Pathol 2006;19:16311637.Google Scholar
Isic Dencic, T, Cvejic, D, Paunovic, I, Tatic, S, Havelka, M, Savin, S. Cytokeratin19 expression discriminates papillary thyroid carcinoma from other thyroid lesions and predicts its aggressive behavior. Med Oncol 2013;30:362.Google Scholar
He, X, Wei, Q, Zhang, X, Xiao, J, Jin, X, Zhu, Y, Cui, B, Ning, G. Immunohistochemical expression of CXCR4 in thyroid carcinomas and thyroid benign lesions. Pathol Res Pract 2010;206:712715.Google Scholar
Torregrossa, L, Faviana, P, Filice, ME, Materazzi, G, Miccoli, P, Vitti, P, Fontanini, G, Melillo, RM, Santoro, M, Basolo, F. CXC chemokine receptor 4 immunodetection in the follicular variant of papillary thyroid carcinoma: comparison to galectin-3 and Hector Battifora mesothelial cell-1. Thyroid 2010;20:495504.Google Scholar
Mai, KT, Landry, DC, Thomas, J, Burns, BF, Commons, AS, Yazdi, HM, Odell, PF. Follicular adenoma with papillary architecture: a lesion mimicking papillary thyroid carcinoma. Histopathology 2001;39:2532.Google Scholar
Capper, D, Preusser, M, Habel, A, Sahm, F, Ackermann, U, Schindler, G, Pusch, S, Mechtersheimer, G, Zentgraf, H, von Deimling, A. Assessment of BRAFV600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta NeuroPathol 2011;122:1119.Google Scholar
Zimmermann, AK, Camenisch, U, Rechsteiner, MP, Bode-Lesniewska, B, Rössle, M. Value of immunohistochemistry in the detection of BRAF(V600E) mutations in fine-needle aspiration biopsies of papillary thyroid carcinoma. Cancer Cytopathol 2014;122:4858.Google Scholar
Routhier, CA, Mochel, MC, Lynch, K, Dias-Santagata, D, Louis, DN, Hoang, MP. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAFV600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol 2013;44:25632570.Google Scholar
Ilie, MI, Lassalle, S, Long-Mira, E, Bonnetaud, C, Bordone, O, Lespinet, V, Lamy, A, Sabourin, JC, Haudebourg, J, Butori, C, Guevara, N, Peyrottes, I, Sadoul, JL, Bozec, A, Santini, J, Capper, D, von Deimling, A, Emile, JF, Hofman, V, Hofman, P. Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid 2014;24:858866.Google Scholar
Crescenzi, A, Guidobaldi, L, Nasrollah, N, Taccogna, S, Cicciarella Modica, DD, Turrini, L, Nigri, G, Romanelli, F, Valabrega, S, Giovanella, L, Onetti Muda, A, Trimboli, P. Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res 2014;46:370374.Google Scholar
Rossi, ED, Martini, M, Capodimonti, S, Cenci, T, Straccia, P, Angrisani, B, Ricci, C, Lanza, P, Lombardi, CP, Pontecorvi, A, Larocca, LM, Fadda, G. Analysis of immunocytochemical and molecular BRAF expression in thyroid carcinomas: a cytohistologic institutional experience. Cancer Cytopathol 2014;122:527535.Google Scholar
Adackapara, CA, Sholl, LM, Barletta, JA, Hornick, JL. Immunohistochemistry using the BRAFV600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 2013;63:187193.Google Scholar
Kuan, SF, Navina, S, Cressman, KL, Pai, RK. Immunohistochemical detection of BRAFV600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol 2014;45:464472.Google Scholar
Jones, RT, Abedalthagafi, MS, Brahmandam, M, Greenfield, EA, Hoang, MP, Louis, DN, Hornick, JL, Santagata, S. Cross-reactivity of the BRAF VE1 antibody with epitopes in axonemal dyneins leads to staining of cilia. Mod Pathol 2015;28:596606.Google Scholar
Mordes, DA, Lynch, K, Campbell, S, Dias-Santagata, D, Nosé, V, Louis, DN, Hoang, MP. VE1 antibody immunoreactivity in normal anterior pituitary and adrenal cortex without detectable BRAFV600E mutations. Am J Clin Pathol 2014;141:811815.Google Scholar
Fisher, KE, Neill, SG, Ehsani, L, Caltharp, SA, Siddiqui, MT, Cohen, C. Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol 2014;22:562567.Google Scholar
Asioli, S, Bussolati, G. Emerin immunohistochemistry reveals diagnostic features of nuclear membrane arrangement in thyroid lesions. Histopathology 2009;54:571579.Google Scholar
Asioli, S, Maletta, F, Pacchioni, D, Lupo, R, Bussolati, G. Cytological detection of papillary thyroid carcinomas by nuclear membrane decoration with emerin staining. Virchows Arch 2010;457:4351.Google Scholar
Kinsella, MD, Hinrichs, B, Cohen, C, Siddiqui, MT. Highlighting nuclear membrane staining in thyroid neoplasms with emerin: review and diagnostic utility. Diagn Cytopathol 2013;41:497504.Google Scholar
Coban, I, Cakir, A, Unal, TD, Bassullu, N, Karpuz, V, Dogusoy, GB, Alper, M. Emerin expression in well differentiated epithelial lesions of thyroid: implications in papillary thyroid carcinoma diagnosis and predicting malignant behavior. Pathol Oncol Res 2015;21:357366.Google Scholar
Bussolati, G. Proper detection of the nuclear shape: ways and significance. Rom J Morphol Embryol 2008;49:435439.Google Scholar
Bussolati, G, Maletta, F, Asioli, S, Annaratone, L, Sapino, A, Marchiò, C. "To be or not to be in a good shape": diagnostic and clinical value of nuclear shape irregularities in thyroid and breast cancer. Adv Exp Med Biol 2014;773:101121.Google Scholar
Khoo, ML, Beasley, NJ, Ezzat, S, Freeman, JL, Asa, SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab 2002;87:18141818.Google Scholar
Khoo, ML, Freeman, JL, Witterick, IJ, Irish, JC, Rotstein, LE, Gullane, PJ, Asa, SL. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg 2002;128:253257.Google Scholar
Karlidag, T, Cobanoglu, B, Keles, E, Alpay, HC, Ozercan, I, Kaygusuz, I, Yalcin, S, Sakallioglu, O. Expression of Bax, p53, and p27/kip in patients with papillary thyroid carcinoma with or without cervical nodal metastasis. Am J Otolaryngol 2007;28:3136.Google Scholar
Pesutić-Pisac, V, Punda, A, Gluncić, I, Bedeković, V, Pranić-Kragić, A, Kunac, N. Cyclin D1 and p27 expression as prognostic factor in papillary carcinoma of thyroid: association with clinicopathological parameters. Croat Med J 2008;49:643649.Google Scholar
von Wasielewski, R, Rhein, A, Werner, M, Scheumann, GF, Dralle, H, Pötter, E, Brabant, G, Georgii, A. Immunohistochemical detection of E-cadherin in differentiated thyroid carcinomas correlates with clinical outcome. Cancer Res 1997;57:25012507.Google Scholar
Cerrato, A, Fulciniti, F, Avallone, A, Benincasa, G, Palombini, L, Grieco, M. Beta- and gamma-catenin expression in thyroid carcinomas. J Pathol 1998;185:267272.Google Scholar
Liu, Z, Kakudo, K, Bai, Y, Li, Y, Ozaki, T, Miyauchi, A, Taniguchi, E, Mori, I. Loss of cellular polarity/cohesiveness in the invasive front of papillary thyroid carcinoma, a novel predictor for lymph node metastasis; possible morphological indicator of epithelial mesenchymal transition. J Clin Pathol 2011;64:325329.Google Scholar
Eloy, C, Santos, J, Cameselle-Teijeiro, J, Soares, P, Sobrinho-Simões, M. TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012;460:587600.Google Scholar
Knauf, JA, Sartor, MA, Medvedovic, M, Lundsmith, E, Ryder, M, Salzano, M, Nikiforov, YE, Giordano, TJ, Ghossein, RA, Fagin, JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene. 2011;30:31533162.Google Scholar
Rocha, AS, Soares, P, Fonseca, E, Cameselle-Teijeiro, J, Oliveira, MC, Sobrinho-Simões, M. E-cadherin loss rather than betacatenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology 2003;42:580587.Google Scholar
Garcia-Rostan, G, Camp, RL, Herrero, A, Carcangiu, ML, Rimm, DL, Tallini, G. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 2001;158:987996.Google Scholar
Kjellman, P, Wallin, G, Höög, A, Auer, G, Larsson, C, Zedenius, J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid 2003;13:371380.Google Scholar
Ito, Y, Miyauchi, A, Kakudo, K, Hirokawa, M, Kobayashi, K, Miya, A. Prognostic significance of ki-67 labeling index in papillary thyroid carcinoma. World J Surg 2010;34:30153021.Google Scholar
Alexander, EK, Kennedy, GC, Baloch, ZW, Cibas, ES, Chudova, D, Diggans, J, Friedman, L, Kloos, RT, LiVolsi, VA, Mandel, SJ, Raab, SS, Rosai, J, Steward, DL, Walsh, PS, Wilde, JI, Zeiger, MA, Lanman, RB, Haugen, BR. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 2012;367:705715.Google Scholar
McIver, B, Castro, MR, Morris, JC, Bernet, V, Smallridge, R, Henry, M, Kosok, L, Reddi, H. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 2014;99:40694077.Google Scholar
Alexander, EK, Schorr, M, Klopper, J, Kim, C, Sipos, J, Nabhan, F, Parker, C, Steward, DL, Mandel, SJ, Haugen, BR. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab 2014;99:119125.Google Scholar
Nikiforova, MN, Wald, AI, Roy, S, Durso, MB, Nikiforov, YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 2013;98:E1852E1860.Google Scholar
Nikiforov, YE, Carty, SE, Chiosea, SI, Coyne, C, Duvvuri, U, Ferris, RL, Gooding, WE, Hodak, SP, LeBeau, SO, Ohori, NP, Seethala, RR, Tublin, ME, Yip, L, Nikiforova, MN. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014;120:36273634.Google Scholar
Nikiforova, MN, Lynch, RA, Biddinger, PW, Alexander, EK, Dorn, GW 2nd, Tallini, G, Kroll, TG, Nikiforov, YE. RAS point mutations and PAX8-PPARgamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003;88:23182326.Google Scholar
Dwight, T, Thoppe, SR, Foukakis, T, Lui, WO, Wallin, G, Höög, A, Frisk, T, Larsson, C, Zedenius, J. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:44404445.Google Scholar
Marques, AR, Espadinha, C, Catarino, AL, Moniz, S, Pereira, T, Sobrinho, LG, Leite, V. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:39473952.Google Scholar
Chu, PG, Chung, L, Weiss, LM, Lau, SK. Determining the site of origin of mucinous adenocarcinoma: an immunohistochemical study of 175 cases. Am J Surg Pathol 2011;35:18301836.Google Scholar
Lin, X, Lindner, JL, Silverman, JF, Liu, Y. Intestinal type and endocervical-like ovarian mucinous neoplasms are immunophenotypically distinct entities. Appl Immunohistochem Mol Morphol 2008;16:453458.Google Scholar
Silverman, JF, Zhu, B, Liu, Y, Lin, X. Distinctive immunohistochemical profile of mucinous cystic neoplasms of pancreas, ovary and lung. Histol HistoPathol 2009;24:7782.Google Scholar
Woodard, AH, Yu, J, Dabbs, DJ, Beriwal, S, Florea, AV, Elishaev, E, Davison, JM, Krasinskas, AM, Bhargava, R. NY-BR-1 and PAX8 immunoreactivity in breast, gynecologic tract, and other CK7+ carcinomas: potential use for determining site of origin. Am J Clin Pathol 2011;136:428435.Google Scholar
Ni, YB, Tsang, JY, Shao, MM, Chan, SK, Tong, J, To, KF, Tse, GM. TTF-1 expression in breast carcinoma: an unusual but real phenomenon. Histopathology 2014;64:504511.Google Scholar
Hay, ID, Thompson, GB, Grant, CS, Bergstralh, EJ, Dvorak, CE, Gorman, CA, Maurer, MS, McIver, B, Mullan, BP, Oberg, AL, Powell, CC, van Heerden, JA, Goellner, JR. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg 2002;26:879885.Google Scholar
Momesso, DP, Tuttle, RM. Update on differentiated thyroid cancer staging. Endocrinol Metab Clin North Am 2014;43:401421.Google Scholar
Kazaure, HS, Roman, SA, Sosa, JA. Insular thyroid cancer: a population-level analysis of patient characteristics and predictors of survival. Cancer 2012;118:32603267.Google Scholar
Volante, M, Landolfi, S, Chiusa, L, Palestini, N, Motta, M, Codegone, A, Torchio, B, Papotti, MG. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer 2004;100:950957.Google Scholar
Wu, YL, Ting, WH, Wey, SL, Chen, CK, Huang, CY, Cheng, SP, Lees, YJ. Poorly differentiated thyroid carcinoma in a 9-year-old boy: case report. J Pediatr Endocrinol Metab 2011;24:783786.Google Scholar
Diehl, M, Graichen, S, Menzel, C, Lindhorst, E, Grünwald, F. F-18 FDG PET in insular thyroid cancer. Clin Nucl Med 2003;28:728731.Google Scholar
Bongiovanni, M, Bloom, L, Krane, JF, Baloch, ZW, Powers, CN, Hintermann, S, Pache, JC, Faquin, WC. Cytomorphologic features of poorly differentiated thyroid carcinoma: a multi-institutional analysis of 40 cases. Cancer 2009;117:185194.Google Scholar
Dettmer, M, Schmitt, A, Steinert, H, Haldemann, A, Meili, A, Moch, H, Komminoth, P, Perren, A. Poorly differentiated thyroid carcinomas: how much poorly differentiated is needed? Am J Surg Pathol 2011;35:18661872.Google Scholar
Volante, M, Collini, P, Nikiforov, YE, Sakamoto, A, Kakudo, K, Katoh, R, Lloyd, RV, LiVolsi, VA, Papotti, M, Sobrinho-Simoes, M, Bussolati, G, Rosai, J. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 2007;31:12561264.Google Scholar
Asioli, S, Erickson, LA, Righi, A, Jin, L, Volante, M, Jenkins, S, Papotti, M, Bussolati, G, Lloyd, RV. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol 2010;23:12691278.Google Scholar
Ito, Y, Hirokawa, M, Fukushima, M, Inoue, H, Yabuta, T, Uruno, T, Kihara, M. Prevalence and prognostic significance of poor differentiation and tall cell variant in papillary carcinoma in Japan. World J Surg 2008;32:15351543.Google Scholar
Wreesmann, VB, Ghossein, RA, Patel, SG, Harris, CP, Schnaser, EA, Shaha, AR, Tuttle, RM, Shah, JP, Rao, PH, Singh, B. Genome-wide appraisal of thyroid cancer progression. Am J Pathol 2002;161:15491556.Google Scholar
Volante, M, Rapa, I, Gandhi, M, Bussolati, G, Giachino, D, Papotti, M, Nikiforov, YE. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 2009;94:47354741.Google Scholar
Nikiforova, MN, Kimura, ET, Gandhi, M, Biddinger, PW, Knauf, JA, Basolo, F, Zhu, Z, Giannini, R, Salvatore, G, Fusco, A, Santoro, M, Fagin, JA Nikiforov, YE. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003;88:53995404.Google Scholar
Soares, P, Trovisco, V, Rocha, AS, Feijão, T, Rebocho, AP, Fonseca, E, Vieira de Castro, I, Cameselle-Teijeiro, J, Cardoso-Oliveira, M, Sobrinho-Simões, M. BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch 2004;444:572576.Google Scholar
Soares, P, Lima, J, Preto, A, Castro, P, Vinagre, J, Celestino, R, Couto, JP, Prazeres, H, Eloy, C, Máximo, V, Sobrinho-Simões, M. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genom 2011;12:609617.Google Scholar
Ibrahimpasic, T, Ghossein, R, Carlson, DL, Chernichenko, N, Nixon, I, Palmer, FL, Lee, NY, Shaha, AR, Patel, SG, Tuttle, RM, Balm, AJ, Shah, JP, Ganly, I. Poorly differentiated thyroid carcinoma presenting with gross extrathyroidal extension: 1986–2009 Memorial Sloan-Kettering Cancer Center experience. Thyroid 2013;23:9971002.Google Scholar
Yang, L, Shen, W, Sakamoto, N. Population-based study evaluating and predicting the probability of death resulting from thyroid cancer and other causes among patients with thyroid cancer. J Clin Oncol 2013;31:468474.Google Scholar
Sanders, EM Jr., LiVolsi, VA, Brierley, J, Shin, J, Randolph, GW. An evidence-based review of poorly differentiated thyroid cancer. World J Surg 2007;31:934945.Google Scholar
Nikiforov, YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008;21(suppl 2):S37S43.Google Scholar
Sun, XS, Sun, SR, Guevara, N, Fakhry, N, Marcy, PY, Lassalle, S, Peyrottes, I, Bensadoun, RJ, Lacout, A, Santini, J, Cals, L, Bosset, JF Garden, AS, Thariat, J. Chemoradiation in anaplastic thyroid carcinomas. Crit Rev Oncol Hematol 2013;86:290301.Google Scholar
Deshpande, HA, Roman, S, Sosa, JA. New targeted therapies and other advances in the management of anaplastic thyroid cancer. Curr Opin Oncol 2013;25:4449.Google Scholar
Akaishi, J, Sugino, K, Kitagawa, W, Nagahama, M, Kameyama, K, Shimizu, K, Ito, K, Ito, K. Prognostic factors and treatment outcomes of 100 cases of anaplastic thyroid carcinoma. Thyroid 2011;21:11831189.Google Scholar
Lam, KY, Lo, CY, Chan, KW, Wan, KY. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 2000;231:329338.Google Scholar

References

Albores-Saavedra, JA, Krueger, JE. C-cell hyperplasia and medullary thyroid microcarcinoma. Endocr Pathol 2001;12:365377.Google Scholar
Biddinger, PW, Ray, M. Distribution of C cells in the normal and diseased thyroid gland. Pathol Annu 1993;28:205229.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Zambrano, E, Holm, I, Glickman, J, et al. Abnormal distribution and hyperplasia of thyroid C-cells in PTEN-associated tumor syndromes. Endocr Pathol 2004;15:5564.Google Scholar
Albores-Saavedra, J, Monforte, H, Nadji, M, et al. C-cell hyperplasia in thyroid tissue adjacent to follicular cell tumors. Hum Pathol 1988;19:795799.Google Scholar
Wolfe, HJ, Melvin, KE, Cervi-Skinner, SJ, et al. C-cell hyperplasia preceding medullary thyroid carcinoma. N Engl J Med 1973;289:437441.Google Scholar
LiVolsi, VA. C cell hyperplasia/neoplasia. J Clin Endocrinol Metab 1997;82:3941.Google Scholar
Carney, JA, Sizemore, GW, Hayles, AB. Multiple endocrine neoplasia, type 2b. Pathobiol Annu 1978;8: 105153.Google Scholar
Diaz-Cano, SJ, de Miguel, M, Blanes, A, et al. Germline RET 634 mutation positive MEN 2A-related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasia. J Clin Endocrinol Metab 2001;86:39483957.Google Scholar
Komminoth, P, Roth, J, Saremaslani, P, et al. Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. An immunohistochemical study on 79 thyroid lesions. Am J Surg Pathol 1994;18:399411.Google Scholar
Kotzmann, H, Schmidt, A, Scheuba, C, et al. Basal calcitonin levels and the response to pentagastrin stimulation in patients after kidney transplantation or on chronic hemodialysis as indicators of medullary carcinoma. Thyroid 1999;9:943947.Google Scholar
Tomita, T, Millard, DM. C-cell hyperplasia in secondary hyperparathyroidism. Histopathology 1992;21:469474.Google Scholar
Biddinger, PW, Brennan, MF, Rosen, PP. Symptomatic C-cell hyperplasia associated with chronic lymphocytic thyroiditis. Am J Surg Pathol 1991;15:599604.Google Scholar
Libbey, NP, Nowakowski, KJ, Tucci, JR. C-cell hyperplasia of the thyroid in a patient with goitrous hypothyroidism and Hashimoto's thyroiditis. Am J Surg Pathol 1989;13:7177.Google Scholar
Scheuba, C, Kaserer, K, Kotzmann, H, et al. Prevalence of C-cell hyperplasia in patients with normal basal and pentagastrin-stimulated calcitonin. Thyroid 2000;10:413416.Google Scholar
Scopsi, L, Di Palma, S, Ferrari, C, et al. C-cell hyperplasia accompanying thyroid diseases other than medullary carcinoma: an immunocytochemical study by means of antibodies to calcitonin and somatostatin. Mod Pathol 1991;4:297304.Google Scholar
Ulbright, TM, Kraus, FT, O'Neal, LW. C-cell hyperplasia developing in residual thyroid following resection for sporadic medullary carcinoma. Cancer 1981;48:20762079.Google Scholar
Harach, HR. Solid cell nests of the thyroid. J Pathol 1988;155:191200.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar

References

Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Matias-Guiu, X, DeLellis, RA, Moley, JF, et al. Medullary thyroid carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.8691.Google Scholar
Horn, RC. Carcinoma of the thyroid. Description of a distinctive morphological variant and report of seven cases. Cancer 1951;4: 697707.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Williams, ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol 1966;19:114118.Google Scholar
Bussolati, G, Pearse, AGE. Immunofluorescent localization of calcitonin in the C-cells of the dog and pig thyroid. J Endocrinol 1967;37: 205209.Google Scholar
Tashjian, AH Jr., Melvin, EW. Medullary carcinoma of the thyroid gland. Studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med 1968;279:279283.Google Scholar
Melvin, KE, Miller, HH, Tashjian, AH Jr. Early diagnosis of medullary carcinoma of the thyroid gland by means of calcitonin assay. N Engl J Med 1971;285:11151120.Google Scholar
Kaserer, K, Scheuba, C, Neuhold, N, et al. Sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol 2001;25:12451251.Google Scholar
Wells, SA Jr., Franz, C. Medullary carcinoma of the thyroid gland. World J Surg 2000;24:952956.Google Scholar
DeLellis, RA. Multiple endocrine neoplasia syndromes revisited. Clinical, morphological and molecular features. Lab Invest 1995;72: 494505.Google Scholar
Lips, CMJ, Vasen, HFA, Lamers, CBHW. Multiple endocrine neoplasia syndromes. CRC Crit Rev Oncol Hematol 1988;2: 117184.Google Scholar
Gimm, O, Cd, Morrison, Suster, S, et al. Multiple endocrine neoplasia type 2. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:211217.Google Scholar
Gagel, RF, Tashjian, AH Jr., Cummings, T, et al. The clinical outcome of prospective screening for multiple endocrine neoplasia type 2a. An 18-year experience. N Engl J Med 1988;318:478484.Google Scholar
Verdy, M, Weber, AM, Roy, CC, et al. Hirschsprung's disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol Nutr. 1982;1:603607.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V, Greenson, JK, Paner, GP, et al. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
DeLellis, RA, Wolfe, HJ, Gagel, RF, et al. Adrenal medullary hyperplasia. A morphometric analysis in patients with familial medullary thyroid carcinoma. Am J Pathol 1976;83:177196.Google Scholar
Carney, JA, Sizemore, GW, Tyce, GM. Bilateral adrenal medullary hyperplasia in multiple endocrine neoplasia, type 2: the precursor of bilateral pheochromocytoma. Mayo Clin Proc 1975;50:310.Google Scholar
Carney, JA, Sizemore, GW, Hayles, AB. Multiple endocrine neoplasia, type 2b. Pathobiol Annu 1978;8: 105153.Google Scholar
Farndon, JR, Leight, GS, Dilley, WG, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg 1986;73:278281.Google Scholar
Elisei, R, Romei, C, Cosci, B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 2007;92:47254729.Google Scholar
Trimboli, P, Nasrollah, N, Amendola, S, et al. Should we use ultrasound features associated with papillary thyroid cancer in diagnosing medullary thyroid cancer? Endocr J. 2012;59:503508.Google Scholar
Kim, SH, Kim, BS, Jung, SL, et al. Ultrasonographic findings of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Korean J Radiol 2009;10:101105.Google Scholar
Fukushima, M, Ito, Y, Hirokawa, M, et al. Excellent prognosis of patients with nonhereditary medullary thyroid carcinoma with ultrasonographic findings of follicular tumor or benign nodule. World J Surg 2009;33:963968.Google Scholar
Hundahl, SA, Cady, B, Cunningham, MP, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the united states during 1996. US and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000;89:202217.Google Scholar
Donis-Keller, H, Dou, S, Chi, D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993;2:851856.Google Scholar
Hofstra, RM, Landsvater, RM, Ceccherini, I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994;367:375376.Google Scholar
Lee, NC, Norton, JA. Multiple endocrine neoplasia type 2B: genetic basis and clinical expression. Surg Oncol 2000;9:111118.Google Scholar
Mulligan, LM, Kwok, JB, Healey, CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363:458460.Google Scholar
Thakker, RV. Multiple endocrine neoplasia. Horm Res 2001;56(suppl 1):6772.Google Scholar
Beressi, N, Campos, JM, Beressi, JP, et al. Sporadic medullary microcarcinoma of the thyroid: a retrospective analysis of eighty cases. Thyroid 1998;8:10391044.Google Scholar
Guyetant, S, Wion-Barbot, N, Rousselet, MC, et al. C-cell hyperplasia associated with chronic lymphocytic thyroiditis: a retrospective quantitative study of 112 cases. Hum Pathol 1994;25:514521.Google Scholar
Sironi, M, Cozzi, L, Pareschi, R, et al. Occult sporadic medullary microcarcinoma with lymph node metastases. Diagn Cytopathol 1999;21:203206.Google Scholar
Ozkara, SK, Gurbuz, Y, Muezzinoglu, B, et al. Encapsulated cystic papillary variant of medullary carcinoma of thyroid gland. Endocr Pathol 2002;13:167171.Google Scholar
Zaatari, GS, Saigo, PE, Huvos, AG. Mucin production in medullary carcinoma of the thyroid. Arch Pathol Lab Med 1983;107:7074.Google Scholar
Baloch, ZW, LiVolsi, VA. Neuroendocrine tumors of the thyroid gland. Am J Clin Pathol 2001;115(suppl):S56S67.Google Scholar
Chen, H, Nicol, TL, Zeiger, MA, et al. Hürthle cell neoplasms of the thyroid: are there factors predictive of malignancy? Ann Surg 1998;227:542546.Google Scholar
Krueger, JE, Maitra, A, Albores-Saavedra, J. Inherited medullary microcarcinoma of the thyroid: a study of 11 cases. Am J Surg Pathol 2000;24:853858.Google Scholar
Mizukami, Y, Kurumaya, H, Nonomura, A, et al. Sporadic medullary microcarcinoma of the thyroid. Histopathology 1992;21:375377.Google Scholar
Albores-Saavedra, JA, Krueger, JE. C-cell hyperplasia and medullary thyroid microcarcinoma. Endocr Pathol 2001;12:365377.Google Scholar
Guyetant, S, Dupre, F, Bigorgne, JC, et al. Medullary thyroid microcarcinoma: a clinicopathologic retrospective study of 38 patients with no prior familial disease. Hum Pathol 1999;30:957963.Google Scholar
Huss, LJ, Mendelsohn, G. Medullary carcinoma of the thyroid gland: an encapsulated variant resembling the hyalinizing trabecular (paraganglioma-like) adenoma of thyroid. Mod Pathol 1990;3:581585.Google Scholar
Kaufmann, O, Dietel, M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415420.Google Scholar
Bejarano, PA, Nikiforov, YE, Swenson, ES, et al. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol 2000;8:189194.Google Scholar
Kimura, N, Nakazato, Y, Nagura, H, et al. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med 1990;114:506510.Google Scholar
Holm, R, Sobrinho-Simoes, M, Nesland, JM, et al. Medullary carcinoma of the thyroid gland: an immunocytochemical study. Ultrastruct Pathol 1985;8:2541.Google Scholar
Portela-Gomes, GM, Lukinius, A, Grimelius, L. Synaptic vesicle protein 2, A new neuroendocrine cell marker. Am J Pathol 2000;157:12991309.Google Scholar
Saad, MF, Ordóñez, NG, Guido, JJ, et al. The prognostic value of calcitonin immunostaining in medullary carcinoma of the thyroid. J Clin Endocrinol Metab 1984;59:850856.Google Scholar
Sikri, KL, Varndell, IM, Hamid, QA, et al. Medullary carcinoma of the thyroid. An immunocytochemical and histochemical study of 25 cases using eight separate markers. Cancer 1985;56:24812491.Google Scholar
Steenbergh, PH, Hoppener, JW, Zandberg, J, et al. Calcitonin gene related peptide coding sequence is conserved in the human genome and is expressed in medullary thyroid carcinoma. J Clin Endocrinol Metab 1984;59:358360.Google Scholar
Zajac, JD, Penschow, J, Mason, T, et al. Identification of calcitonin and calcitonin gene-related peptide messenger ribonucleic acid in medullary thyroid carcinomas by hybridization histochemistry. J Clin Endocrinol Metab 1986;62:10371043.Google Scholar
Scopsi, L, Ferrari, C, Pilotti, S, et al. Immunocytochemical localization and identification of prosomatostatin gene products in medullary carcinoma of human thyroid gland. Hum Pathol 1990;21:820830.Google Scholar
Sunday, ME, Wolfe, HJ, Roos, BA, et al. Gastrin-releasing peptide gene expression in developing, hyperplastic, and neoplastic human thyroid C-cells. Endocrinology. 1988;122:15511558.Google Scholar
Williams, ED, Morales, AM, Horn, RC. Thyroid carcinoma and Cushing's syndrome. A report of two cases with a review of the common features of the “non-endocrine” tumours associated with Cushing's syndrome. J Clin Pathol 1968;21:129135.Google Scholar
Roth, KA, Bensch, KG, Hoffman, AR. Characterization of opioid peptides in human thyroid medullary carcinoma. Cancer 1987;59:15941598.Google Scholar
Birkenhager, JC, Upton, GV, Seldenrath, HJ, et al. Medullary thyroid carcinoma: ectopic production of peptides with ACTH-like, corticotrophin releasing factor-like and prolactin production-stimulating activities. Acta Endocrinol (Copenh) 1976;83:280292.Google Scholar
DeLellis, RA, Rule, AH, Spiler, I, et al. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol 1978;70:587594.Google Scholar
Uribe, M, Fenoglio-Preiser, CM, Grimes, M, et al. Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol 1985;9:577594.Google Scholar
Faggiano, A, Talbot, M, Lacroix, L, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol (Oxf) 2002;57:813819.Google Scholar
Schroder, S, Kloppel, G. Carcinoembryonic antigen and nonspecific cross-reacting antigen in thyroid cancer. An immunocytochemical study using polyclonal and monoclonal antibodies. Am J Surg Pathol 1987;11:100108.Google Scholar
Mendelsohn, G, Wells, SA Jr., Baylin, SB. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer 1984;54:657662.Google Scholar
Colomer, A, Martinez-Mas, JV, Matias-Guiu, X, et al. Sex-steroid hormone receptors in human medullary thyroid carcinoma. Mod Pathol 1996;9:6872.Google Scholar
DeLellis, RA, Wolfe, HJ. The pathobiology of the human calcitonin (C)-cell: a review. Pathol Annu 1981;16: 2552.Google Scholar
DeLellis, RA, Nunnemacher, G, Wolfe, HJ. C-cell hyperplasia. An ultrastructural analysis. Lab Invest 1977;36:237248.Google Scholar
Sletten, K, Westermark, P, Natvig, JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 1976;143:993998.Google Scholar
Khurana, R, Agarwal, A, Bajpai, VK, et al. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145:54655470.Google Scholar
Mathew, CG, Chin, KS, Easton, DF, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature 1987;328: 527528.Google Scholar
Simpson, NE, Kidd, KK, Goodfellow, PJ, et al. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 1987;328: 528530.Google Scholar
Gardner, E, Papi, L, Easton, DF, et al. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10q11.2. Hum Mol Genet 1993;2:241246.Google Scholar
Lairmore, TC, Dou, S, Howe, JR, et al. A 1.5-megabase yeast artificial chromosome contig from human chromosome 10q11.2 connecting three genetic loci (RET, D10S94, and D10S102) closely linked to the MEN2A locus. Proc Natl Acad Sci USA 1993;90:492496.Google Scholar
Mole, SE, Mulligan, LM, Healey, CS, et al. Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q11.2. Hum Mol Genet 1993;2:247252.Google Scholar
Eng, C, Smith, DP, Mulligan, LM, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 1994;3:237241.Google Scholar
Carlson, KM, Dou, S, Chi, D, et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 1994;91:15791583.Google Scholar
Eng, C, Clayton, D, Schuffenecker, I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996;276:15751579.Google Scholar
Eng, C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999;17:380393.Google Scholar
Hoff, AO, Cote, GJ, Gagel, RF. Multiple endocrine neoplasias. Annu Rev Physiol 2000;62: 377411.Google Scholar
Takahashi, M, Buma, Y, Iwamoto, T, et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene. 1988;3:571578.Google Scholar
Pasini, B, Hofstra, RM, Yin, L, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11:17371743.Google Scholar
Pachnis, V, Mankoo, B, Costantini, F. Expression of the c-Ret proto-oncogene during mouse embryogenesis. Development. 1993;119:10051017.Google Scholar
Gimm, O, Marsh, DJ, Andrew, SD, et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab 1997;82:39023904.Google Scholar
Smith, DP, Houghton, C, Ponder, BA. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene. 1997;15:12131217.Google Scholar
Santoro, M, Carlomagno, F, Romano, A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267: 381383.Google Scholar
Saggiorato, E, Rapa, I, Garino, F, et al. Absence of RET gene point mutations in sporadic thyroid C-cell hyperplasia. J Mol Diagn 2007;9:214219.Google Scholar
Eng, C, Crossey, PA, Mulligan, LM, et al. Mutations in the RET proto-oncogene and the von Hippel–Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 1995;32:934937.Google Scholar
Lindor, NM, Honchel, R, Khosla, S, et al. Mutations in the RET protooncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab 1995;80:627629.Google Scholar
Beldjord, C, Desclaux-Arramond, F, Raffin-Sanson, M, et al. The RET protooncogene in sporadic pheochromocytomas: frequent MEN2-like mutations and new molecular defects. J Clin Endocrinol Metab 1995;80:20632068.Google Scholar
Padberg, BC, Schroder, S, Jochum, W, et al. Absence of RET proto-oncogene point mutations in sporadic hyperplastic and neoplastic lesions of the parathyroid gland. Am J Pathol 1995;147:16001607.Google Scholar
Komminoth, P, Roth, J, Muletta-Feurer, S, et al. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1996;81:20412046.Google Scholar
Eng, C, Mulligan, LM. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Hum Mutat 1997;9:97109.Google Scholar
Shikama, Y, Osawa, T, Yagihashi, N, et al. Neuroendocrine differentiation in hyalinizing trabecular tumor of the thyroid. Virchows Arch 2003;443:792796.Google Scholar
Peacock, ML, Borst, MJ, Sweet, JD, et al. Detection of RET mutations in multiple endocrine neoplasia type 2a and familial medullary thyroid carcinoma by denaturing gradient gel electrophoresis. Hum Mutat 1996;7:100104.Google Scholar
Wohllk, N, Cote, GJ, Evans, DB, et al. Application of genetic screening information to the management of medullary thyroid carcinoma and multiple endocrine neoplasia type 2. Endocrinol Metab Clin North Am 1996;25:125.Google Scholar
Wells, SA Jr., Chi, DD, Toshima, K, et al. Predictive DNA testing and prophylactic thyroidectomy in patients at risk for multiple endocrine neoplasia type 2A. Ann Surg 1994;220:237247; discussion 247–250.Google Scholar
Lips, CJ, Landsvater, RM, Hoppener, JW, et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N Engl J Med 1994;331:828835.Google Scholar
Dralle, H, Gimm, O, Simon, D, et al. Prophylactic thyroidectomy in 75 children and adolescents with hereditary medullary thyroid carcinoma: German and Austrian experience. World J Surg 1998;22:744750; discussion 750–751.Google Scholar
Hales, M, Rosenau, W, Okerlund, MD, et al. Carcinoma of the thyroid with a mixed medullary and follicular pattern: morphologic, immunohistochemical, and clinical laboratory studies. Cancer 1982;50:13521359.Google Scholar
Fialkowski, EA, Moley, JF. Current approaches to medullary thyroid carcinoma, sporadic and familial. J Surg Oncol 2006;94:737747.Google Scholar
Moley, JF, Fialkowski, EA. Evidence-based approach to the management of sporadic medullary thyroid carcinoma. World J Surg 2007;31:946956.Google Scholar
Modigliani, E, Cohen, R, Campos, JM, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d'etude des tumeurs a calcitonine. Clin Endocrinol (Oxf) 1998;48:265273.Google Scholar
Vezzosi, D, Bennet, A, Caron, P. Recent advances in treatment of medullary thyroid carcinoma. Ann Endocrinol (Paris) 2007;68: 147153.Google Scholar
Kebebew, E, Ituarte, PH, Siperstein, AE, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 2000;88:11391148.Google Scholar
Leboulleux, S, Travagli, JP, Caillou, B, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer 2002;94:4450.Google Scholar
Schroder, S, Bocker, W, Baisch, H, et al. Prognostic factors in medullary thyroid carcinomas. Survival in relation to age, sex, stage, histology, immunocytochemistry, and DNA content. Cancer 1988;61:806816.Google Scholar
Barbet, J, Campion, L, Kraeber-Bodere, F, et al. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 2005;90:60776084.Google Scholar
Erovic, BM, Kim, D, Cassol, C, et al. Prognostic and predictive markers in medullary thyroid carcinoma. Endocr Pathol 2012;23:232242.Google Scholar
Zedenius, J, Wallin, G, Hamberger, B, et al. Somatic and MEN2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTCs. Hum Mol Genet 1994;3:12591262.Google Scholar
Eng, C, Mulligan, LM, Healey, CS, et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res 1996;56:21672170.Google Scholar
Elisei, R, Cosci, B, Romei, C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93:682687.Google Scholar
Simbolo, M, Mian, C, Barollo, S, Fassan, M, Mafficini, A, Neves, D, Scardoni, M, Pennelli, G, Rugge, M, Pelizzo, MR, Cavedon, E, Fugazzola, L, Scarpa, A.High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch 2014;465:7378.Google Scholar

References

Papotti, M, Bussolati, G, Komminoth, P, et al. Mixed medullary and follicular cell carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:9293.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Papotti, M, Volante, M, Komminoth, P, et al. Thyroid carcinomas with mixed follicular and C-cell differentiation patterns. Semin Diagn Pathol 2000;17:109119.Google Scholar
Mizukami, Y, Nonomura, A, Michigishi, T, et al. Mixed medullary-follicular carcinoma of the thyroid gland: a clinicopathologic variant of medullary thyroid carcinoma. Mod Pathol 1996;9:631635.Google Scholar
Sobrinho-Simoes, M. Mixed medullary and follicular carcinoma of the thyroid. Histopathology 1993;23:287289.Google Scholar
McNicol, AM, Lewis, PD. The endocrine system. In Lewis, PD, Emeritus, SW, eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Rossi, S, Fugazzola, L, De Pasquale, L, et al. Medullary and papillary carcinoma of the thyroid gland occurring as a collision tumour: report of three cases with molecular analysis and review of the literature. Endocr Relat Cancer 2005;12:281289.Google Scholar
Sadow, PM, Hunt, JL. Mixed medullary–follicular-derived carcinomas of the thyroid gland. Adv Anat Pathol 2010;17:282285.Google Scholar
Albores-Saavedra, J, Gorraez de la Mora, T, de la Torre-Rendon, F, et al. Mixed medullary-papillary carcinoma of the thyroid: a previously unrecognized variant of thyroid carcinoma. Hum Pathol 1990;21:11511155.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Volante, M, Papotti, M, Roth, J, et al. Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. Am J Pathol 1999;155:14991509.Google Scholar
Matias-Guiu, X. Mixed medullary and follicular carcinoma of the thyroid. On the search for its histogenesis. Am J Pathol 1999;155:14131418.Google Scholar
Albores-Saavedra, J, Wu, J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol 2006;17:118.Google Scholar

References

Lam, KY, Sakamoto, A. Squamous cell carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:81.Google Scholar
Nosé, V, Thompson, L. Squamous cell carcinoma, thyroid. In Nosé, V, Asa, SL, Erickson, LA, et al. eds. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012:1241–1-245.Google Scholar
Syed, MI, Stewart, M, Syed, S, et al. Squamous cell carcinoma of the thyroid gland: primary or secondary disease? J Laryngol Otol 2011;125:39.Google Scholar
Kleer, CG, Giordano, TJ, Merino, MJ. Squamous cell carcinoma of the thyroid: an aggressive tumor associated with tall cell variant of papillary thyroid carcinoma. Mod Pathol 2000;13:742746.Google Scholar
Cho, JK, Woo, SH, Park, J, Kim, MJ, Jeong, HS. Primary squamous cell carcinomas in the thyroid gland: an individual participant data meta-analysis. Cancer Med 2014;3:13961403.Google Scholar
Jang, JY, Kwon, KW, Kim, SW, Youn, I. Primary squamous cell carcinoma of thyroid gland with local recurrence: ultrasonographic and computed tomographic findings. Ultrasonography 2014;33:143148.Google Scholar
LiVolsi, VA, Merino, MJ. Squamous cells in the human thyroid gland. Am J Surg Pathol 1978;2:133140.Google Scholar
Rosa, M, Toronczyk, K. Fine needle aspiration biopsy of three cases of squamous cell carcinoma presenting as a thyroid mass: cytological findings and differential diagnosis. Cytopathology 2012;23:4549.Google Scholar
Sahoo, M, Bal, CS, Bhatnagar, D. Primary squamous-cell carcinoma of the thyroid gland: new evidence in support of follicular epithelial cell origin. Diagn Cytopathol 2002;27:227231.Google Scholar
Booya, F, Sebo, TJ, Kasperbauer, JL, Fatourechi, V. Primary squamous cell carcinoma of the thyroid: report of ten cases. Thyroid 2006;16:8993.Google Scholar
Lam, KY, Lo, CY, Liu, MC. Primary squamous cell carcinoma of the thyroid gland: an entity with aggressive clinical behaviour and distinctive cytokeratin expression profiles. Histopathology 2001;39:279286.Google Scholar
Bonetti, LR, Lupi, M, Trani, M, et al. EGFR polysomy in squamous cell carcinoma of the thyroid. report of two cases and review of the literature. Tumori 2010;96:503507.Google Scholar
Long, JL, Strocker, AM, Wang, MB, Blackwell, KE. EGFR expression in primary squamous cell carcinoma of the thyroid. Laryngoscope 2009;119:8990.Google Scholar
Ko, YS, Hwang, TS, Han, HS, Lim, SD, Kim, WS, Oh, SY. Primary pure squamous cell carcinoma of the thyroid: report and histogenic consideration of a case involving a BRAF mutation. Pathol Int 2012;62:4348.Google Scholar
De Carvalho, TG, De Carvalho, AC, Maia, DC, Ogawa, JK, Carvalho, AL, Vettore, AL. Search for mutations in signaling pathways in head and neck squamous cell carcinoma. Oncol Rep 2013;30:334340.Google Scholar
Ito, Y, Hirokawa, M, Higashiyama, T, et al. Biological behavior of papillary carcinoma of the thyroid including squamous cell carcinoma components and prognosis of patients who underwent locally curative surgery. J Thyroid Res 2012;2012:230283.Google Scholar
Harada, T, Shimaoka, K, Katagiri, M, Shimizu, M, Hosoda, Y, Ito, K. Rarity of squamous cell carcinoma of the thyroid: Autopsy review. World J Surg 1994;18:542546.Google Scholar
Gaillardin, L, Beutter, P, Cottier, JP, Arbion, F, Moriniere, S. Thyroid gland invasion in laryngopharyngeal squamous cell carcinoma: prevalence, endoscopic and CT predictors. Eur Ann Otorhinolaryngol Head Neck Dis 2012;129:15.Google Scholar
Musso-Lassalle, S, Butori, C, Bailleux, S, Santini, J, Franc, B, Hofman, P. A diagnostic pitfall: nodular tumor-like squamous metaplasia with hashimoto's thyroiditis mimicking a sclerosing mucoepidermoid carcinoma with eosinophilia. Pathol Res Pract 2006;202:379383.Google Scholar
Ryska, A, Ludvikova, M, Rydlova, M, Cap, J, Zalud, R. Massive squamous metaplasia of the thyroid gland: report of three cases. Pathol Res Pract 2006;202:99106.Google Scholar
Cook, AM, Vini, L, Harmer, C. Squamous cell carcinoma of the thyroid: outcome of treatment in 16 patients. Eur J Surg Oncol 1999;25:606609.Google Scholar
Simpson, WJ, Carruthers, J. Squamous cell carcinoma of the thyroid gland. Am J Surg 1988;156:4446.Google Scholar
Cameselle-Teijeiro, J, Wenig, B, Sobrinho-Simoes, M, Albores-Saavedra, J. Mucoepidermoid carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:82.Google Scholar
Farhat, NA, Faquin, WC, Sadow, PM. Primary mucoepidermoid carcinoma of the thyroid gland: a report of three cases and review of the literature. Endocr Pathol 2013;24:229233.Google Scholar
Prichard, RS, Lee, JC, Gill, AJ, et al. Mucoepidermoid carcinoma of the thyroid: a report of three cases and postulated histogenesis. Thyroid 2012;22:205209.Google Scholar
Baloch, ZW, Solomon, AC, LiVolsi, VA. Primary mucoepidermoid carcinoma and sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid gland: a report of nine cases. Mod Pathol 2000;13:802807.Google Scholar
Wenig, BM, Adair, CF, Heffess, CS. Primary mucoepidermoid carcinoma of the thyroid gland: a report of six cases and a review of the literature of a follicular epithelial-derived tumor. Hum Pathol 1995;26:10991108.Google Scholar
Wissmeyer, M, Weidner, S, Muggli, B, Weimann, R, Juengling, FD, Krause, T. FDG uptake in metastatic spreading mucoepidermoid carcinoma of the thyroid. Clin Nucl Med 2007;32:383387.Google Scholar
Minagawa, A, Iitaka, M, Suzuki, M, et al. A case of primary mucoepidermoid carcinoma of the thyroid: molecular evidence of its origin. Clin Endocrinol (Oxf) 2002;57:551556.Google Scholar
Rocha, AS, Soares, P, Machado, JC, et al. Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Arch 2002;440:498504.Google Scholar
Rhatigan, RM, Roque, JL, Bucher, RL. Mucoepidermoid carcinoma of the thyroid gland. Cancer 1977;39:210214.Google Scholar
Mizukami, Y, Matsubara, F, Hashimoto, T, et al. Primary mucoepidermoid carcinoma in the thyroid gland. A case report including an ultrastructural and biochemical study. Cancer 1984;53:17411745.Google Scholar
Katoh, R, Sugai, T, Ono, S, et al. Mucoepidermoid carcinoma of the thyroid gland. Cancer 1990;65:20202027.Google Scholar
Ando, M, Nakanishi, Y, Asai, M, Maeshima, A, Matsuno, Y. Mucoepidermoid carcinoma of the thyroid gland showing marked ciliation suggestive of its pathogenesis. Pathol Int 2008;58:741744.Google Scholar
Tirado, Y, Williams, MD, Hanna, EY, Kaye, FJ, Batsakis, JG, El-Naggar, AK. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin's tumors: Implications for histogenesis and biologic behavior. Genes Chromosomes Cancer 2007;46:708715.Google Scholar
Sobrinho-Simoes, M, Cameselle-Teijeiro, J, Harach, HR. Mucinous carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:85.Google Scholar
Cretney, A, Mow, C. Mucinous variant of follicular carcinoma of the thyroid gland. Pathology 2006;38:184186.Google Scholar
Chan, J, LiVolsi, V, Bondeson, L, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:84.Google Scholar
Nosé, V. Sclerosing mucoepidermoid carcinoma with eosinophilia. In Nosé, V, Asa, SL, Erickson, LA, et al. eds. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012:1204–1-207.Google Scholar
Chan, JK, Albores-Saavedra, J, Battifora, H, Carcangiu, ML, Rosai, J. Sclerosing mucoepidermoid thyroid carcinoma with eosinophilia. A distinctive low-grade malignancy arising from the metaplastic follicles of Hashimoto's thyroiditis. Am J Surg Pathol 1991;15:438448.Google Scholar
Shehadeh, NJ, Vernick, J, Lonardo, F, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: a case report and review of the literature. Am J Otolaryngol 2004;25:4853.Google Scholar
Hunt, JL, LiVolsi, VA, Barnes, EL. P63 expression in sclerosing mucoepidermoid carcinomas with eosinophilia arising in the thyroid. Mod Pathol 2004;17:526529.Google Scholar
Bondeson, L, Bondeson, AG. Cytologic features in fine-needle aspirates from a sclerosing mucoepidermoid thyroid carcinoma with eosinophilia. Diagn Cytopathol 1996;15:301305.Google Scholar
Geisinger, KR, Hartle, EO, Warren, T. Eosinophilic replacement infiltrates in cystic Hashimoto's thyroiditis: a potential diagnostic pitfall. Endocr Pathol 2014.Google Scholar
Albores-Saavedra, J, Gu, X, Luna, MA. Clear cells and thyroid transcription factor I reactivity in sclerosing mucoepidermoid carcinoma of the thyroid gland. Ann Diagn Pathol 2003;7:348353.Google Scholar
Solomon, AC, Baloch, ZW, Salhany, KE, Mandel, S, Weber, RS, LiVolsi, VA. Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia: mimic of Hodgkin disease in nodal metastases. Arch Pathol Lab Med 2000;124:446449.Google Scholar
Sim, SJ, Ro, JY, Ordóñez, NG, Cleary, KR, Ayala, AG. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: report of two patients, one with distant metastasis, and review of the literature. Hum Pathol 1997;28:10911096.Google Scholar
Mnif, H, Chakroun, A, Charfi, S, Ellouze, S, Ghorbel, M, Sallemi-Boudawara, T. Primary mucinous carcinoma of the thyroid gland: case report with review of the literature. Pathologica 2013;105:128131.Google Scholar
Kondo, T, Kato, K, Nakazawa, T, Miyata, K, Murata, S, Katoh, R. Mucinous carcinoma (poorly differentiated carcinoma with extensive extracellular mucin deposition) of the thyroid: a case report with immunohistochemical studies. Hum Pathol 2005;36:698701.Google Scholar
D'Antonio, A, Addesso, M, De Dominicis, G, Boscaino, A, Liguori, G, Nappi, O. Mucinous carcinoma of thyroid gland. report of a primary and a metastatic mucinous tumour from ovarian adenocarcinoma with immunohistochemical study and review of literature. Virchows Arch 2007;451:847851.Google Scholar
Diaz-Perez, R, Quiroz, H, Nishiyama, RH. Primary mucinous adenocarcinoma of thyroid gland. Cancer 1976;38:13231325.Google Scholar
Uccella, S, La Rosa, S, Finzi, G, Erba, S, Sessa, F. Mixed mucus-secreting and oncocytic carcinoma of the thyroid: pathologic, histochemical, immunohistochemical, and ultrastructural study of a case. Arch Pathol Lab Med 2000;124:15471552.Google Scholar
Deligdisch, L, Subhani, Z, Gordon, RE. Primary mucinous carcinoma of the thyroid gland: report of a case and ultrastructural study. Cancer 1980;45:25642567.Google Scholar
Mlynek, ML, Richter, HJ, Leder, LD. Mucin in carcinomas of the thyroid. Cancer 1985;56:26472650.Google Scholar
Rigaud, C, Bogomoletz, WV. “Mucin secreting” and “mucinous” primary thyroid carcinomas: pitfalls in mucin histochemistry applied to thyroid tumours. J Clin Pathol 1987;40:890895.Google Scholar

References

Dorfman, DM, Shahsafaei, A, Miyauchi, A. Intrathyroidal epithelial thymoma (ITET)/carcinoma showing thymus-like differentiation (CASTLE) exhibits CD5 immunoreactivity: new evidence for thymic differentiation. Histopathology 1998;32:104109.Google Scholar
Chan, JK, Rosai, J. Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 1991;22:349367.Google Scholar
Reimann, JD, Dorfman, DM, Nosé, V. Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study: evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol 2006;30:9941001.Google Scholar
Beckner, ME, Shultz, JJ, Richardson, T. Solid and cystic ultimobranchial body remnants in the thyroid. Arch Pathol Lab Med 1990;114:10491052.Google Scholar
Harach, HR. Solid cell nests of the human thyroid in early stages of postnatal life. Systematic autopsy study. Acta Anat (Basel) 1986;127:262264.Google Scholar
Su, L, Beals, T, Bernacki, EG, et al. Spindle epithelial tumor with thymus-like differentiation: a case report with cytologic, histologic, immunohistologic, and ultrastructural findings. Mod Pathol 1997;10:510514.Google Scholar
Kakudo, K, Mori, I, Tamaoki, N, et al. Carcinoma of possible thymic origin presenting as a thyroid mass: a new subgroup of squamous cell carcinoma of the thyroid. J Surg Oncol 1988;38:187192.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Berezowski, K, Grimes, MM, Gal, A, et al. CD5 immunoreactivity of epithelial cells in thymic carcinoma and CASTLE using paraffin-embedded tissue. Am J Clin Pathol 1996;106:483486.Google Scholar
Rosai, J, Carcangiu, MD, DeLellis, RA. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Chan, JK, Rosai, J. Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 1991;22:349367.Google Scholar
Kloboves-Prevodnik, V, Jazbec, J, Us-Krasovec, M, et al. Thyroid spindle epithelial tumor with thymus-like differentiation (SETTLE): is cytopathological diagnosis possible? Diagn Cytopathol 2002;26:314319.Google Scholar
Cheuk, W, Jacobson, AA, Chan, JK. Spindle epithelial tumor with thymus-like differentiation (SETTLE): a distinctive malignant thyroid neoplasm with significant metastatic potential. Mod Pathol 2000;13:11501155.Google Scholar
Hofman, P, Mainguene, C, Michiels, JF, et al. Thyroid spindle epithelial tumor with thymus-like differentiation (the “SETTLE” tumor). An immunohistochemical and electron microscopic study. Eur Arch Otorhinolaryngol 1995;252:316320.Google Scholar
Kirby, PA, Ellison, WA, Thomas, PA. Spindle epithelial tumor with thymus-like differentiation (SETTLE) of the thyroid with prominent mitotic activity and focal necrosis. Am J Surg Pathol 1999;23:712716.Google Scholar
Su, L, Beals, T, Bernacki, EG, et al. Spindle epithelial tumor with thymus-like differentiation: a case report with cytologic, histologic, immunohistologic, and ultrastructural findings. Mod Pathol 1997;10:510514.Google Scholar
Folpe, AL, Lloyd, RV, Bacchi, CE, et al. Spindle epithelial tumor with thymus-like differentiation: a morphologic, immunohistochemical, and molecular genetic study of 11 cases. Am J Surg Pathol 2009;33:11791186.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia, PA: Churchill Livingstone. 2002: 6188.Google Scholar

References

Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia.Bethesda, MD: ARP Press, 2007.Google Scholar
Hayashi, T, Mete, O. Head and neck paragangliomas: what does the pathologist need to know? Diagnostic Histopathol 2014;20:316325.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Tischler, AS, de Krijger, R, McNicol, AM, Eisenhofer, G, Pacak, K, Ezzat, S, Asa, SL. Protocol for the examination of specimens from patients with pheochromocytomas and extra-adrenal paragangliomas. Arch Pathol Lab Med 2014;138:182188.Google Scholar
Michel, J, Taïeb, D, Jolibert, M, Torrents, J, Wassef, M, Morange, I, Essamet, W, Barlier, A, Dessi, P, Fakhry, N. Sinonasal paraganglioma with long-delayed recurrence and metastases: genetic and imaging findings. J Clin Endocrinol Metab 2013;98:42624266.Google Scholar
Yu, BH, Sheng, WQ, Wang, J. Primary paraganglioma of thyroid gland: a clinicopathologic and immunohistochemical analysis of three cases with a review of the literature. Head Neck Pathol 2013;7:373380.Google Scholar
LaGuette, J, Matias-Guiu, X, Rosai, J. Thyroid paraganglioma: a clinicopathologic and immunohistochemical study of three cases. Am J Surg Pathol 1997;21:748753.Google Scholar
Treglia, G, Giovanella, L, Caldarella, C, Bertagna, F. A rare case of thyroid paraganglioma detected by 18F-FDG PET/CT. Rev Esp Med Nucl Imag Mol 2014;33:320321.Google Scholar
Filipović, A, Vucković, L, Pejakov, L. Paraganglioma of the thyroid gland: a case report. Vojnosanit Pregl 2014;71:875878.Google Scholar
Mohyuddin, N, Ferrer, K, Patel, U. Malignant paraganglioma of the thyroid gland with synchronous bilateral carotid body tumors. Ear Nose Throat J 2013;92:E20E23.Google Scholar
Calò, PG, Lai, ML, Guaitoli, E, Pisano, G, Favoriti, P, Nicolosi, A, Pinna, G, Sorrenti, S. Difficulties in the diagnosis of thyroid paraganglioma: a clinical case. Clin Ter 2013;164:e35e39.Google Scholar
D'Angelo, FA, Antolino, L, Magistri, P, Giubettini, M, Aurello, P, Maceli, F, Bollanti, L, Bartolazzi, A, Ramacciato, G. Primary thyroid paraganglioma: a rare entity affecting middle-aged women. Am Surg 2013;79:E351E353.Google Scholar
Evankovich, J, Dedhia, RC, Bastaki, JM, Tublin, M, Johnson, JT. Primary sclerosing paraganglioma of the thyroid gland: a case report. Ann Otol Rhinol Laryngol 2012;121:510515.Google Scholar
Costinean, S, Balatti, V, Bottoni, A, Old, M, Croce, C, Wakely, PE Jr. Primary intrathyroidal paraganglioma: histopathology and novel molecular alterations. Hum Pathol 2012;43:23712375.Google Scholar
Yano, Y, Nagahama, M, Sugino, K, Ito, K, Kameyama, K, Ito, K. Paraganglioma of the thyroid: report of a male case with ultrasonographic imagings, cytologic, histologic, and immunohistochemical features. Thyroid 2007;17:575578.Google Scholar
González Poggioli, N, López Amado, M, Pimentel, MT. Paraganglioma of the thyroid gland: a rare entity. Endocr Pathol 2009;20:6265.Google Scholar
Erem, C, Kocak, M, Nuhoglu, İ, Cobanoglu, U, Ucuncu, O, Okatan, BK. Primary thyroid paraganglioma presenting with double thyroid nodule: a case report. Endocrine 2009;36:368371.Google Scholar
Ferri, E, Manconi, R, Armato, E, Ianniello, F. Primary paraganglioma of thyroid gland: a clinicopathologic and immunohistochemical study with review of the literature. Acta Otorhinolaryngol Ital 2009;29:97102.Google Scholar
Phitayakorn, R, Faquin, W, Wei, N, Barbesino, G, Stephen, AE. Thyroid-associated paragangliomas. Thyroid 2011;21:725733.Google Scholar
Basu, S, Viswanathan, S. Primary paraganglioma of thyroid presenting as solitary thyroid mass. J Cancer Res Ther 2011;7:385387.Google Scholar
Grajower, MM. Malignant paraganglioma of thyroid. Endocr Pract 2006;12:696697.Google Scholar
Kronz, JD, Argani, P, Udelsman, R, Silverberg, L, Westra, WH. Paraganglioma of the thyroid: two cases that clarify and expand the clinical spectrum. Head Neck 2000;22:621625.Google Scholar
Tiong, HY, White, SA, Roop, L, Furness, PN, Nicholson, ML. Paraganglioma-an unusual solitary nodule of the thyroid. Eur J Surg Oncol 2000;26:720721.Google Scholar
Napolitano, L, Francomano, F, Angelucci, D, Napolitano, AM. Thyroid paraganglioma: report of a case and review of the literature. Ann Ital Chir 2000;71:511513.Google Scholar
Zantour, B, Guilhaume, B, Tissier, F, Louvel, A, Jeunemaitre, X, Gimenez-Roqueplo, AP, Bertagna, X. A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene. Eur J Endocrinol 2004;151:433438.Google Scholar
Corrado, S, Montanini, V, De Gaetani, C, Borghi, F, Papi, G. Primary paraganglioma of the thyroid gland. J Endocrinol Invest 2004;27:788792.Google Scholar
Bizollon, MH, Darreye, G, Berger, N. Thyroid paraganglioma: report of a case. Ann Pathol 1997;17:416418.Google Scholar
Brownlee, RE, Shockley, WW. Thyroid paraganglioma. Ann Otol Rhinol Laryngol 1992;101:293299.Google Scholar
Buss, DH, Marshall, RB, Baird, FG, Myers, RT. Paraganglioma of the thyroid gland. Am J Surg Pathol 1980;4:589593.Google Scholar
de Vries, E, Watson, CG. Paraganglioma of the thyroid. Head Neck 1989;11:462465.Google Scholar
Haegert, DG, Wang, MS, Farrer, PA, Seemayer, TA, Thelmo, W. Non-chromaffin paragangliomatosis manifesting as a cold thyroid nodule. Am J Clin Pathol 1974;61:561570.Google Scholar
Kay, S, Montague, JW, Dodd, RW. Nonchromaffin paraganglioma (chemodectoma) of thyroid region. Cancer 1975;36:582585.Google Scholar
Mitsudo, SM, Grajower, MM, Balbi, H, Silver, C. Malignant paraganglioma of the thyroid gland. Arch Pathol Lab Med 1987;1111:378380.Google Scholar
Van Der Horst-Schrivers, AN, Osinga, TE, Kema, IP, Van Der Laan, BF, Dullaart, RP. Dopamine excess in patients with head and neck paragangliomas. Anticancer Res 2010;30: 5153e8.Google Scholar
Pacak, K. Phaeochromocytoma: a catecholamine and oxidative stress disorder. Endocr Regul 2011;45: 65e90.Google Scholar
ter Bekke, RM, Crijns, HJ, Kroon, AA, Gorgels, AP. Pheochromocytoma-induced ventricular tachycardia and reversible cardiomyopathy. Int J Cardiol 2011;147: 145e6.Google Scholar
Tischler, A, Pacak, K, Eisenhofer, G. The adrenal medulla and extraadrenal paraganglia: then and now. Endocr Pathol 2014;25: 4958.Google Scholar
Timmers, HJ, Taieb, D, Pacak, K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44: 367372.Google Scholar
Blanchet, EM, Gabriel, S, Martucci, V, Fakhry, N, Chen, CC, Deveze, A, Millo, C, Barlier, A, Pertuit, M, Loundou, A, Pacak, K, Taïeb, D. 18F-FDG PET/CT as a predictor of hereditary head and neck paragangliomas. Eur J Clin Invest 2014;44:325332.Google Scholar
Blanchet, EM, Millo, C, Martucci, V, Maass-Moreno, R, Bluemke, DA, Pacak, K. Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol. Clin Nucl Med 2014;39: 243250.Google Scholar
Gabriel, S, Blanchet, EM, Sebag, F, Chen, CC, Fakhry, N, Deveze, A, Barlier, A, Morange, I, Pacak, K, Taïeb, D.Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by (18)FFDOPA PET: focus on missed lesions. Clin Endocrinol (Oxf) 2013;79: 170177.Google Scholar
Magro, G, Grasso, S. Sustentacular cells in sporadic paraganglioma-like medullary thyroid carcinoma: report of a case with diagnostic and histogenetic considerations. Pathol Res Pract 2000;196:5559.Google Scholar
Warth, A, Krysa, S, Zahel, T, Hoffmann, H, Schirmacher, P, Schnabel, PA, Herpel, E. S100 protein positive sustentacular cells in pulmonary carcinoids and thoracic paragangliomas: differential diagnostic and prognostic evaluation. Pathologe 2010;31:379384.Google Scholar
Asa, SL. Atlas of Tumor Pathology, 4th Series, Fascicle 15: Tumors of the Pituitary Gland. WBethesada, MD: ARP Press, 2011.Google Scholar
Tischler, AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 2008;132: 12721284.Google Scholar
Papathomas, TG, de Krijger, RR, Tischler, AS. Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments. Semin Diagn Pathol 2013;30:207223.Google Scholar
van Nederveen, FH, Gaal, J, Favier, J, Korpershoek, E, Oldenburg, RA, de Bruyn, EM, Sleddens, HF, Derkx, P, Rivière, J, Dannenberg, H, Petri, BJ, Komminoth, P, Pacak, K, Hop, WC, Pollard, PJ, Mannelli, M, Bayley, JP, Perren, A, Niemann, S, Verhofstad, AA, de Bruïne, AP, Maher, ER, Tissier, F, Méatchi, T, Badoual, C, Bertherat, J, Amar, L, Alataki, D, Van Marck, E, Ferrau, F, François, J, de Herder, WW, Peeters, MP, van Linge, A, Lenders, JW, Gimenez-Roqueplo, AP, de Krijger, RR, Dinjens, WN. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Korpershoek, E, Favier, J, Gaal, J, Burnichon, N, van Gessel, B, Oudijk, L, Badoual, C, Gadessaud, N, Venisse, A, Bayley, JP, van Dooren, MF, de Herder, WW, Tissier, F, Plouin, PF, van Nederveen, FH, Dinjens, WN, Gimenez-Roqueplo, AP, de Krijger, RR. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E14721476.Google Scholar
Menara, M, Oudjik, L, Badoual, C, Bertherat, J, Lepoutre-Lussey, C, Amar, L, Iturrioz, X, Sibony, M, Zinzindohoué, F, de Krijger, R, Gimenez-Roqueplo, AP, Favier, J. SDHD immunohistochemistry: a new tool to validate SDHx mutations in pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2014;100:E287E291.Google Scholar
Srirajaskanthan, R, Mcstay, M, Toumpanakis, C, Meyer, T, Caplin, ME. Parathyroid hormone-related peptide-secreting pancreatic neuroendocrine tumours: case series and literature review. Neuroendocrinology 2009;89:4855.Google Scholar
Nonaka, D. Study of parathyroid transcription factor GCM2 expression in parathyroid lesions. Am J Surg Pathol 2011;35:145151.Google Scholar
Ordóñez, NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol 2013;20:352360.Google Scholar
Asa, SL, Mete, O. Tumors of the endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar

References

Watanabe, N., Noh, J.Y., Narimatsu, H., et al. Clinicopathological features of 171 cases of primary thyroid lymphoma: a long-term study involving 24 553 patients with Hashimoto's disease. Br J Haematol 2011;153:236243.Google Scholar
Takakuwa, T., Dong, Z., Takayama, H., et al. Frequent mutations of FAS gene in thyroid lymphoma. Cancer Res 2001;61:13821385.Google Scholar
Stein, S.A., Wartofsky, L.. Primary thyroid lymphoma: a clinical review. J Clin Endocrinol Metab 2013;98:31313138.Google Scholar
Rhomberg, W., Gruber-Mösenbacher, U., Eiter, H., et al. Prognosis and epidemiology of malignant hemangioendotheliomas of the thyroid gland. Schweiz Med Wochenschr 1993;123:16401644.Google Scholar
Maiorana, A., Collina, G., Cesinaro, A.M., et al. Angiomatoid carcinoma of the thyroid: clinicopathological analysis of seven cases from non-Alpine areas. Virchows Arch 1996;429:131137.Google Scholar
Papotti, M., Volante, M., Negro, F., et al. Thyroglobulin mRNA expression helps to distinguish anaplastic carcinoma from angiosarcoma of the thyroid. Virchows Arch 2000;437:635642.Google Scholar
Papotti, M., Arrondini, M., Tavaglione, V., et al. Diagnostic controversies in vascular proliferations of the thyroid gland. Endocr Pathol 2008;19:175183.Google Scholar
Mills, S.E., Gaffey, M.J., Watts, J.C., et al. Angiomatoid carcinoma and “angiosarcoma” of the thyroid gland. Am J Clin Pathol 1994;102:322330.Google Scholar
Papotti, M., Sapino, A., Abbona, G., et al. Pseudoangiosarcomatous features in medullary carcinomas of the thyroid. Report of two cases. Int J Surg Pathol 1995;3:2934.Google Scholar
Thompson, L.D., Wenig, B.M., Adair, C.F., et al. Primary smooth muscle tumors of the thyroid gland. Cancer 1997;79:579587.Google Scholar
Tulbah, A., Al-Dayel, F., Fawaz, I., et al. Epstein–Barr virus-associated leiomyosarcoma of the thyroid in a child with congenital immunodeficiency: a case report. Am J Surg Pathol 1999;23:473476.Google Scholar
Kandil, E., Abdel Khalek, M., Abdullah, O., et al. Primary peripheral nerve sheath tumors of the thyroid gland. Thyroid 2010;20:583586.Google Scholar
Pérez-Mies, B., Regojo Zapata, R.M., García-Fernández, E., et al. Malignant teratoma of the thyroid in a pregnant woman. Ann Diagn Pathol 2010;14:264267.Google Scholar
Ranaldi, R., Morichetti, D., Goteri, G., et al. Immature teratoma of the mediastinum arising in ectopic thyroid tissue: a case report. Anal Quant Cytol Histol 2009;31:233238.Google Scholar
Thompson, L.D., Rosai, J., Heffess, C.S.. Primary thyroid teratomas: a clinicopathologic study of 30 cases. Cancer 2000;88:11491158.Google Scholar
Lin, M.W., Wu, C.T., Lee, Y.H., et al. Intrathoracic thyroid solitary fibrous tumor presenting with respiratory failure. Ann Thorac Cardiovasc Surg 2013;20(suppl):427429.Google Scholar
Ning, S., Song, X., Xiang, L., et al. Malignant solitary fibrous tumor of the thyroid gland: report of a case and review of the literature. Diagn Cytopathol 2011;39:694699.Google Scholar
Galati, L.T., Barnes, E.L., Myers, E.N.. Dendritic cell sarcoma of the thyroid. Head Neck 1999;21:273275.Google Scholar
Yu, L., Yang, S.J.. Primary follicular dendritic cell sarcoma of the thyroid gland coexisting with Hashimoto's thyroiditis. Int J Surg Pathol 2011;19:502505.Google Scholar
Jabbour, M.N., Fedda, F.A., Tawil, A.N., et al. Follicular dendritic cell sarcoma of the head and neck expressing thyroid transcription factor-1: a case report with clinicopathologic and immunohistochemical literature review. Appl Immunohistochem Mol Morphol 2014;22:705712.Google Scholar

References

Heffess, C.S., Wenig, B.M., Thompson, L.D.. Metastatic renal cell carcinoma to the thyroid gland: a clinicopathologic study of 36 cases. Cancer 2002;95:18691878.Google Scholar
Di Stasi, V., D'Antonio, A., Caleo, A., et al. Metastatic renal cell carcinoma to the thyroid gland 24 years after the primary tumour. Br Med J Case Rep 2013;pii:bcr2012007569.Google Scholar

References

Seethala, RR, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, Richardson, MS, Shah, J, Thompson, LDR, Nikiforov, YE. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Cranshaw, IM, Carnaille, B. Micrometastases in thyroid cancer: an important finding? Surg Oncol 2008;17:253258.Google Scholar
Urken, ML, Mechanick, JI, Sarlin, J, Scherl, S, Wenig, BM. Pathologic reporting of lymph node metastases in differentiated thyroid cancer: a call to action for the College of American Pathologists. Endocr Pathol 2013;25:214218.Google Scholar
Randolph, GW, Duh, QY, Heller, KS, LiVolsi, VA, Mandel, SJ, Steward, DL, Tufano, RP, Tuttle, RM. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 2012;22:11441152.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×